CN115074711A - 一种在环氧树脂表面制备高结合力金属层的方法 - Google Patents

一种在环氧树脂表面制备高结合力金属层的方法 Download PDF

Info

Publication number
CN115074711A
CN115074711A CN202210597630.6A CN202210597630A CN115074711A CN 115074711 A CN115074711 A CN 115074711A CN 202210597630 A CN202210597630 A CN 202210597630A CN 115074711 A CN115074711 A CN 115074711A
Authority
CN
China
Prior art keywords
epoxy resin
solution
semi
minutes
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210597630.6A
Other languages
English (en)
Other versions
CN115074711B (zh
Inventor
康志新
李林蔚
陈德馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan university shaoguan institute
South China University of Technology SCUT
Original Assignee
Jinan university shaoguan institute
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan university shaoguan institute, South China University of Technology SCUT filed Critical Jinan university shaoguan institute
Priority to CN202210597630.6A priority Critical patent/CN115074711B/zh
Publication of CN115074711A publication Critical patent/CN115074711A/zh
Application granted granted Critical
Publication of CN115074711B publication Critical patent/CN115074711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/2066Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明公开了一种在环氧树脂表面制备高结合力金属层的方法,属于涂层领域。本发明的方法包括以下步骤:(1)将半固化态环氧树脂加入硅烷偶联剂溶液中浸泡,得到硅烷化环氧树脂;(2)将步骤(1)所得到的硅烷化环氧树脂敏化后再进行化学镀金属,然后进行热处理,即在环氧树脂表面制备高结合力金属层。本发明用浸泡法在树脂表面接枝硅烷偶联剂,工艺简单,无需进行刻蚀等前处理,清洁环保,为改善环氧树脂与金属膜层界面结合提供了新的思路。

Description

一种在环氧树脂表面制备高结合力金属层的方法
技术领域
本发明属于涂层领域,具体涉及一种在环氧树脂表面制备高结合力的金属镀层的方法。
背景技术
随着科技的发展,单一的金属材料或者高分子材料已经难以满足一些工业领域的性能需求。塑料表面金属化技术在保持了塑料低密度、低质量、绝缘性能等特点的基础上,赋予了材料表面高导电性、耐磨性和美观的金属光泽。因此塑料表面金属化的技术被广泛运用于汽车和军工等追求轻量化的行业、通信电子行业与柔性可穿戴领域中,如印刷电路板、手机与笔记本电脑后盖、汽车隔热防爆膜、汽车门把手等。
环氧树脂是一种化学稳定性高、粘结强度高、拥有优良的物理机械和电绝缘性能的热固性高分子材料。环氧树脂可用于制备粘结剂、电子封装材料、涂装材料、模压材料等而被运用于土木建筑、通信电子、航天航空、汽车机械和体育器材等领域。环氧树脂作为一种泛用性较强的材料,可依据其加入的固化剂不同而得到完全不同的材料性能,在不同的服役环境中都有不错的表现。如果能够进一步提高膜层质量和膜基结合力,环氧树脂作为表面金属化的基体材料在其他领域还有更多运用的广阔前景。
分子接枝作为一种提高界面结合力的方法,近年来已经被大量研究,但是分子接枝的方法仍有需要酸碱粗化,不够绿色环保等传统金属化的缺点,也有用于结合的分子合成成本较高等缺点,在工业上常常难以被大量运用。
综上所述,针对现有技术不足,发展一种工艺简单,成产成本较低且绿色环保的环氧树脂表面制备高结合力金属层的方法可以提高环氧树脂在塑料表面金属化领域的应用。
发明内容
为了解决用分子接枝方法提高界面结合力时,需要酸碱粗化,不够绿色环保、接枝分子合成成本较高等缺点,本发明提供了一种在环氧树脂表面不需要酸碱粗化,用简单廉价的硅烷偶联剂就可以简单结合获得高结合力金属层的方法。
本发明的目的通过以下技术方案实现。
一种在环氧树脂表面制备高结合力金属层的方法,包括以下步骤:
(1)将环氧树脂加入硅烷偶联剂溶液中浸泡,得到硅烷化环氧树脂;所述环氧树脂为半固化环氧树脂;
(2)将步骤(1)所得到的硅烷化环氧树脂敏化后再进行化学镀金属,然后进行热处理,即在环氧树脂表面制备高结合力金属层。
优选的,骤(1)所述半固化环氧树脂是将环氧树脂与固化剂混合均匀后,加热固化得到。
优选的,所述环氧树脂为E51型环氧树脂;固化剂采用胺类固化剂和咪唑固化剂中的一种或多种;所述固化剂的添加量占环氧树脂质量的0.1%~10%。
优选的,所述固化的温度为70~120℃,固化的时间为5~90分钟,半固化完成后在空气中冷却5~30分钟后脱模;所述固化的过程中模具下表面单向受到加热,上表面自然暴露于空气中,固化过程中加热装置不封闭。
优选的,步骤(1)所述硅烷偶联剂溶液包括3-氨丙基三乙氧基硅烷(APTES)与3-巯丙基三乙氧基硅烷(MPTES)溶液。
优选的,所述3-氨丙基三乙氧基硅烷溶液为3-氨丙基三乙氧基硅烷的无水酒精溶液;其中3-氨丙基三乙氧基硅烷的浓度为1~500mL/L,进一步优选为100mL/L。
优选的,所述3-巯丙基三乙氧基硅烷溶液为3-巯丙基三乙氧基硅烷的酒精溶液;其中3-巯丙基三乙氧基硅烷的浓度为1~500mL/L,进一步优选为100-200mL/L,酒精溶液由体积比为1:9~4:6的去离子水与无水乙醇组成,再用乙酸调节溶液pH值为3~7。
优选的,步骤(1)所述将环氧树脂加入硅烷偶联剂溶液中浸泡采用以下方法:
将半固化环氧树脂放入3-氨丙基三乙氧基硅烷溶液中完全浸没后,浸泡5~80分钟,取出用无水乙醇冲洗并超声清洗,完全干燥再放入3-巯丙基三乙氧基硅烷溶液中完全浸没,浸泡5~80分钟后取出,分别用去离子水与无水乙醇冲洗后干燥。浸泡时间进一步优选为10-60分钟。
优选的,步骤(2)所述金属层为银或铜层;所述热处理的温度为60~100℃,处理时间为15~60分钟。
由以上任一项所述的方法制备的环氧树脂表面高结合力金属层。
与现有技术相比,本发明具有如下的优点及效果:
(1)本发明在塑料表面金属化的过程中无须进行传统金属化工艺中的粗化、活化等步骤,比传统工艺更加环保绿色,不需要使用昂贵的钯进行活化。
(2)本发明所使用的接枝分子APTES、MPTES皆是工业上已经能够被大规模生产,稳定性较好的接枝分子,成本较低。
(3)本发明所用的工艺方法仅需使用接枝分子溶液浸泡的方式,无需一般分子接枝所使用的高能处理、表面粗化、紫外光辐射等,工艺简单就能取得较高的结合力。
附图说明
图1为实施例1所制备的环氧树脂表面高结合力银层的180°剥离曲线图。
图2为实施例1所制备的环氧树脂表面高结合力银层的扫描电镜图。
图3为实施例2所制备的环氧树脂表面高结合力银层的180°剥离曲线图。
图4为实施例2所制备的环氧树脂表面高结合力银层的扫描电镜图。
图5为实施例3所制备的环氧树脂表面高结合力铜层的百格测试图。
图6为对比例1所制备的完全固化的环氧树脂表面银层的180°剥离曲线图。
图7为对比例1所制备的完全固化的环氧树脂表面银层剥离后的宏观形貌图。
图8为对比例1所制备的完全固化的环氧树脂表面银层的180°剥离曲线图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种在环氧树脂表面制备高结合力金属层的方法,具体操作步骤如下:
步骤1:半固化环氧树脂的制备
将25g E51型环氧树脂与0.9g 1,2—二甲基咪唑混合并在60℃下加热搅拌5min,倒入50*50*4mm的模具中并摊平,放置于80℃的加热板上单面受热固化15分钟后取出,在空气中冷却10分钟后脱模得到半固化环氧树脂。
步骤2:硅烷偶联剂溶液的制备
将10mL的APTES加入90mL的无水乙醇中,均匀混合得到APTES溶液。将10mL的MPTES加入90mL的乙醇溶液中,其中乙醇溶液由体积比为8:2的乙醇与去离子水组成,再逐滴滴加30%的乙酸溶液,直至pH值为5,均匀混合得到MPTES溶液。
步骤3:树脂表面硅烷层的制备
将步骤1中得到的半固化环氧树脂放入步骤2中得到的APTES溶液中,上表面完全浸没后,浸泡40分钟后取出,用无水乙醇冲洗并超声清洗5分钟,干燥后,放入步骤2中得到的MPTES溶液中,完全浸没后,浸泡10分钟后取出,用去离子水与无水乙醇分别清洗并干燥,得到表面硅烷化的环氧树脂。
步骤4:环氧树脂的表面敏化
将步骤3中得到的表面硅烷化环氧树脂完全浸没于敏化液中,于室温下浸泡10分钟,取出用去离子水和无水乙醇分别清洗后干燥待用。敏化液为10g/L氯化亚锡和15ml/L盐酸(37wt%)的混合水溶液。
步骤5:环氧树脂表面化学镀银
将步骤4中得到的敏化后的环氧树脂浸泡到200mL银氨溶液中,加入同等体积的还原剂溶液在40℃条件下均匀混合5分钟取出,用去离子水和无水乙醇冲洗吹干待用;所述银氨溶液由15g/L硝酸银溶液滴加氨水至澄清制成,所述还原剂溶液为7.5g/L的葡萄糖溶液。
步骤6:干燥与热处理
将步骤5中化学镀银后的环氧树脂放入80℃的干燥箱内干燥30分钟后取出,即可得到高结合力的金属层。
对所制备的环氧树脂表面银镀层进行了如下检测表征:
(1)剥离强度测试:本实施例所制备的环氧树脂表面金属层的180°剥离曲线如图1所示,最高结合强度可达9.01N,平均结合强度为8.78N。
(2)剥离界面分析:本实施例所制备的环氧树脂表面金属层从树脂表面剥离后形貌如图2所示,环氧树脂表面产生严重破坏,证明环氧树脂表面与银层形成稳定粘连。
实施例2
一种在环氧树脂表面制备高结合力金属层的方法,具体操作步骤如下:
步骤1:半固化环氧树脂的制备
将25g E51型环氧树脂与0.5g 1,2—2甲基咪唑混合并在60℃下加热搅拌5min,倒入50*50*4mm的模具中并摊平,放置于80℃的加热板上单面受热固化15分钟后取出,在空气中冷却10分钟后脱模得到半固化环氧树脂。
步骤2:硅烷偶联剂溶液的制备
将10mL的APTES加入90mL的无水乙醇中,均匀混合得到APTES溶液。将20mL的MPTES加入80mL的乙醇溶液中,其中乙醇溶液由体积比为8:2的乙醇与去离子水组成,再逐滴滴加30%的乙酸溶液,直至pH值为5,均匀混合得到MPTES溶液。
步骤3:树脂表面硅烷层的制备
将步骤1中得到的半固化环氧树脂放入步骤2中得到的APTES溶液中,上表面完全浸没后,浸泡40分钟后取出,用无水乙醇冲洗并超声清洗5分钟,干燥后,放入步骤2中得到的MPTES溶液中,完全浸没后,浸泡40分钟后取出,用去离子水与无水乙醇分别清洗并干燥,得到表面硅烷化的环氧树脂。
步骤4:环氧树脂的表面敏化
将步骤3中得到的表面硅烷化环氧树脂完全浸没于敏化液中,于室温下浸泡10分钟,取出用去离子水和无水乙醇分别清洗后干燥待用。敏化液为10g/L氯化亚锡和15ml/L盐酸(37wt%)的混合水溶液。
步骤5:环氧树脂表面化学镀银
将步骤4中得到的敏化后的环氧树脂浸泡到200mL银氨溶液中,加入同等体积的还原剂溶液在40℃条件下均匀混合5分钟取出,用去离子水和无水乙醇冲洗吹干待用;所述银氨溶液由15g/L硝酸银溶液滴加氨水至澄清制成,所述还原剂溶液为7.5g/L的葡萄糖溶液。
步骤6:干燥与热处理
将步骤5中化学镀银后的环氧树脂放入60℃的干燥箱内干燥40分钟后取出,即可得到高结合力的金属层。
对所制备的环氧树脂表面银镀层进行了如下检测表征:
(1)剥离强度测试:本实施例所制备的环氧树脂表面金属层的180°剥离曲线如图3所示,最高结合强度可达17.82N,平均结合强度为16.33N。
(2)剥离界面分析:本实施例所制备的环氧树脂表面金属层从树脂表面剥离后形貌如图4所示,经过EDS分析,。
实施例3
一种在环氧树脂表面制备高结合力金属层的方法,具体操作步骤如下:
步骤1:半固化环氧树脂的制备
将25g E51型环氧树脂与0.9g 1,2—2甲基咪唑混合并在60℃下加热搅拌5min,倒入50*50*4mm的模具中并摊平,放置于80℃的加热板上单面受热固化15分钟后取出,在空气中冷却10分钟后脱模得到半固化环氧树脂。
步骤2:硅烷偶联剂溶液的制备
将10mL的APTES加入90mL的无水乙醇中,均匀混合得到APTES溶液。将10mL的MPTES加入90mL的乙醇溶液中,其中乙醇溶液由体积比为9:1的乙醇与去离子水组成,再逐滴滴加30%的乙酸溶液,直至pH值为3,均匀混合得到MPTES溶液。
步骤3:树脂表面硅烷层的制备
将步骤1中得到的半固化环氧树脂放入步骤2中得到的APTES溶液中,上表面完全浸没后,浸泡40分钟后取出,用无水乙醇冲洗并超声清洗5分钟,干燥后,放入步骤2中得到的MPTES溶液中,完全浸没后,浸泡20分钟后取出,用去离子水与无水乙醇分别清洗并干燥,得到表面硅烷化的环氧树脂。
步骤4:环氧树脂的表面敏化
将步骤3中得到的表面硅烷化环氧树脂完全浸没于敏化液中,于室温下浸泡10分钟,取出用去离子水和无水乙醇分别清洗后干燥待用。敏化液为10g/L氯化亚锡和15ml/L盐酸(37wt%)的混合水溶液。
步骤5:环氧树脂表面化学镀银
将步骤4中得到的敏化后的环氧树脂浸泡到100mL硫酸铜镀铜溶液中,加入同等体积的还原剂溶液在40℃条件下均匀混合30分钟后取出,用去离子水和无水乙醇冲洗吹干待用;所述镀铜溶液由15g/L的硫酸铜、40g/L的酒石酸钾钠、10g/L的氢氧化钠、42g/L的碳酸钠组成,所述还原剂溶液为40wt%的还原剂溶液。
步骤6:干燥与热处理
将步骤5中化学镀铜后的环氧树脂放入80℃的干燥箱内干燥30分钟后取出,即可得到高结合力的金属层。
对所制备的环氧树脂表面银镀层进行了如下检测表征:
(1)百格测试:经过胶带(3M 250)撕扯,百格内铜层几乎不发生剥落,如图5所示,判断在百格测试标准1级以上。
实施例4
在实施例1的基础上,不改变其他条件的情况下,改变MPTES溶液的浸泡时间为5、10、15、20、40、60、80分钟。5分钟时得到的平均界面结合强度为5.10N,10分钟为8.78N,15分钟为11.45N,20分钟为15.53N,40分钟为16.33N,60分钟为16.75N,80分钟为15.32N。
由规律可知,前二十分钟内,结合力随着浸泡时间线性变化,当MPTES溶液的浸泡时间为60分钟时,界面结合强度达到最高,这是由于在MPTES溶液浸泡的期间发生的是两个过程:APTES分子的水解与MPTES分子的聚合,随着浸泡时间的延长,APTES分子在树脂表面逐渐水解,给MPTES分子可供聚合的“瞄点”Si-OH键也逐渐增加,使更多MPTES分子得以在树脂表面聚集,但随着时间的进一步增加,APTES分子上的Si-OH键被逐渐消耗殆尽,环氧表面可以沉积的MPTES分子达到饱和,继续浸泡对结合力提升不大。
对比例1
在实施例1的基础上,不改变其他条件的情况下,改用完全固化的环氧树脂(80℃的干燥箱中固化2个小时),制备环氧树脂表面的金属层。
对所制备的环氧树脂表面银镀层进行了如下检测表征:
(1)剥离强度测试:本实例所制备的环氧树脂表面金属层的180°剥离曲线如图6所示,平均结合强度为0.449N,几乎等同于不做处理的环氧树脂。
(2)剥离界面分析:本实例所制备的环氧树脂表面金属层从树脂表面剥离后形貌如图7所示,银、树脂剥离后的界面完全光滑,证明不存在分子连结。
对比例2
在实施例1的基础上,不改变其他条件的情况下,将MPTES溶液替换成相同浓度和PH值的酒精溶液,制备环氧树脂表面的金属层。
对所制备的环氧树脂表面银镀层进行了如下检测表征:
(1)剥离强度测试:本实例所制备的环氧树脂表面金属层的180°剥离曲线如图8所示,平均结合强度为4.851N,远低于经过MPTES溶液浸泡处理的样品。

Claims (10)

1.一种在环氧树脂表面制备高结合力金属层的方法,其特征在于,包括以下步骤:
(1)将环氧树脂加入硅烷偶联剂溶液中浸泡,得到硅烷化环氧树脂;所述环氧树脂为半固化环氧树脂;
(2)将步骤(1)所得到的硅烷化环氧树脂敏化后再进行化学镀金属,然后进行热处理,即在环氧树脂表面制备高结合力金属层。
2.根据权利要求1所述的方法,其特征在于,步骤(1)所述半固化环氧树脂是将环氧树脂与固化剂混合均匀后,加热固化得到。
3.根据权利要求2所述的方法,其特征在于,所述环氧树脂为E51型环氧树脂;固化剂采用胺类固化剂和咪唑固化剂中的一种或多种;所述固化剂的添加量占环氧树脂质量的1%~10%。
4.根据权利要求3所述的方法,其特征在于,所述固化的温度为70~120℃,固化的时间为5~90分钟,半固化完成后在空气中冷却5~30分钟后脱模;所述固化的过程中模具下表面单向受到加热,上表面自然暴露于空气中,固化过程中加热装置不封闭。
5.根据权利要求1-4任一项所述的方法,其特征在于,步骤(1)所述硅烷偶联剂溶液包括3-氨丙基三乙氧基硅烷溶液与3-巯丙基三乙氧基硅烷溶液。
6.根据权利要求5所述的方法,其特征在于,所述3-氨丙基三乙氧基硅烷溶液为3-氨丙基三乙氧基硅烷的无水酒精溶液;其中3-氨丙基三乙氧基硅烷的浓度为1~200mL/L。
7.根据权利要求5所述的方法,其特征在于,所述3-巯丙基三乙氧基硅烷溶液为3-巯丙基三乙氧基硅烷的酒精溶液;其中3-巯丙基三乙氧基硅烷的浓度为1~200mL/L,酒精溶液由体积比为1:9~4:6的去离子水与无水乙醇组成,再用乙酸调节溶液pH值为3~7。
8.根据权利要求5所述的方法,其特征在于,步骤(1)所述将环氧树脂加入硅烷偶联剂溶液中浸泡采用以下方法:
将半固化环氧树脂放入3-氨丙基三乙氧基硅烷溶液中完全浸没后,浸泡5~80分钟,取出用无水乙醇冲洗并超声清洗,完全干燥再放入3-巯丙基三乙氧基硅烷溶液中完全浸没,浸泡5~80分钟后取出,分别用去离子水与无水乙醇冲洗后干燥。
9.根据权利要求5所述的方法,其特征在于,步骤(2)所述金属层为银或铜层;所述热处理的温度为60~100℃,处理时间为15~60分钟。
10.由权利要求1-9任一项所述的方法制备的环氧树脂表面高结合力金属层。
CN202210597630.6A 2022-05-30 2022-05-30 一种在环氧树脂表面制备高结合力金属层的方法 Active CN115074711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210597630.6A CN115074711B (zh) 2022-05-30 2022-05-30 一种在环氧树脂表面制备高结合力金属层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210597630.6A CN115074711B (zh) 2022-05-30 2022-05-30 一种在环氧树脂表面制备高结合力金属层的方法

Publications (2)

Publication Number Publication Date
CN115074711A true CN115074711A (zh) 2022-09-20
CN115074711B CN115074711B (zh) 2023-10-27

Family

ID=83248332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210597630.6A Active CN115074711B (zh) 2022-05-30 2022-05-30 一种在环氧树脂表面制备高结合力金属层的方法

Country Status (1)

Country Link
CN (1) CN115074711B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608053A (zh) * 2008-06-20 2009-12-23 太阳油墨制造株式会社 热固化性树脂组合物
CN104508760A (zh) * 2012-09-07 2015-04-08 积水化学工业株式会社 绝缘树脂材料及多层基板
CN109972124A (zh) * 2019-04-22 2019-07-05 华南理工大学 一种在abs塑料表面制备铜-石墨烯复合镀层的方法
CN113817203A (zh) * 2021-09-22 2021-12-21 华南理工大学 一种在塑料表面制备Cu-CNTs超疏水镀层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608053A (zh) * 2008-06-20 2009-12-23 太阳油墨制造株式会社 热固化性树脂组合物
CN104508760A (zh) * 2012-09-07 2015-04-08 积水化学工业株式会社 绝缘树脂材料及多层基板
CN109972124A (zh) * 2019-04-22 2019-07-05 华南理工大学 一种在abs塑料表面制备铜-石墨烯复合镀层的方法
CN113817203A (zh) * 2021-09-22 2021-12-21 华南理工大学 一种在塑料表面制备Cu-CNTs超疏水镀层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张亨: "《ABS表面无钯金属化及电沉积Ni-SiC镀层的耐腐蚀性能》", 《中国表面工程》 *

Also Published As

Publication number Publication date
CN115074711B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
JP4903479B2 (ja) 金属パターン形成方法、金属パターン、及びプリント配線板
CA2426648C (en) Plating method of metal film on the surface of polymer
Yun et al. Adhesion improvement of copper/epoxy joints
EP2602357A1 (en) Novel adhesion promoting agents for metallization of substrate surfaces
KR20070094624A (ko) 금속막 및 금속막의 형성방법
EP1742991A1 (en) Method for forming surface graft, method for forming conductive film, method for forming metal pattern, method for forming multilayer wiring board, surface graft material, and conductive material
US9249512B2 (en) Process for coating a surface of a substrate made of nonmetallic material with a metal layer
CN106350788A (zh) 化学镀前表面修饰体系及有机聚合物基材的表面修饰方法
TW201800252A (zh) 積層體之製造方法
CN105802092A (zh) 一种含氟聚合物/导电纤维介电材料及其制备方法
CN111501030B (zh) 化学镀前表面修饰体系及双重修饰聚合物基材表面的方法
CN102037063B (zh) 绝缘树脂的调整方法及其利用
CN115074711B (zh) 一种在环氧树脂表面制备高结合力金属层的方法
CN106460175B (zh) 电介质基材表面的金属化方法以及附有金属膜的电介质基材
CN111438867A (zh) 一种磁场诱导法制备各向异性导电膜的方法
CN114854074B (zh) 一种在塑料表面制得多功能复合涂层的制备方法
CN106282979B (zh) 一种有机聚合物基材的表面修饰方法
CN114957768A (zh) 化学镀前表面修饰剂及聚苯硫醚基材表面功能化修饰方法
Sasaki et al. Adhesion of ABS resin to metals treated with triazine trithiol monosodium aqueous solution
WO2017050272A1 (zh) 薄膜涂层组合物与涂覆方法
CN114016011B (zh) 一种用于5g基站的玻璃布基板表面金属化方法
CN112010572A (zh) 一种导电玻璃纤维及其制备方法
CN117042334B (zh) 一种印刷电路板基材镀银压合方法
Ali et al. Conductive thin film formation onto radiation grafted polymeric surfaces using electroless plating technique
TWI836811B (zh) 積層體的製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant