CN115073196A - 一种连续纤维增强陶瓷基复合材料增材制造成型方法 - Google Patents

一种连续纤维增强陶瓷基复合材料增材制造成型方法 Download PDF

Info

Publication number
CN115073196A
CN115073196A CN202210836165.7A CN202210836165A CN115073196A CN 115073196 A CN115073196 A CN 115073196A CN 202210836165 A CN202210836165 A CN 202210836165A CN 115073196 A CN115073196 A CN 115073196A
Authority
CN
China
Prior art keywords
continuous fiber
matrix composite
ceramic matrix
fiber reinforced
additive manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210836165.7A
Other languages
English (en)
Inventor
何汝杰
张路
王文清
李营
方岱宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202210836165.7A priority Critical patent/CN115073196A/zh
Publication of CN115073196A publication Critical patent/CN115073196A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种连续纤维增强陶瓷基复合材料增材制造成型方法,属于复合材料成型领域,本发明首先将陶瓷粉体、去离子水、分散剂、粘结剂混合球磨,得到分散均匀的复合浆料;然后利用墨水直写成型设备将复合浆料打印在连续纤维编织体上;再将若干打印后的纤维层堆叠得到生坯;再通过前驱体浸渍裂解工艺,对其进行致密化处理,最终获得复合材料,本发明的成型方法实现了复合材料的预制体铺层渗透裂解制备,适合各种连续纤维增强陶瓷基复合材料的精细制备。

Description

一种连续纤维增强陶瓷基复合材料增材制造成型方法
技术领域
本发明涉及复合材料成型技术领域,特别是涉及一种连续纤维增强陶瓷基复合材料增材制造成型方法。
背景技术
随着航空航天领域的飞速发展,对热防护材料使用温度提出了更高的要求。因此亟需开发具有高强度、耐高温的热防护材料与构件,满足其在苛刻环境中的性能要求。目前,SiC陶瓷材料凭借化学性能稳定、导热系数高、强度大、高硬度等特点,在超高声速飞行器领域广泛应用。然而当使用温度超过1600℃时,则需要使用更耐高温的陶瓷材料,例如ZrB2、HfC、ZrC、TaC等硼化物、碳化物超高温陶瓷,以适应超高音速长时飞行、大气层再入、跨大气层飞行和火箭推进系统等极端环境。同时由于陶瓷材料具有脆性大、缺陷敏感等缺点,必须对其进行增韧处理。在陶瓷基体中加入连续纤维具有良好的增韧效果,是提高陶瓷韧性的一种有效方法。然而超高温陶瓷材料具有较高的烧结温度,远大于碳纤维正常使用温度。如何避免高温对纤维的损伤是复合材料制备过程中面临的关键挑战。同时现有复合材料制备工艺,例如前驱体浸渍裂解工艺、反应熔渗工艺和化学气相渗透工艺,均只适用于制备均质复合材料,不能实现材料按需分配,造成材料浪费。因此需要开发一种新型陶瓷基复合材料成型方法,以弥补现有制备方法的不足。
发明内容
本发明的目的是提供一种连续纤维增强陶瓷基复合材料增材制造成型方法,以连续纤维编制体为增强体,墨水直写技术为预制体成型方法,前驱体浸渍裂解工艺为致密化手段,可以满足多组分、非均质、梯度纤维增强复合材料制备要求,制备的复合材料具有较高的弯曲强度与断裂韧性,是一种新型连续纤维增强陶瓷基复合材料高精度、低成本制备方法。
为实现上述目的,本发明提供了如下方案:
一种连续纤维增强陶瓷基复合材料增材制造成型方法,包括以下步骤:
(1)首先制备复合浆料,然后将所述复合浆料利用增材制造技术打印在连续纤维编织体表面,堆叠后形成连续纤维增强陶瓷基复合材料生坯;
(2)将所述连续纤维增强陶瓷基复合材料生坯浸入聚碳硅烷-二乙烯基苯溶液中,真空浸渍,干燥,加热,保温,随炉冷却到室温,重复6~10次,得到连续纤维增强陶瓷基复合材料。
进一步地,步骤(1)复合浆料的制备方法如下:将去离子水、分散剂混合制备出预混液,再将陶瓷粉体、粘结剂加入所述预混液中混合,球磨,得到复合浆料。
进一步地,步骤(1)去离子水体积含量:50~70vol.%,陶瓷粉体体积含量:30~50vol.%,去离子水、混合陶瓷粉体总和为100vol.%;分散剂添加量为陶瓷粉体总质量的0.5~5wt.%,粘结剂为去离子水质量的0~15wt.%。
进一步地,步骤(1)所述陶瓷粉体包括硼化锆、碳化钛、碳化锆、碳化铪、碳化铌、碳化钽和碳化硅中的至少一种。
进一步地,所述粘结剂为甲基纤维素(MC);
所述分散剂为聚乙烯二醇(PEG)和聚乙烯亚胺(PEI)中的一种或两种。
进一步地,步骤(1)所述增材制造技术为墨水直写成型3D打印技术,是一种叠层制造工艺,喷头直径:0.1~1mm,每层层高:0.1~1mm,打印速度:0.5~50mm/s。
进一步地,步骤(2)所述聚碳硅烷-二乙烯基苯溶液中聚碳硅烷、二乙烯基苯质量比为(1:1)~(2:1)。
进一步地,步骤(2)真空浸渍时间为0.5~3h。
进一步地,步骤(2)加热温度为1200℃,升温速率为5~10℃/min,保温1~2h。
本发明首先将陶瓷粉体、去离子水、分散剂、粘结剂混合球磨,得到分散均匀的复合浆料;然后利用墨水直写成型设备将复合浆料打印在连续纤维编织体上;再将若干打印后的纤维层堆叠得到生坯;再通过前驱体浸渍裂解工艺,对其进行致密化处理,最终获得复合材料,本发明的成型方法实现了复合材料的预制体铺层渗透裂解制备,适合各种连续纤维增强陶瓷基复合材料的精细制备。
所述连续纤维增强陶瓷基复合材料增材制造成型方法制备的连续纤维增强陶瓷基复合材料用于制备航空航天、舰船材料。
本发明公开了以下技术效果:
(1)本发明实现了连续纤维增强陶瓷基复合材料的增材制造,为陶瓷基复合材料的制备提供了一定借鉴,在制备过程中可通过对打印参数的规划设计,控制陶瓷层厚度,从而调节复合材料总体纤维含量,同时也能够实现梯度复合材料的制备;
(2)陶瓷粉体制备与引入碳纤维过程分离,减少碳纤维高温损伤,经过数轮前驱体浸渍裂解后,最终获得的连续纤维增强陶瓷基复合材料构件开孔率约为10%,弯曲强度可达200MPa以上;适用于航空航天领域,具有广阔的应用前景;
(3)本发明中连续纤维增强陶瓷基复合材料制备工艺与传统工艺不同,其优势在于对纤维损伤小、设备工艺简单;各层陶瓷层成分、厚度可调节,复合材料整体可设计性强,可实现梯度结构。为连续纤维增强陶瓷基复合材料高精度低成本制备提供一种新思路。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的工艺流程图;
图2为本发明中墨水直写3D打印原理图;
图3为本发明实施例1得到的陶瓷基复合材料制件实物图;
图4为本发明实施例1得到的陶瓷基复合材料制件微观形貌图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例中术语“连续碳纤维编织体”指的是将连续的碳纤维通过机器编织制成层状、片状或块状,用以增强陶瓷材料韧性的一种增强体。连续碳纤维编织体形式常见的有2D、3D和2.5D三种,本发明实施例中使用的是2D连续碳纤维编织体。
本发明实施例中所述“室温”是指25±2℃。
实施例1
一种连续纤维增强陶瓷基复合材料增材制造方法,工艺流程如图1所示,墨水直写3D打印原理图如图2所示,具体成型步骤如下:
(1)制备陶瓷浆料,将去离子水50g、碳化硅陶瓷粉体150g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g混合,之后放入球磨罐中,在行星式球磨机上转速400r/min下球磨3h,得到分散均匀的SiC复合浆料;
(2)将步骤(1)得到的SiC复合浆料利用墨水直写成型设备打印在2D T300碳纤维平纹编织布上,喷头直径:0.1mm,打印速度:2mm/s,每层高度:0.5mm;将三层打印完毕的2DT300碳纤维平纹编织布堆叠之后得到Cf/SiC陶瓷基复合材料生坯;
(3)将步骤(2)得到的Cf/SiC陶瓷基复合材料生坯浸入聚碳硅烷-二乙烯基苯溶液中,其中聚碳硅烷、二乙烯基苯质量比为2:1,真空浸渍3h,干燥后以10℃/min的升温速率,从室温加热到1200℃,保温1h,随炉冷却到室温,重复8次,得到Cf/SiC陶瓷基复合材料,本实施例得到的陶瓷基复合材料制件实物图如图3所示,横截面微观形貌图如图4所示,纤维编制体之间以及纤维束内部完全被陶瓷基体填充,得到了致密的复合材料;
(4)清理制件后,得到的Cf/SiC陶瓷基复合材料制件的开孔率约为10%,弯曲强度约为200MPa,断裂韧性为12.2MPa·m0.5,测试标准分别为GBT 6569-2006和GBT 23806-2009(下同)。
实施例2
除下述步骤不同,其它制备步骤与实施例1相同:步骤(1)中制备陶瓷浆料,将去离子水50g、碳化硅陶瓷粉体90.9g、硼化锆陶瓷粉体78.4g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g混合,之后放入球磨罐中,在行星式球磨机上转速400r/min下球磨3h,得到分散均匀的SiC/ZrB复合浆料;本实施例所得到的Cf/SiC-ZrB陶瓷基复合材料制件开孔率约为10%,弯曲强度提高到210MPa,断裂韧性为14.3MPa·m0.5
实施例3
除下述步骤不同,其它制备步骤与实施例1相同:步骤(1)中,首先,制备高熵陶瓷粉体,将碳化钛27g、碳化锆45.5g、碳化铪91g、碳化铌45.5g、碳化钽91g混合球磨,球磨转速为400r/min,球磨时间为10h。以10℃/min的升温速率,从室温加热到2000℃,保温3h,随炉冷却到室温,得到(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C高熵陶瓷粉体;制备浆料,将去离子水50g、(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C高熵陶瓷粉体161.8g、碳化硅陶瓷粉体90.9g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g混合,之后放入球磨罐中,在行星式球磨机上转速400r/min下球磨3h,得到分散均匀的(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C/SiC复合浆料;本实施例所得到的Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC陶瓷基复合材料制件开孔率约为10%,弯曲强度提高到200MPa,断裂韧性为13.8MPa·m0.5
实施例4
除下述步骤不同,其它制备步骤与实施例1相同:步骤(2)中,喷头直径:0.1mm,每层高度:0.75mm。
与实施例1相比,本实施例得到的Cf/SiC陶瓷基复合材料制件开孔率约为12%,弯曲强度为150MPa,断裂韧性为10.8MPa·m0.5
实施例5
除下述步骤不同,其它制备步骤与实施例1相同:步骤(2)中,喷头直径:0.1mm,每层高度分别为0.3mm、0.5mm、0.75mm。
与实施例1相比,本实施例得到的Cf/SiC陶瓷基复合材料制件开孔率约为10%,弯曲强度为190MPa,断裂韧性为11.2MPa·m0.5
实施例6
除下述步骤不同,其它制备步骤与实施例3相同:步骤(1)中制备三种浆料,浆料1:去离子水50g、高熵陶瓷粉体(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C 207.2g、碳化硅陶瓷粉体45.5g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g;浆料2:去离子水50g、高熵陶瓷粉体(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C 161.8g、碳化硅陶瓷粉体90.9g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g;浆料3:去离子水50g、高熵陶瓷粉体116.3(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C g、碳化硅陶瓷粉体136.4g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g。三种浆料混合之后放入球磨罐中,在行星式球磨机上转速400r/min下球磨3h,得到三种分散均匀的(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C/SiC复合浆料。
步骤(2)中,将步骤(1)种得到的三种浆料利用墨水直写成型设备按照浆料1-3的顺序分别打印在第1-3层2D T300碳纤维平纹编织布上,喷头直径:0.1mm,打印速度:2mm/s,每层高度:0.1mm。将三层打印完毕的2D T300碳纤维平纹编织布堆叠之后得到Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC高熵陶瓷基复合材料生坯;
与实施例1相比,得到的Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC高熵陶瓷基复合材料制件开孔率约为10%,弯曲强度为200MPa,断裂韧性为13.1MPa·m0.5
实施例7
除下述步骤不同,其它制备步骤与实施例3相同:步骤(1)中制备三种陶瓷浆料,浆料1:去离子水50g、碳化硅陶瓷粉体150g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g;浆料2:去离子水50g、碳化硅陶瓷粉体90.9g、硼化锆陶瓷粉体78.4g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g;浆料3:去离子水50g、(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C高熵陶瓷粉体161.8g、碳化硅陶瓷粉体90.9g、聚乙烯二醇(PEG)1.5g、甲基纤维素(MC)2g。三种浆料分别混合之后放入球磨罐中,在行星式球磨机上转速400r/min下球磨3h,得到三种分散均匀的复合浆料。
步骤(2)中,将步骤(1)种得到的三种浆料利用墨水直写成型设备按照浆料1-3的顺序分别打印在第1-3层2D T300碳纤维平纹编织布上,喷头直径:0.1mm,打印速度:2mm/s,每层高度:0.1mm。将三层打印完毕的2D T300碳纤维平纹编织布堆叠之后得到连续纤维增强陶瓷基复合材料生坯;
与实施例1相比,得到的陶瓷基复合材料制件开孔率约为13%,弯曲强度为180MPa,断裂韧性为10.1MPa·m0.5
对比例1
同实施例1,区别在于,步骤(2)喷头直径:0.05mm,每层高度分别为0.05。1200℃加热后层间分离严重,无法制得Cf/SiC陶瓷基复合材料制件。
对比例2
同实施例3,区别在于,步骤(3)改为2000℃保温3h。
烧结温度升高后加大了对碳纤维的损伤,复合材料性能下降。本对比例得到的Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC高熵陶瓷基复合材料制件开孔率约为14%,弯曲强度为87MPa,断裂韧性为6.4MPa·m0.5
对比例3
同实施例1,不同之处仅在于聚碳硅烷、二乙烯基苯质量比为3:1。
聚碳硅烷比例提高导致浸渍夜粘度增加,影响浸渍效果,复合材料性能下降。本对比例得到的Cf/SiC陶瓷基复合材料制件开孔率约为15%,弯曲强度为152MPa,断裂韧性为10.4MPa·m0.5
对比例4
同实施例1,不同之处仅在于步骤(3)改为将步骤(2)得到的Cf/SiC陶瓷基复合材料生坯埋入硅粉中,以10℃/min的升温速率,从室温真空加热到1700℃,保温1h,随炉冷却到室温,得到Cf/SiC陶瓷基复合材料。
熔融硅会与碳纤维反应,使复合材料断裂韧性降低。本对比例得到的Cf/SiC陶瓷基复合材料制件开孔率约为10%,弯曲强度为200MPa,断裂韧性为5.7MPa·m0.5
对比例5
同实施例1,不同之处在于步骤(2)中,喷头直径:0.1mm,每层高度:5mm。
陶瓷层厚度过高导致材料纤维含量降低,断裂韧性降低。本对比例得到的Cf/SiC陶瓷基复合材料制件开孔率约为10%,弯曲强度为180MPa,断裂韧性为8.4MPa·m0.5
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,包括以下步骤:
(1)首先制备复合浆料,然后将所述复合浆料利用增材制造技术打印在连续纤维编织体表面,堆叠后形成连续纤维增强陶瓷基复合材料生坯;
(2)将所述连续纤维增强陶瓷基复合材料生坯浸入聚碳硅烷-二乙烯基苯溶液中,真空浸渍,干燥,加热,保温,随炉冷却到室温,重复6~10次,得到连续纤维增强陶瓷基复合材料。
2.根据权利要求1所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,步骤(1)复合浆料的制备方法如下:将去离子水、分散剂混合制备出预混液,再将陶瓷粉体、粘结剂加入所述预混液中混合,球磨,得到复合浆料。
3.根据权利要求2所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,步骤(1)去离子水体积含量:50~70vol.%,陶瓷粉体体积含量:30~50vol.%,去离子水、混合陶瓷粉体总和为100vol.%;分散剂添加量为陶瓷粉体总质量的0.5~5wt.%,粘结剂为去离子水质量的0~15wt.%。
4.根据权利要求2所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,步骤(1)所述陶瓷粉体包括硼化锆、碳化钛、碳化锆、碳化铪、碳化铌、碳化钽和碳化硅中的至少一种。
5.根据权利要求2所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,所述粘结剂为甲基纤维素;
所述分散剂为聚乙烯二醇和聚乙烯亚胺中的一种或两种。
6.根据权利要求1所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,步骤(1)所述增材制造技术为墨水直写成型3D打印技术,喷头直径:0.1~1mm,每层层高:0.1~1mm,打印速度:0.5~50mm/s。
7.根据权利要求1所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,步骤(2)所述聚碳硅烷-二乙烯基苯溶液中聚碳硅烷、二乙烯基苯质量比为(1:1)~(2:1)。
8.根据权利要求1所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,步骤(2)真空浸渍时间为0.5~3h。
9.根据权利要求1所述连续纤维增强陶瓷基复合材料增材制造成型方法,其特征在于,步骤(2)加热温度为1200℃,升温速率为5~10℃/min,保温1~2h。
10.权利要求1~9任一项所述连续纤维增强陶瓷基复合材料增材制造成型方法制备的连续纤维增强陶瓷基复合材料在制备航空航天、舰船材料中的应用。
CN202210836165.7A 2022-07-15 2022-07-15 一种连续纤维增强陶瓷基复合材料增材制造成型方法 Pending CN115073196A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210836165.7A CN115073196A (zh) 2022-07-15 2022-07-15 一种连续纤维增强陶瓷基复合材料增材制造成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210836165.7A CN115073196A (zh) 2022-07-15 2022-07-15 一种连续纤维增强陶瓷基复合材料增材制造成型方法

Publications (1)

Publication Number Publication Date
CN115073196A true CN115073196A (zh) 2022-09-20

Family

ID=83260282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210836165.7A Pending CN115073196A (zh) 2022-07-15 2022-07-15 一种连续纤维增强陶瓷基复合材料增材制造成型方法

Country Status (1)

Country Link
CN (1) CN115073196A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650755A (zh) * 2022-11-03 2023-01-31 西北工业大学 一种3d打印制备连续纤维增韧碳化硅陶瓷基复合材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372390A (zh) * 2019-07-26 2019-10-25 华中科技大学 基于増材制造的连续纤维增强SiC零件制备方法及产品
CN111747765A (zh) * 2020-07-06 2020-10-09 南京理工大学 一种连续纤维增韧陶瓷基复合材料的制备方法及专用设备
CN113458387A (zh) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 一种3d打印梯度陶瓷金属材料以及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372390A (zh) * 2019-07-26 2019-10-25 华中科技大学 基于増材制造的连续纤维增强SiC零件制备方法及产品
CN111747765A (zh) * 2020-07-06 2020-10-09 南京理工大学 一种连续纤维增韧陶瓷基复合材料的制备方法及专用设备
CN113458387A (zh) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 一种3d打印梯度陶瓷金属材料以及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650755A (zh) * 2022-11-03 2023-01-31 西北工业大学 一种3d打印制备连续纤维增韧碳化硅陶瓷基复合材料的方法
CN115650755B (zh) * 2022-11-03 2023-08-18 西北工业大学 一种3d打印制备连续纤维增韧碳化硅陶瓷基复合材料的方法

Similar Documents

Publication Publication Date Title
CN109265188B (zh) 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN111996473B (zh) 一种变结构超高温陶瓷基复合材料及其制备方法
CN113666764B (zh) 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN113666765B (zh) 一种连续纤维增强高熵陶瓷基复合材料及其制备方法
CN107903067A (zh) 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN115108844B (zh) 一种梯度自适应碳纤维/石英纤维复合增强金属磷酸盐基复合材料及其制备方法
CN110590386B (zh) 一种碳纤维混杂保护方法及其耐烧蚀复合材料制备
EP2210868B1 (en) Composite material
CN109721376B (zh) 一种SiCw定向高强韧化厚壁陶瓷基复合材料的制备方法
CN110002892A (zh) 一种铪钽硅三元复相陶瓷前驱体、碳/铪钽碳固溶体-碳化硅陶瓷基复合材料及其制备方法
Tang et al. Mechanical and ablation properties of a C/C-HfB2-SiC composite prepared by high-solid-loading slurry impregnation combined with precursor infiltration and pyrolysis
CN112645723A (zh) 一种颗粒增强超高温陶瓷基复合材料的制备方法
CN107226707A (zh) 一种SiC/Si‑B‑C‑Zr陶瓷基复合材料的制备方法
CN106882976B (zh) 一种C/HfC-ZrC-SiC复合材料的制备方法
CN115073196A (zh) 一种连续纤维增强陶瓷基复合材料增材制造成型方法
US20220002208A1 (en) Process for obtaining composite, ultra-refractory, fibre-reinforced ceramic materials
CN114956844A (zh) 一种三维碳纤维增韧陶瓷基复合材料及其制备方法
CN114716258A (zh) 一种碳纤维增强碳化硼复合材料的制备方法
EP4201915A1 (en) Introduction of metallic particles to enable formation of metallic carbides in a matrix
KR101956683B1 (ko) 금속탄화물 필러 함유 섬유강화 세라믹 복합소재 제조방법
Chen et al. Additive manufacturing of high mechanical strength continuous Cf/SiC composites using a 3D extrusion technique and polycarbosilane‐coated carbon fibers
CN115417683A (zh) 一种氧化物连续长丝增强氧化物陶瓷基复合材料的制备方法
CN109627031B (zh) 一种SiCw定向高强韧陶瓷基复合材料及其制备方法
CN113149680A (zh) 一种碳纤维强化硅硼碳氮基陶瓷复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220920

RJ01 Rejection of invention patent application after publication