CN115090270B - 一种多孔聚合物铀吸附材料及其制备方法 - Google Patents

一种多孔聚合物铀吸附材料及其制备方法 Download PDF

Info

Publication number
CN115090270B
CN115090270B CN202210643111.9A CN202210643111A CN115090270B CN 115090270 B CN115090270 B CN 115090270B CN 202210643111 A CN202210643111 A CN 202210643111A CN 115090270 B CN115090270 B CN 115090270B
Authority
CN
China
Prior art keywords
porous
adsorption material
porous polymer
uranium adsorption
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210643111.9A
Other languages
English (en)
Other versions
CN115090270A (zh
Inventor
刘立佳
朱喜迎
张春红
许文达
王超
马福秋
董红星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Standard Measurement Inspection And Testing Center Yantai Verification Station Of National Steam Flow Measurement And Yantai Institute Of Quality And Technology Supervision Evaluation And Appraisal
Research Institute Of Yantai Harbin Engineering University
Harbin Engineering University
Original Assignee
Yantai Standard Measurement Inspection And Testing Center Yantai Verification Station Of National Steam Flow Measurement And Yantai Institute Of Quality And Technology Supervision Evaluation And Appraisal
Research Institute Of Yantai Harbin Engineering University
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Standard Measurement Inspection And Testing Center Yantai Verification Station Of National Steam Flow Measurement And Yantai Institute Of Quality And Technology Supervision Evaluation And Appraisal, Research Institute Of Yantai Harbin Engineering University, Harbin Engineering University filed Critical Yantai Standard Measurement Inspection And Testing Center Yantai Verification Station Of National Steam Flow Measurement And Yantai Institute Of Quality And Technology Supervision Evaluation And Appraisal
Priority to CN202210643111.9A priority Critical patent/CN115090270B/zh
Publication of CN115090270A publication Critical patent/CN115090270A/zh
Application granted granted Critical
Publication of CN115090270B publication Critical patent/CN115090270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种多孔聚合物铀吸附材料,为表面磷酸基团与铁离子配位的多孔材料,通过表面带有磷酸基团的多孔材料与铁盐在强酸性环境下进行反应制备得到。本发明还提供了上述多孔聚合物铀吸附材料的制备方法,包括以下步骤:采用杯芳烃,路易斯酸,交联剂,有机溶剂反应制备得到超交联杯芳烃多孔聚合物;加入浓磷酸中进行反应,经水解、过滤,得到表面带有磷酸基团的多孔铀吸附材料;在浓酸环境下与铁盐加热反应一定时间;反应结束后,固体产物经布氏漏斗抽滤、洗涤、干燥后得到多孔聚合物铀吸附材料。本发明的多孔聚合物铀吸附材料具有比表面积大、吸附容量高、选择性好的优点;且制备方法简单、成本低、效率高,有良好的市场前景。

Description

一种多孔聚合物铀吸附材料及其制备方法
技术领域
本发明涉及铀的提取与含铀废水处理技术领域,特别涉及一种多孔聚合物铀吸附材料及其制备方法。
背景技术
作为核能的主要燃料,安全、稳定的铀资源供应是核电发展的重要前提。因此,高效、可靠的铀萃取技术对环保和社会发展具有重要意义。
作为核动力的工业燃料,陆地铀矿的开采已经不能满足日益增长的核电发展需求。一方面,陆地铀资源有限,考虑到燃料不能回收,按照目前的消耗速度只能维持不到100年。另一方面,海水中铀储量丰富,几乎可以提供无穷无尽的核能。因此,从长远的眼光来看,从海水中分离并富集铀已经成为未来核电发展的必然方向。
目前,化学沉淀法,离子交换法,膜过滤法,电渗析法、光催化还原法和吸附法等多种技术已经被用于水溶液中铀的提取。在这些技术中,吸附法因其效率高、成本低、操作简单、选择性高等种种优点,被认为是从水体大规模提取铀最有效的方法之一。传统的铀吸附材料,大多都是一些通用的无机吸附剂,吸附量普遍不高。少数对铀具有较高吸附量的材料又存在诸如成本高、合成工艺复杂、操作不够便捷等问题。因此,遵循吸附容量大、选择性高、动力学快速和循环利用好四个标准,开发具有高效吸附性能的新型吸附材料迫在眉睫。
发明内容
本发明的目的在于解决现有技术中存在的上述技术问题。本发明提供了一种多孔聚合物铀吸附材料及其制备方法,可提高吸附容量,且合成工艺简单、操作便捷、成本低。
为解决上述技术问题,本发明的实施方式公开了一种多孔聚合物铀吸附材料,所述多孔聚合物铀吸附材料为表面磷酸基团与铁离子配位的多孔材料,所述铀吸附材料通过表面带有磷酸基团的多孔材料与铁盐在强酸性环境下进行反应制备得到。
本发明的实施方式还公开了上述多孔聚合物铀吸附材料的制备方法,包括以下步骤:
(1)采用杯芳烃,路易斯酸,交联剂,有机溶剂反应制备得到超交联杯芳烃多孔聚合物;
(2)将所述超交联杯芳烃多孔聚合物加入浓磷酸中进行反应,经水解、过滤,得到表面带有磷酸基团的多孔铀吸附材料;
(3)将所述表面带有磷酸基团的多孔铀吸附材料在浓酸环境下与铁盐加热反应一定时间;
(4)反应结束后,固体产物经布氏漏斗抽滤、洗涤、干燥后得到所述多孔聚合物铀吸附材料。
进一步,所述表面带有磷酸基团的多孔材料为磷酸基团修饰的多孔超交联芳基聚合物,磷酸基团修饰的苯乙烯多孔树脂,磷酸基团修饰的多糖材料,磷酸基团修饰的共价有机框架材料(COF),磷酸基团修饰的碳材料,磷酸基团修饰的多孔二氧化硅中的任意一种。
进一步,所述磷酸基团修饰的多糖材料为磷酸基团修饰的纤维素、磷酸基团修饰的淀粉、磷酸基团修饰的壳聚糖;
所述磷酸基团修饰的碳材料为磷酸基团修饰的多孔碳、磷酸基团修饰的石墨烯。
进一步,所述浓酸为浓硝酸、浓盐酸、浓硫酸中的一种或几种的混合物。
进一步,所述铁盐为二价铁、三价铁的无机盐或元素周期表其他相邻副族元素的金属盐。
进一步,所述金属盐为含Cr3+、Mn2+、Co2+、Ni2+、Cu2+金属离子的盐类化合物。
进一步,步骤(1)中,所述表面带有磷酸基团的多孔材料的质量分数为 1/5-10/5,所述铁盐的质量分数为18/5-18/1,浓酸的质量分数为3/1-6/1,去离子水的质量分数为3/20-3/5;反应温度为70-120℃,反应时间为3-24小时。
与现有技术相比,本发明具有如下技术效果:
本发明制得的多孔聚合物铀吸附材料吸附容量大、选择性高、动力学快速且循环利用好;
本发明所采用的合成工艺简单、操作便捷、材料成本低。
附图说明
图1示出本发明实施例1所获得的表面磷酸基团锚定铁离子的多孔高效铀吸附材料的红外光谱图;
图2示出本发明实施例1所获得的表面磷酸基团锚定铁离子的多孔高效铀吸附材料的扫描电子显微镜照片;
图3示出本发明实施例1所获得的表面磷酸基团锚定铁离子的多孔高效铀吸附材料的X射线光电子能谱图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1
第一步:氮气保护下,将质量份数4份的杯[4]芳烃,50份的无水三氯甲烷, 1份的无水三氯化铝,4份的二甲氧基甲烷加入两颈瓶中,45℃反应12h,生成固体超交联聚合产物;抽滤后洗涤,将所得固体产物用乙醇索氏提取24h后,经65℃真空干燥24h得超交联杯[4]芳烃聚合物。
第二步:称取质量份数6份的上述制备的超交联杯[4]芳烃与10份浓磷酸,于130℃下反应24h;冷却至室温后,将反应产物置于冰水浴中,滴加100份去离子水,固体物质经抽滤,去离子水洗涤,80℃真空干燥24h后制得表面带有磷酸基团的杯[4]芳烃多孔聚合物。
第三步:称取质量份数4份的上述制备的表面带有磷酸基团的超交联杯[4] 芳烃,2份六水合三氯化铁,60份去离子水混合,加入1份浓硝酸,100℃下反应3h;反应结束后,产物经抽滤、水洗、真空干燥24h后制得表面磷酸基团锚定铁离子的超交联杯[4]芳烃高效铀吸附材料。
BET比表面积:51.1m2·g-1
铀吸附试验方法:在盛有50mL 60mg/L硝酸铀酰溶液的锥形瓶中加入 0.005g所制备的表面磷酸基团锚定铁离子的超交联杯[4]芳烃高效铀吸附材料,采用0.5M HNO3/Na2CO3调节pH值在3~9之间变化;密封后将锥形瓶放置在温度为25℃、转速为140rpm的气浴恒温振荡器中吸附6h。吸附结束后,取出一定量硝酸铀酰溶液,过滤后使用电感耦合等离子体发射光谱(ICP-AES),测定吸附前后硝酸铀酰溶液中的U(VI)浓度并根据公式(1)计算出吸附材料在pH=6时的U(VI)吸附容量最高,为505.68mg/g。
注:式中,Qt为吸附量(mg/g);C0为溶液中U(VI)的初始浓度(mg/L); Ct为吸附后溶液中U(VI)的浓度(mg/L);V为吸附溶液的体积(L);m为表面磷酸基团锚定铁离子的超交联杯[4]芳烃高效铀吸附材料的质量(g)。
实施例2
第一步:氮气保护下,将质量份数4份的杯[4]芳烃,50份的无水三氯甲烷, 1份的无水三氯化铝,4份的二甲氧基甲烷加入两颈瓶中,45℃反应12h,生成固体超交联聚合产物;抽滤后洗涤,将所得固体产物用乙醇索氏提取24h后,经65℃真空干燥24h得超交联杯[4]芳烃聚合物;
第二步:称取质量份数6份的上述制备的超交联杯[4]芳烃与10份浓磷酸, 130℃下反应24h。冷却至室温后,将反应产物置于冰水浴中,滴加100份去离子水,固体物质经抽滤,去离子水洗涤,80℃真空干燥24h后制得表面带有磷酸基团的杯[4]芳烃多孔聚合物。
第三步:称取质量份数3份的上述制备的表面带有磷酸基团的超交联杯[4] 芳烃,7.5份六水合三氯化铁,60份去离子水混合,加入1份浓硝酸,100℃下反应3h。反应结束后,产物经抽滤、水洗、真空干燥24h后制得表面磷酸基团锚定铁离子的超交联杯[4]芳烃高效铀吸附材料。
BET比表面积:50.3m2·g-1
铀吸附试验方法:在盛有50mL 60mg/L硝酸铀酰溶液的锥形瓶中加入 0.005g所制备的表面磷酸基团锚定铁离子的超交联杯[4]芳烃高效铀吸附材料,采用0.5M HNO3/Na2CO3调节pH值在3~9之间变化。密封后将锥形瓶放置在温度为25℃、转速为140rpm的气浴恒温振荡器中吸附6h。吸附结束后,取出一定量硝酸铀酰溶液,过滤后使用电感耦合等离子体发射光谱(ICP-AES),测定吸附前后硝酸铀酰溶液中的U(VI)浓度并根据公式(1)计算出吸附材料在pH=7时的U(VI)吸附容量最高,为499.03mg/g。
实施例3
第一步:氮气保护下,将质量份数10份的杯[8]芳烃,60份的无水三氯甲烷,1份的无水三氯化铝,4份的二甲氧基甲烷加入两颈瓶中,45℃反应12h,生成固体超交联聚合产物。抽滤后洗涤,将所得固体产物用乙醇索氏提取24h 后,经65℃真空干燥24h得超交联杯[8]芳烃聚合物。
第二步:称取质量份数6份的上述制备的超交联杯[8]芳烃与10份浓磷酸,130℃下反应24h。冷却至室温后,将反应产物置于冰水浴中,滴加100份去离子水,固体物质经抽滤,去离子水洗涤,80℃真空干燥24h后制得表面带有磷酸基团的杯[8]芳烃多孔聚合物。
第三步:称取质量份数3份的上述制备的表面带有磷酸基团的超交联杯[8] 芳烃,7.5份六水合三氯化铁,60份去离子水混合,加入1份浓硝酸,100℃下反应3h。反应结束后,产物经抽滤、水洗、真空干燥24h后制得表面磷酸基团锚定铁离子的超交联杯[8]芳烃高效铀吸附材料。
BET比表面积:2.13m2·g-1
铀吸附试验方法:在盛有50mL 60mg/L硝酸铀酰溶液的锥形瓶中加入 0.005g所制备的表面磷酸基团锚定铁离子的超交联杯[8]芳烃高效铀吸附材料,采用0.5M HNO3/Na2CO3调节pH值在3~9之间变化。密封后将锥形瓶放置在温度为25℃、转速为140rpm的气浴恒温振荡器中吸附6h。吸附结束后,取出一定量硝酸铀酰溶液,过滤后使用电感耦合等离子体发射光谱(ICP-AES),测定吸附前后硝酸铀酰溶液中的U(VI)浓度并根据公式(1)计算出吸附材料在pH=8时的U(VI)吸附容量最高,为362.75mg/g。
本发明提供了一种表面磷酸基团锚定铁离子的多孔高效铀吸附材料及其制备方法,该铀吸附材料的制备原料为杯芳烃,路易斯酸,交联剂,有机溶剂,浓磷酸,六水合氯化铁,去离子水和浓硝酸。该制备方法首先使用杯芳烃,路易斯酸,交联剂,有机溶剂反应得到超交联杯芳烃多孔聚合物;将该聚合物加入浓磷酸中进行反应,经水解,过滤,获得表面带有磷酸基团的超交联杯芳烃铀吸附材料;将该表面带有磷酸基团的超交联杯芳烃铀吸附材料在浓硝酸环境下与铁盐反应,得到本发明的表面磷酸基团锚定铁离子的多孔高效铀吸附材料。本发明的表面磷酸基团锚定铁离子的多孔高效铀吸附材料能够同时模拟在海水和废水中有效捕获铀离子,具有比表面积大、吸附容量高、选择性好等优点;且制备方法简单、成本低、效率高,有良好的市场前景。
虽然通过参照本发明的某些优选实施方式,已经对本发明进行了图示和描述,但本领域的普通技术人员应该明白,以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。本领域技术人员可以在形式上和细节上对其作各种改变,包括做出若干简单推演或替换,而不偏离本发明的精神和范围。

Claims (4)

1.一种多孔聚合物铀吸附材料,其特征在于,所述多孔聚合物铀吸附材料为表面磷酸基团与铁离子配位的多孔材料,所述铀吸附材料通过表面带有磷酸基团的多孔材料与铁盐在强酸性环境下进行反应制备得到;
所述多孔聚合物铀吸附材料采用以下方法制备得到:
(1)采用杯芳烃,路易斯酸,交联剂,有机溶剂反应制备得到超交联杯芳烃多孔聚合物;
(2)将所述超交联杯芳烃多孔聚合物加入浓磷酸中进行反应,经水解、过滤,得到表面带有磷酸基团的多孔铀吸附材料;
(3)将所述表面带有磷酸基团的多孔铀吸附材料在浓酸环境下与铁盐加热反应一定时间;
(4)反应结束后,固体产物经布氏漏斗抽滤、洗涤、干燥后得到所述多孔聚合物铀吸附材料;
其中,所述铁盐为二价铁、三价铁的无机盐;
吸附pH值为6-8。
2.一种权利要求1所述的多孔聚合物铀吸附材料的制备方法,其特征在于,包括以下步骤:
(1)采用杯芳烃,路易斯酸,交联剂,有机溶剂反应制备得到超交联杯芳烃多孔聚合物;
(2)将所述超交联杯芳烃多孔聚合物加入浓磷酸中进行反应,经水解、过滤,得到表面带有磷酸基团的多孔铀吸附材料;
(3)将所述表面带有磷酸基团的多孔铀吸附材料在浓酸环境下与铁盐加热反应一定时间;
(4)反应结束后,固体产物经布氏漏斗抽滤、洗涤、干燥后得到所述多孔聚合物铀吸附材料。
3.如权利要求2所述的多孔聚合物铀吸附材料的制备方法,其特征在于,所述浓酸为浓硝酸、浓盐酸、浓硫酸中的一种或几种的混合物。
4.如权利要求2所述的多孔聚合物铀吸附材料的制备方法,其特征在于,
步骤(3)中,反应温度为70-120℃,反应时间为3-24小时。
CN202210643111.9A 2022-06-07 2022-06-07 一种多孔聚合物铀吸附材料及其制备方法 Active CN115090270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210643111.9A CN115090270B (zh) 2022-06-07 2022-06-07 一种多孔聚合物铀吸附材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210643111.9A CN115090270B (zh) 2022-06-07 2022-06-07 一种多孔聚合物铀吸附材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115090270A CN115090270A (zh) 2022-09-23
CN115090270B true CN115090270B (zh) 2024-03-29

Family

ID=83289636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210643111.9A Active CN115090270B (zh) 2022-06-07 2022-06-07 一种多孔聚合物铀吸附材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115090270B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179935A1 (zh) * 2015-05-11 2016-11-17 中国科学院上海应用物理研究所 一种从含铀酰离子的水溶液中富集铀的方法
CN109482160A (zh) * 2018-12-05 2019-03-19 厦门大学 一种磷酸酯基高效铀吸附剂及其制备方法与应用
CN109821503A (zh) * 2019-03-26 2019-05-31 吴荣臻 一种铀吸附材料及其制备方法和应用
CN110465276A (zh) * 2019-07-16 2019-11-19 哈尔滨工程大学 一种超交联磷酸苯酯多孔聚合物高效铀吸附材料及其制备方法
CN110813255A (zh) * 2019-12-03 2020-02-21 东华理工大学 一种双功能化聚合物螯合树脂制备及分离与富集铀的方法
CN111804285A (zh) * 2020-07-15 2020-10-23 哈尔滨工程大学 一种氨基-偕胺肟基双官能团超交联微孔铀吸附剂及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060006B1 (fr) * 2016-12-13 2020-02-28 Orano Mining Materiau organique mesoporeux, utile notamment pour extraire l'uranium(vi) de milieux aqueux comprenant de l'acide phosphorique, et ses utilisations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179935A1 (zh) * 2015-05-11 2016-11-17 中国科学院上海应用物理研究所 一种从含铀酰离子的水溶液中富集铀的方法
CN109482160A (zh) * 2018-12-05 2019-03-19 厦门大学 一种磷酸酯基高效铀吸附剂及其制备方法与应用
CN109821503A (zh) * 2019-03-26 2019-05-31 吴荣臻 一种铀吸附材料及其制备方法和应用
CN110465276A (zh) * 2019-07-16 2019-11-19 哈尔滨工程大学 一种超交联磷酸苯酯多孔聚合物高效铀吸附材料及其制备方法
CN110813255A (zh) * 2019-12-03 2020-02-21 东华理工大学 一种双功能化聚合物螯合树脂制备及分离与富集铀的方法
CN111804285A (zh) * 2020-07-15 2020-10-23 哈尔滨工程大学 一种氨基-偕胺肟基双官能团超交联微孔铀吸附剂及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
三聚磷酸钠交联壳聚糖/纳米Fe~0复合膜对U(Ⅵ)的吸附特性;黎钊;金解云;王云;曾凯;邹洪斌;周利民;;原子能科学技术(第09期);摘要、第1.2、3节 *
新型杯[4]芳烃衍生物的合成及对U(Ⅵ)吸附性能研究;张康;许玉历;肖方竹;王成;罗佳琦;陈方;刘永;彭国文;;化学工程(第06期);第49-50页 *
新型磁性螯合聚合物的合成及其对铀吸附性能的研究;李广;夏良树;李瑞瑞;谢珍妮;袁小兰;;原子能科学技术(第08期);第12-18页 *

Also Published As

Publication number Publication date
CN115090270A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Li et al. Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater
Huang et al. Highly effective and selective adsorption of thorium (Ⅳ) from aqueous solution using mesoporous graphite carbon nitride prepared by sol–gel template method
CN106518794B (zh) 一种羧基功能化的金属有机骨架材料及其制备方法与应用
CN108794661A (zh) 一种偕胺肟化聚丙烯腈及其制备方法和应用
CN110465276B (zh) 一种超交联磷酸苯酯多孔聚合物高效铀吸附材料及其制备方法
CN112871144B (zh) 一种多孔微球吸附材料及其制备和在吸附回收含铀废水或海水中铀方面的应用
CN111167402B (zh) 一种中空结构的锌钴普鲁士蓝类似物吸附剂及其制备方法和应用
CN103337327A (zh) 非均相Fe3O4/Co金属有机骨架材料及其制备方法和应用
Yang et al. Interface-constrained layered double hydroxides for stable uranium capture in highly acidic industrial wastewater
Milja et al. Synthesis, characterization and application of uranyl ion imprinted polymers of aniline and 8-hydroxy quinoline functionalized aniline
Huang et al. One-step cross-linking of amino-rich chitosan aerogels for efficient and selective adsorption of uranium from radioactive nuclear wastewater
Bai et al. Synthesis of microporous aromatic framework with scholl-coupling reaction for efficient uranium (VI) capture
Liu et al. Preparation of amidoxime polyacrylonitrile membrane with excellent mechanical strength for adsorption of uranium in simulated wastewater
Zhou et al. Preparation of Fe3O4@ SiO2@ MnO2 microspheres as an adsorbent for Th (IV) removal from aqueous solution
Pan et al. Speeding up the selective extraction of uranium through in situ formed nano-pockets
Chen et al. Flexible self-supporting Na3MnTi (PO4) 3@ C fibers for uranium extraction from seawater by electro sorption
Yang et al. High-efficiency selective removal of U (VI) by phosphate-functionalized graphitic carbon nitride activated using guanidine phosphate
Liu et al. Palladium recovery from acidic solution with phenanthroline-based covalent organic polymers as adsorbents for efficient heterogeneous catalysis
CN115090270B (zh) 一种多孔聚合物铀吸附材料及其制备方法
Li et al. 2D/2D ultrathin polypyrrole heterojunct aerogel with synergistic photocatalytic-photothermal evaporation performance for efficient water purification
CN116554486A (zh) 一种三叶草型高选择性吸附钴离子的吸附剂及其制备方法
CN102350297B (zh) 一种吸附剂、制备方法及其应用
CN113559829A (zh) 一种铀/锂同步吸附材料的制备方法及应用
CN109499551B (zh) 一种含磷酸酯基螯合树脂及制备与处理含铀废水的方法
Chen et al. High-efficiency and economical uranium extraction from seawater with easily prepared supramolecular complexes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant