CN115064689A - 盐岩相六元高熵氧化物离子电池电极材料及其制备方法 - Google Patents

盐岩相六元高熵氧化物离子电池电极材料及其制备方法 Download PDF

Info

Publication number
CN115064689A
CN115064689A CN202210942304.4A CN202210942304A CN115064689A CN 115064689 A CN115064689 A CN 115064689A CN 202210942304 A CN202210942304 A CN 202210942304A CN 115064689 A CN115064689 A CN 115064689A
Authority
CN
China
Prior art keywords
ball milling
electrode material
entropy oxide
ion battery
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210942304.4A
Other languages
English (en)
Inventor
欧阳健为
陈可瑄
朱星宇
王潞扬
徐峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202210942304.4A priority Critical patent/CN115064689A/zh
Publication of CN115064689A publication Critical patent/CN115064689A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种盐岩相六元高熵氧化物离子电池电极材料及其制备方法,所述六元高熵氧化物化学式为(FeaCobMncMgdNieZnf)gOh,其晶体结构为单一的盐岩相立方结构,空间点群为
Figure DDA0003786205830000011
阳离子晶格位点由六种金属离子以相同几率随机占据且均匀分布。将对应的六种氧化物粉末原料按照设定的摩尔量进行称量,并在手套箱中惰性气氛保护下将其倒入球磨罐,装入密封球后盖上密封盖,然后按照设定的球磨参数进行高能机械球磨使之发生合成反应,即可获得本发明的电极材料。本发明的材料具有较高的比容量和超长寿命的循环稳定性,且制备方法工艺简单,可在常温下制备出结构稳定的单相高熵氧化物材料,适用于实际工业生产。

Description

盐岩相六元高熵氧化物离子电池电极材料及其制备方法
技术领域
本发明涉及一种岩盐相六元高熵氧化物锂离子电池电极材料及其制备方法,该方法具体涉及高能机械球磨方法,可规模化制备高质量的单相高熵氧化物粉体材料,属于新储能材料领域范畴。
背景技术
在当今信息电子化社会,无处不在的可移动电子设备对为其提供能源的锂离子电池提出来越来越高的要求,尤其对高容量和高循环稳定性的不懈追求已经成为锂离子电池研究领域的热点课题。其中,过渡金属氧化物电极材料因其具有较高的比容量而受到广泛关注,然而随着充放电循环,氧化物电极的容量快速衰减失效。为此,美国杜克大学和北卡罗来州立大学等人率先联合报道了一种五元高熵氧化物材料(Cu0.2Co0.2Mg0.2Ni0.2Zn0.2)O【Nature Communications,2015,6,8485】,是将五种金属氧化物以等摩尔的配比,在高温条件下合成为稳定的盐岩相结构。然而,在高温条件下得到单相结构,必须经历快速淬火等热处理方式,从而在常温下才能保持单相结构,不发生分相。该制备手段对温度和工艺条件要求苛刻,且产物在室温下长时间保存时,有分解成多相的风险,不适用于实际的规模化生产和储存。此外,根据高熵的概念,金属元素种类越多,结构越稳定,用作电池电极材料时循环稳定性就越好。然而,并不是所有的金属元素随意地放到一起都能形成稳定的单相高熵氧化物,需要经过反复的大量的实验筛选工作。因此,亟须一种常温下就能合成出五元金属以上的高熵氧化物材料的制备方法。
发明内容
发明目的:提供一种六元岩盐相高熵氧化物锂离子电池电极材料及其制备方法。该方法在常温下即能制备出稳定的单相高熵氧化物材料,且工艺简单、能耗低、成本低廉,可以实现优异的电化学储锂性能,还可用于其他二次电池的电极材料。
技术方案:一种盐岩相六元高熵氧化物离子电池电极材料,所述的六元高熵氧化物的化学式为(FeaCobMncMgdNieZnf)gOh,其中a=0.1~0.3,b=0.1~0.3,c=0.1~0.3,d=0.1~0.3,e=0.1~0.3,f=0.1~0.3,g=2.8~3,h=3.6~4;晶体结构为单一的盐岩相立方结构,空间点群为
Figure BDA0003786205810000011
阳离子晶格位点由六种金属离子以相同几率随机占据且均匀分布。
一种盐岩相六元高熵氧化物离子电池电极材料的制备方法,具体制备工艺步骤为:
(1)将FeO、CoO、MnO、MgO、NiO、ZnO六种氧化物粉末原料按照设定的摩尔量进行称量;
(2)在手套箱中非反应气氛保护下将六种氧化物倒入球磨罐,装入球磨球后盖上密封盖;
(3)然后按照设定的球磨参数进行高能机械球磨使之发生合成反应,即获得具有单一盐岩相结构的(FeaCobMncMgdNieZnf)gOh高熵氧化物材料。
所述步骤(1)中原料摩尔百分比(mol%):FeO为10%~30%,CoO为10%~30%,MnO为10%~30%,MgO为10%~30%,NiO为10%~30%,ZnO为10%~30%。
步骤(2)中非反应气氛为氩气或者氦气。
步骤(2)中球磨罐和球磨球材质均为碳化钨或碳化钛硬质合金,球磨罐容量为50~500mL,球磨球的直径为5~50mm。
步骤(3)中球磨参数为:球磨球和原料的质量比25~15:1,球磨转速600~650rpm,球磨时间65~72h。
步骤(3)中高能机械球磨采用立式球磨机或卧式球磨机。
所述的一种盐岩相六元高熵氧化物离子电池电极材料在制备锂离子电池、钠离子电池、钾离子电池、锌离子电池中任一种二次电池的电极材料中的应用。
有益效果:(1)本发明提供一种岩盐相六元高熵氧化物锂离子电池电极材料及其制备方法,打破了现有文献报道中只能在1150K高温以上才能合成单相高熵氧化物电极材料的禁锢,室温下实现了该材料体系的组分可控的高质量制备,具有方法简单、操作简单等优点,适用于工业化生产应用。(2)目前没有任何文献和专利报道过该六元金属组分配方的盐岩相高熵氧化物粉体材料,用做锂离子电池电极材料可以实现更优的储能性能。本发明所制备的六元高熵氧化物材料用做锂离子电池电极,具有较高的比容量和超长寿命的循环稳定性。
附图说明
图1为本发明方法制备的岩盐相六元高熵氧化物锂离子电池电极材料的透射电镜照片。其中标尺为50nm。
图2为本发明方法制备的岩盐相六元高熵氧化物锂离子电池电极材料的选区电子衍射图谱。其中电子衍射图谱标尺为21/nm。
图3为本发明方法制备的岩盐相六元高熵氧化物锂离子电池电极材料的粉末X射线衍射(XRD)图谱。横坐标为衍射角(2θ),单位为度(°),纵坐标为衍射强度,单位为无量纲(counts)。
图4为本发明方法制备的岩盐相六元高熵氧化物锂离子电池电极材料的电化学充放电性能曲线,电流为0.1Ag-1。其中横坐标为电池容量,单位为毫安克/时(mAg h-1),纵坐标为充放电的电压,单位为伏特(V)。
具体实施方式
为了更好地理解发明,下面结合实例和附图对本发明做进一步的说明。
一种盐岩相六元高熵氧化物锂离子电池电极材料,所述的六元高熵氧化物的化学式为(FeaCobMncMgdNieZnf)gOh,其晶体结构为单一的盐岩相立方结构,空间点群为
Figure BDA0003786205810000031
阳离子晶格位点由六种金属离子以相同几率随机占据且均匀分布。
所述的一种盐岩相六元高熵氧化物锂离子电池电极材料的制备方法,具体制备工艺步骤为:
(1)将FeO、CoO、MnO、MgO、NiO、ZnO六种氧化物粉末原料按照设定的摩尔量进行称量;
(2)在手套箱中惰性气氛保护下将六种氧化物倒入特定容量的球磨罐,装入不同直径的球磨球后盖上密封盖;
(3)然后按照设定的球磨参数进行高能机械球磨使之发生合成反应,即可获得具有单一盐岩相结构的(FeaCobMncMgdNieZnf)gOh新型高熵氧化物材料。
所述的原料摩尔百分比(mol%):FeO为10%~30%,CoO为10%~30%,MnO为10%~30%,MgO为10%~30%,NiO为10%~30%,ZnO为10%~30%。
所述的惰性气体为氩气或者氦气,球磨罐和球磨球材质均为碳化钨或碳化钛硬质合金,球磨罐容量为50~500mL,球磨球的直径为5~50mm。
所述的球磨参数为:球磨球和原料的质量比25:1~15:1,球磨转速600~650r/pm,球磨时间65~72h。
所述的高能机械球磨采用立式球磨机或卧式球磨机均可。
所述的单一盐岩相结构的(FeaCobMncMgdNieZnf)gOh新型高熵氧化物材料,不仅可以用作锂离子电池电极材料,还可用做钠离子电池、钾离子电池、锌离子电池等具有类似工作原理的其他二次电池的电极材料。
实施例1
(1)将FeO、CoO、MnO、MgO、NiO、ZnO六种氧化物粉末原料按照0.1mol(16.7mol%)、0.12mol(20mol%)、0.08mol(13.3mol%)、0.1mol(16.7mol%)、0.12mol(20mol%)、0.08mol(13.3mol%)的摩尔量进行称量;
(2)在手套箱中氩气气氛保护下将六种氧化物倒入容量为50mL的碳化钨球磨罐,装入直径为5mm的碳化钨球磨球后盖上密封盖;
(3)然后按照15:1的球料质量比、600r/pm的转速,采用立式行星球磨机进行65h高能机械球磨使之发生合成反应,即可获得具有单一盐岩相结构的(Fe0.1Co0.12Mn0.08Mg0.1Ni0.12Zn0.08)5O3新型高熵氧化物材料。
实施例2
(1)将FeO、CoO、MnO、MgO、NiO、ZnO六种氧化物粉末原料按照0.2mol(16.7mol%)、0.2mol(16.7mol%)、0.2mol(16.7mol%)、0.2mol(16.7mol%)、0.2mol(16.7mol%)、0.2mol(16.7mol%)的摩尔量进行称量;
(2)在手套箱中氦气气氛保护下将六种氧化物倒入容量为100mL的碳化钨球磨罐,装入直径为10mm的碳化钨球磨球后盖上密封盖;
(3)然后按照20:1的球料质量比、620r/pm的转速,采用立式行星球磨机进行70h高能机械球磨使之发生合成反应,即可获得具有单一盐岩相结构的(Fe0.2Co0.2Mn0.2Mg0.2Ni0.2Zn0.2)5O6新型高熵氧化物材料。
图1为本实施例制备的岩盐相六元高熵氧化物锂离子电池电极材料的透射电镜照片。从图中可以看到,所制备的(Fe0.2Co0.2Mn0.2Mg0.2Ni0.2Zn0.2)5O6高熵氧化物电极材料是纳米尺度的粉末材料。
图2为本实施例制备的岩盐相六元高熵氧化物锂离子电池电极材料的选区电子衍射图谱。从图中可以看到,电子衍射环分别对应盐岩相立方结构的(111)、(200)、(220)、(311)、(222)、(400)、(331)、(422)的8个晶面,证明所制备的六元高熵氧化物是单一的盐岩相晶体结构。
图3为本实施例制备的岩盐相六元高熵氧化物锂离子电池电极材料的粉末X射线衍射(XRD)图谱。从图中可以看到,衍射峰分别对应盐岩相立方结构的(111)、(200)、(220)、(311)、(222)的5个晶面,也证明所制备的六元高熵氧化物是单一的盐岩相晶体结构。
图4为本实施例制备的岩盐相六元高熵氧化物锂离子电池电极材料的电化学充放电性能曲线,横坐标为电池容量,纵坐标为充放电的电压。从图中可以看到,所制备的(Fe0.2Co0.2Mn0.2Mg0.2Ni0.2Zn0.2)5O6高熵氧化物电极材料在充放电150圈之后仍然保持600mAgh-1表现出高容量的储锂性能。
实施例3
(1)将FeO、CoO、MnO、MgO、NiO、ZnO六种氧化物粉末原料按照0.3mol(12.5mol%)、0.35mol(14.6mol%)、0.4mol(16.7mol%)、0.4mol(16.7mol%)、0.45mol(18.75mol%)、0.5mol(20.8mol%)的摩尔量进行称量;
(2)在手套箱中氦气气氛保护下将六种氧化物倒入容量为500mL的碳化钛球磨罐,装入直径为50mm的碳化钛球磨球后盖上密封盖;
(3)然后按照25:1的球料质量比、650r/pm的转速,采用立式行星球磨机进行72h高能机械球磨使之发生合成反应,即可获得具有单一盐岩相结构的(Fe0.3Co0.35Mn0.4Mg0.4Ni0.4 5Zn0.5)5O12新型高熵氧化物材料。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种盐岩相六元高熵氧化物离子电池电极材料,其特征在于:所述的六元高熵氧化物的化学式为(FeaCobMncMgdNieZnf)gOh,其中a=0.1~0.3,b=0.1~0.3,c=0.1~0.3,d=0.1~0.3,e=0.1~0.3,f=0.1~0.3,g=2.8~3,h=3.6~4;晶体结构为单一的盐岩相立方结构,空间点群为
Figure FDA0003786205800000011
阳离子晶格位点由六种金属离子以相同几率随机占据且均匀分布。
2.权利要求1所述的一种盐岩相六元高熵氧化物离子电池电极材料的制备方法,其特征在于,具体制备工艺步骤为:
(1)将FeO、CoO、MnO、MgO、NiO、ZnO六种氧化物粉末原料按照设定的摩尔量进行称量;
(2)在手套箱中非反应气氛保护下将六种氧化物倒入球磨罐,装入球磨球后盖上密封盖;
(3)然后按照设定的球磨参数进行高能机械球磨使之发生合成反应,即获得具有单一盐岩相结构的(FeaCobMncMgdNieZnf)gOh高熵氧化物材料。
3.根据权利要求2所述的一种盐岩相六元高熵氧化物离子电池电极材料的制备方法,其特征在于,所述步骤(1)中原料摩尔百分比(mol%):FeO为10%~30%,CoO为10%~30%,MnO为10%~30%,MgO为10%~30%,NiO为10%~30%,ZnO为10%~30%。
4.根据权利要求2所述的一种盐岩相六元高熵氧化物离子电池电极材料的制备方法,其特征在于,步骤(2)中非反应气氛为氩气或者氦气。
5.根据权利要求2所述的一种盐岩相六元高熵氧化物离子电池电极材料的制备方法,其特征在于,步骤(2)中球磨罐和球磨球材质均为碳化钨或碳化钛硬质合金,球磨罐容量为50~500mL,球磨球的直径为5~50mm。
6.根据权利要求2所述的一种盐岩相六元高熵氧化物离子电池电极材料的制备方法,其特征在于,步骤(3)中球磨参数为:球磨球和原料的质量比25~15:1,球磨转速600~650rpm,球磨时间65~72h。
7.根据权利要求2所述的一种盐岩相六元高熵氧化物离子电池电极材料的制备方法,其特征在于,步骤(3)中高能机械球磨采用立式球磨机或卧式球磨机。
8.权利要求1所述的一种盐岩相六元高熵氧化物离子电池电极材料在制备锂离子电池、钠离子电池、钾离子电池、锌离子电池中任一种二次电池的电极材料中的应用。
CN202210942304.4A 2022-08-08 2022-08-08 盐岩相六元高熵氧化物离子电池电极材料及其制备方法 Pending CN115064689A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210942304.4A CN115064689A (zh) 2022-08-08 2022-08-08 盐岩相六元高熵氧化物离子电池电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210942304.4A CN115064689A (zh) 2022-08-08 2022-08-08 盐岩相六元高熵氧化物离子电池电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115064689A true CN115064689A (zh) 2022-09-16

Family

ID=83207568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210942304.4A Pending CN115064689A (zh) 2022-08-08 2022-08-08 盐岩相六元高熵氧化物离子电池电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115064689A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893518A (zh) * 2022-11-08 2023-04-04 北京交通大学 一种超薄二维高熵金属氧化物纳米薄膜材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190259A (zh) * 2019-06-12 2019-08-30 四川大学 一种纳米高熵氧化物的制备方法及锂离子电池负极材料
CN113353996A (zh) * 2021-08-09 2021-09-07 浙江大学杭州国际科创中心 一种高熵转化型钠离子电池电极材料
CN113636607A (zh) * 2021-08-03 2021-11-12 中国矿业大学 一种锂离子电池负极材料高熵氧化物的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190259A (zh) * 2019-06-12 2019-08-30 四川大学 一种纳米高熵氧化物的制备方法及锂离子电池负极材料
CN113636607A (zh) * 2021-08-03 2021-11-12 中国矿业大学 一种锂离子电池负极材料高熵氧化物的制备方法
CN113353996A (zh) * 2021-08-09 2021-09-07 浙江大学杭州国际科创中心 一种高熵转化型钠离子电池电极材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LING LIN等: "Mechanochemical synthesis: route to novel rock-saltstructured high-entropy oxides and oxyfluorides", J MATER SCI, vol. 55, pages 16879, XP037257453, DOI: 10.1007/s10853-020-05183-4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893518A (zh) * 2022-11-08 2023-04-04 北京交通大学 一种超薄二维高熵金属氧化物纳米薄膜材料及其制备方法与应用
CN115893518B (zh) * 2022-11-08 2024-04-16 北京交通大学 一种超薄二维高熵金属氧化物纳米薄膜材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Guo et al. Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries
EP2287944B1 (en) Nanometer-level positive electrode material for lithium battery and method for making the same
CN114538403B (zh) 钠离子电池正极材料磷酸焦磷酸铁钠的制备方法及其应用
TWI726967B (zh) 鋰鐵錳系複合氧化物
US4107405A (en) Electrode materials based on lanthanum and nickel, and electrochemical uses of such materials
CA2533863A1 (en) A negative active material for lithium secondary battery and a method for preparing same
WO2012011946A2 (en) Method for producing la/ce/mm/y base alloys, resulting alloys, and battery electrodes
KR20100073295A (ko) 아연안티모나이드-탄소 복합체의 제조 방법 및 상기 복합체를 포함하는 이차전지용 음극재료
CN104993104A (zh) 一种多元多相复合锂离子电池负极材料的制备方法
KR20140147448A (ko) 셀프 템플릿 에칭을 이용한 다공성 일산화 규소의 제조방법 및 이를 이용한 리튬 이차전지용 음극재료
CN103811738A (zh) 一种作为锂离子二次电池负极材料的新型钛酸盐
CN109817926A (zh) 一种预锂化材料及其制备方法和锂电池
CN115064689A (zh) 盐岩相六元高熵氧化物离子电池电极材料及其制备方法
CN101552337A (zh) 超晶格贮氢合金及其制备方法
CN101908614A (zh) 一种高密度锰酸锂正极材料及其制备方法
KR0139379B1 (ko) 수소흡장합금의 제조법
KR101345625B1 (ko) 이산화규소 및 이산화규소를 함유한 광물을 이용한 리튬 이차전지용 음극활물질 및 그 제조방법
KR100922282B1 (ko) 복합체, 그 제조 방법, 상기 복합체를 포함하는 이차 전지및 그 이용 방법
CN1754972A (zh) 一种MH-Ni电池用高容量稀土-镁基多相贮氢合金及其制备方法
CN102888545A (zh) 一种镁基储氢合金的制备方法
KR101600358B1 (ko) 텔루륨 금속 또는 텔루륨-탄소 복합체를 이용한 이차전지
EP2554694A1 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and secondary battery
CN100375759C (zh) 聚丙烯腈低温热解复合金属负极材料的制备方法
JPH10194745A (ja) リチウムマンガン複合酸化物の製造方法並びにその用途
Liu et al. Fundamentals of rechargeable batteries and electrochemical potentials of electrode materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination