CN115061235A - An InP-based adiabatic guided wave system suitable for optical communication and millimeter-wave communication - Google Patents
An InP-based adiabatic guided wave system suitable for optical communication and millimeter-wave communication Download PDFInfo
- Publication number
- CN115061235A CN115061235A CN202210748458.XA CN202210748458A CN115061235A CN 115061235 A CN115061235 A CN 115061235A CN 202210748458 A CN202210748458 A CN 202210748458A CN 115061235 A CN115061235 A CN 115061235A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- cladding layer
- inp
- length
- tapered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 47
- 230000003287 optical effect Effects 0.000 title claims abstract description 23
- 238000005253 cladding Methods 0.000 claims abstract description 74
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 56
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 28
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052681 coesite Inorganic materials 0.000 claims description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims description 5
- 229910052682 stishovite Inorganic materials 0.000 claims description 5
- 229910052905 tridymite Inorganic materials 0.000 claims description 5
- 238000012546 transfer Methods 0.000 abstract description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 53
- 230000005540 biological transmission Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12002—Three-dimensional structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12097—Ridge, rib or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明公开一种适用于光通信和毫米波通信的InP基绝热导波系统,其包括:第一二氧化硅包层,所述第一二氧化硅包层连接硅芯,所述硅芯连接第一空气包层,所述第一空气包层连接第一InP包层,所述第一InP包层连接第二InP包层,所述第二InP包层连接第三InP包层,所述第三InP包层连接第二二氧化硅包层,本发明能够用来连接光通信和毫米波通信中不同的各种功能单元,使得能量信息能够在短距离内以绝热方式移动,从而在空间上将能量信息从一个功能单元传输到另一个功能单元,同时可以将损耗降到最低。
The invention discloses an InP-based adiabatic waveguide system suitable for optical communication and millimeter wave communication, which comprises: a first silicon dioxide cladding layer, the first silicon dioxide cladding layer is connected to a silicon core, and the silicon core is connected to a first air cladding layer, the first air cladding layer is connected to a first InP cladding layer, the first InP cladding layer is connected to a second InP cladding layer, the second InP cladding layer is connected to a third InP cladding layer, the The third InP cladding layer is connected to the second silica cladding layer, and the present invention can be used to connect various functional units in optical communication and millimeter wave communication, so that energy information can be moved adiabatically in a short distance, so that it can be used in space. It transfers energy information from one functional unit to another while minimizing losses.
Description
技术领域technical field
本发明涉及光通信和毫米波通信技术领域,具体为一种适用于光通信和毫米波通信的InP基绝热导波系统。The invention relates to the technical field of optical communication and millimeter wave communication, in particular to an InP-based adiabatic guided wave system suitable for optical communication and millimeter wave communication.
背景技术Background technique
光通信器件主要采用磷化铟(InP)材料,InP已经成为光电器件和微电子器件不可或缺的重要半导体材料,广泛的用于光通信和毫米波通信领域。Optical communication devices mainly use indium phosphide (InP) materials. InP has become an indispensable semiconductor material for optoelectronic devices and microelectronic devices, and is widely used in the fields of optical communication and millimeter wave communication.
目前互联网采用光纤光缆实现信息的高速传输,只有采用InP材料制造的激光器发出的信息可以在光纤中实现无损耗的传输。InP是一种直接带隙材料,具有电子迁移率高、耐辐射性能优异、带宽大、稳定性高等优点。InP基波导结构可以实现光纤通信和毫米波通信中信息的无损耗传输,可应用于中国移动、联通、电信、华为等企业的大数据中心。InP可以通过控制不同元素的组合比例,实现不同的折射率以满足要求。InP基的有源光子器件、无源光子器件、以及InP基微电子回路可以集成在同一基片(“芯片”)上。InP基绝热导波系统是光通信和毫米波通信中连接各种功能单元的“连接器”,将能量信息从一个功能单元传输到另一个功能单元,为了提高InP基芯片的集成度实现更小尺寸以满足新一代信息技术发展的需求,InP基绝热导波系统的优化设计在光通信和毫米波通信领域占有举足轻重的地位。At present, the Internet uses optical fiber cables to achieve high-speed transmission of information. Only the information emitted by lasers made of InP materials can be transmitted in optical fibers without loss. InP is a direct bandgap material with the advantages of high electron mobility, excellent radiation resistance, large bandwidth, and high stability. The InP-based waveguide structure can realize the lossless transmission of information in optical fiber communication and millimeter wave communication, and can be applied to the big data centers of China Mobile, China Unicom, China Telecom, Huawei and other enterprises. InP can achieve different refractive indices to meet the requirements by controlling the combination ratio of different elements. InP-based active photonic devices, passive photonic devices, and InP-based microelectronic circuits can be integrated on the same substrate ("chip"). InP-based adiabatic guided wave system is a "connector" that connects various functional units in optical communication and millimeter-wave communication, and transmits energy information from one functional unit to another functional unit. In order to improve the integration of InP-based chips, achieve smaller In order to meet the needs of the development of new generation information technology, the optimal design of InP-based adiabatic guided wave system plays an important role in the field of optical communication and millimeter wave communication.
发明内容SUMMARY OF THE INVENTION
本部分的目的在于概述本发明的实施方式的一些方面以及简要介绍一些较佳实施方式。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。The purpose of this section is to outline some aspects of embodiments of the invention and to briefly introduce some preferred embodiments. Some simplifications or omissions may be made in this section and the abstract and title of the application to avoid obscuring the purpose of this section, abstract and title, and such simplifications or omissions may not be used to limit the scope of the invention.
鉴于上述和/或现有InP中存在的问题,提出了本发明。The present invention has been proposed in view of the above-mentioned and/or problems existing in existing InPs.
因此,本发明的目的是提供一种适用于光通信和毫米波通信的InP基绝热导波系统,能够用来连接光通信和毫米波通信中不同的各种功能单元,使得能量信息能够在短距离内以绝热方式移动,从而在空间上将能量信息从一个功能单元传输到另一个功能单元,同时可以将损耗降到最低。Therefore, the purpose of the present invention is to provide an InP-based adiabatic guided wave system suitable for optical communication and millimeter wave communication, which can be used to connect various functional units in optical communication and millimeter wave communication, so that energy information can be It moves adiabatically over distance, thereby spatially transferring energy information from one functional unit to another while minimizing losses.
为解决上述技术问题,根据本发明的一个方面,本发明提供了如下技术方案:In order to solve the above-mentioned technical problems, according to one aspect of the present invention, the present invention provides the following technical solutions:
一种适用于光通信和毫米波通信的InP基绝热导波系统,其包括:多重脊波导结构,所述多重脊波导结构通过硅芯连接常规硅脊波导结构;An InP-based adiabatic guided wave system suitable for optical communication and millimeter wave communication, comprising: a multiple ridge waveguide structure, the multiple ridge waveguide structure is connected to a conventional silicon ridge waveguide structure through a silicon core;
所述多重脊波导结构、常规硅脊波导结构均包括第一二氧化硅包层、硅芯、第一空气包层、第一InP包层,所述第一二氧化硅包层,所述第一二氧化硅包层连接硅芯,所述硅芯连接第一空气包层,所述第一空气包层连接第一InP包层;The multiple ridge waveguide structure and the conventional silicon ridge waveguide structure all include a first silicon dioxide cladding layer, a silicon core, a first air cladding layer, a first InP cladding layer, the first silicon dioxide cladding layer, and the first silicon dioxide cladding layer. A silicon dioxide cladding layer is connected to the silicon core, the silicon core is connected to the first air cladding layer, and the first air cladding layer is connected to the first InP cladding layer;
所述第一InP包层连接第二InP包层,所述第二InP包层连接第三InP包层,所述第三InP包层连接第二二氧化硅包层。The first InP cladding layer is connected to the second InP cladding layer, the second InP cladding layer is connected to the third InP cladding layer, and the third InP cladding layer is connected to the second silicon dioxide cladding layer.
优选的,所述第一二氧化硅包层的厚度为h1,折射率nSiO2=1.445,所述硅芯的厚度为h2,折射率nsi=3.455,所述第一空气包层的厚度为h3,折射率nAir=1,所述第一InP包层的厚度为h4,折射率nInP1=3.1825,所述第二InP包层的厚度为h5,折射率nInP2=3.4195,所述第三InP包层的厚度为h6,折射率nInP3=3.1787,所述第二二氧化硅包层的厚度为h7,折射率nSiO2=1.445。Preferably, the thickness of the first silicon dioxide cladding layer is h 1 , the refractive index n SiO 2 =1.445, the thickness of the silicon core is h 2 , the refractive index n si =3.455, and the first air cladding layer has a thickness of
优选的,所述硅芯实现光束传播包括有两个外侧锥形波导,所述两个外侧锥形波导内侧有两个次外侧锥形波导,所述两个次外侧锥形波导内侧有两个内侧锥形波导,所述两个内侧锥形波导内侧有中间核心锥形波导。Preferably, the silicon core realizes beam propagation including two outer tapered waveguides, two sub-outside tapered waveguides inside the two outer tapered waveguides, and two sub-outside tapered waveguides inside the two sub-outside tapered waveguides Inside tapered waveguides, the two inside tapered waveguides have an intermediate core tapered waveguide inside.
优选的,所述h1、h2、h3、h4、h5、h6、h7的取值范围均为20nm至2000nm。Preferably, the value ranges of the h 1 , h 2 , h 3 , h 4 , h 5 , h 6 , and h 7 are all 20 nm to 2000 nm.
优选的,所述外侧锥形波导有宽度为WL,长度为L1的平行板波导,所述平行板波导连接有宽度从WL缩小到0,长度为L2的第一锥形波导;Preferably, the outer tapered waveguide has a parallel plate waveguide with a width W L and a length L 1 , and the parallel plate waveguide is connected with a first tapered waveguide with a width reduced from W L to 0 and a length L 2 ;
所述次外侧锥形波导有宽度为WL,长度为L1的平行板波导,所述平行板波导连接有宽度从WL缩小到W1=WL/2,长度为L2的第二锥形波导,所述第二锥形波导连接有宽度从W1=WL/2缩小到0,长度L3的第三锥形波导;The secondary outer tapered waveguide has a parallel plate waveguide with a width W L and a length L 1 , and the parallel plate waveguide is connected with a second width reduced from W L to W 1 =W L /2 and a length L 2 . a tapered waveguide, the second tapered waveguide is connected with a third tapered waveguide with a width reduced from W 1 =W L /2 to 0 and a length L 3 ;
所述内侧锥形波导有宽度为WL,长度为L1的平行板波导,所述平行板波导连接有宽度从WL缩小到W2=2WL/3,长度为L2的第四锥形波导,所述第四锥形波导连接有W2=2WL/3缩小到W3=WL/3,长度L3的第五锥形波导,所述第五锥形波导连接有W3=WL/3缩小到0,长度L4第六锥形波导;The inner tapered waveguide has a parallel plate waveguide with a width W L and a length L 1 , and the parallel plate waveguide is connected with a fourth taper whose width is reduced from W L to W 2 =2W L /3 and a length L 2 The fourth tapered waveguide is connected with a fifth tapered waveguide with W 2 =2W L /3 reduced to W 3 =W L /3 and the length L 3 , and the fifth tapered waveguide is connected with W 3 =W L /3 reduced to 0, length L 4 sixth tapered waveguide;
中间核心锥形波导有宽度WL,长度L1的平行板波导,所述平行板波导连接有宽度从WL增大到W1=(3WL+WR)/4,长度为L2的第七锥形波导,所述第七锥形波导连接有宽度从W1增大到W2=(WL+WR)/2,长度为L3的第八锥形波导,所述第八锥形波导连接有宽度从W2增大到W3=(WL+3WR)/4,长度为L4的第九锥形波导,所述第九锥形波导连接有宽度从W3增大到WR,长度为L5的第十锥形波导。The intermediate core tapered waveguide has a parallel-plate waveguide of width W L and length L 1 connected with a width increasing from W L to W 1 =(3W L +W R )/4 and length L 2 A seventh tapered waveguide, the seventh tapered waveguide is connected with an eighth tapered waveguide whose width increases from W 1 to W 2 =(W L +W R )/2, and the length is L 3 , the eighth tapered waveguide is The tapered waveguide is connected with a ninth tapered waveguide with a width increasing from W 2 to W 3 =(W L +3W R )/4 and a length L 4 , the ninth tapered waveguide connecting with a width increasing from W 3 A tenth tapered waveguide of length L5 as large as WR.
优选的,所述L1、L2、L3、L4的取值范围均为20μm至2000μm。Preferably, the value ranges of L 1 , L 2 , L 3 and L 4 are all 20 μm to 2000 μm.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1.本发明设计一种InP基绝热导波系统,用于连接光通信和毫米波通信中不同的各种功能单元,将多重脊波导结构中的信息无损耗的传输到常规硅脊波导结构中,现有技术无法对这种情况进行设计。1. The present invention designs an InP-based adiabatic guided wave system for connecting different functional units in optical communication and millimeter-wave communication, and transmits the information in the multiple ridge waveguide structure to the conventional silicon ridge waveguide structure without loss , the existing technology cannot be designed for this situation.
2.本发明通过在光束传播方向上对InP基绝热导波系统的各个部分分别进行设计,使得能量信息沿传播方向缓慢变化,以尽可能短的距离将输入端的能量信息无损耗的传播到输出端,实现光通信和毫米波通信中信息的绝热无损耗传输。2. In the present invention, each part of the InP-based adiabatic guided wave system is designed separately in the beam propagation direction, so that the energy information changes slowly along the propagation direction, and the energy information at the input end is transmitted to the output without loss in the shortest possible distance. It can realize adiabatic and lossless transmission of information in optical communication and millimeter wave communication.
3.本发明设计的结构在能量信息传输方向上分成了若干片段,对每一片段分别设计,采用了数值化的思想,获得了InP基绝热导波系统的数值化结果,从而大幅缩短了整个结构的长度,实现紧凑型InP基绝热导波系统的优化设计。3. The structure designed by the present invention is divided into several segments in the direction of energy information transmission. Each segment is designed separately, and the numerical idea is adopted to obtain the numerical results of the InP-based adiabatic guided wave system, thereby greatly shortening the entire process. The length of the structure can realize the optimal design of the compact InP-based adiabatic guided wave system.
4.本发明的InP基绝热导波系统可以获得很宽的工作带宽,且获得的结构尺寸小、结构简单,可以提高InP基绝热芯片的集成度实现更小尺寸以满足光通信和毫米波通信领域发展的需求。4. The InP-based adiabatic waveguide system of the present invention can obtain a wide working bandwidth, and the obtained structure is small in size and simple in structure, and can improve the integration degree of the InP-based adiabatic chip to achieve a smaller size to meet the requirements of optical communication and millimeter wave communication. development needs of the field.
附图说明Description of drawings
为了更清楚地说明本发明实施方式的技术方案,下面将将结合附图和详细实施方式对本发明进行详细说明,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the present invention will be described in detail below with reference to the accompanying drawings and detailed embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention, which are very important in the art. For those of ordinary skill, other drawings can also be obtained from these drawings without creative labor. in:
图1为本发明InP基绝热导波系统结构左视图;Fig. 1 is the left side view of the structure of the InP-based adiabatic guided wave system of the present invention;
图2为本发明InP基绝热导波系统结构右视图;Fig. 2 is the right side view of the structure of the InP-based adiabatic guided wave system of the present invention;
图3为本发明硅芯视图;Fig. 3 is the silicon core view of the present invention;
图4为本发明InP基绝热导波系统实际左视图;Fig. 4 is the actual left side view of the InP-based adiabatic guided wave system of the present invention;
图5为本发明InP基绝热导波系统实际右视图。FIG. 5 is an actual right side view of the InP-based adiabatic guided wave system of the present invention.
图6为本发明功率传输曲线图。FIG. 6 is a power transmission curve diagram of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施方式的限制。Many specific details are set forth in the following description to facilitate a full understanding of the present invention, but the present invention can also be implemented in other ways different from those described herein, and those skilled in the art can do so without departing from the connotation of the present invention. Similar promotion, therefore, the present invention is not limited by the specific embodiments disclosed below.
其次,本发明结合示意图进行详细描述,在详述本发明实施方式时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。Next, the present invention is described in detail with reference to the schematic diagrams. When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional views showing the device structure will not be partially enlarged according to the general scale, and the schematic diagrams are only examples, which should not be limited here. The scope of protection of the present invention. In addition, the three-dimensional spatial dimensions of length, width and depth should be included in the actual production.
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
如图1、图2所示,本发明提供一种适用于光通信和毫米波通信的InP基绝热导波系统,其包括:多重脊波导结构8,所述多重脊波导结构8通过硅芯2连接常规硅脊波导结构);As shown in FIG. 1 and FIG. 2 , the present invention provides an InP-based adiabatic waveguide system suitable for optical communication and millimeter wave communication, which includes: a multiple
所述多重脊波导结构8、常规硅脊波导结构9均包括第一二氧化硅包层1、硅芯2、第一空气包层3、第一InP包层4,所述第一二氧化硅包层1,所述第一二氧化硅包层1连接硅芯2,所述硅芯2连接第一空气包层3,所述第一空气包层3连接第一InP包层4;The multiple
所述第一InP包层4连接第二InP包层5,所述第二InP包层5连接第三InP包层6,所述第三InP包层6连接第二二氧化硅包层7。The first
第一二氧化硅包层1的厚度为h1,折射率nSiO2=1.445,硅芯2的厚度为h2,折射率nsi=3.455,第一空气包层3的厚度为h3,折射率nAir=1,第一InP包层4的厚度为h4,折射率nInP1=3.1825,第二InP包层5的厚度为h5,折射率nInP2=3.4195,第三InP包层6的厚度为h6,折射率nInP3=3.1787,第二二氧化硅包层7的厚度为h7,折射率nSiO2=1.445,其中在本实施例中,h1=1000nm,h2=80nm,h3=420nm,h4=150nm,h5=396nm,h6=1500nm,h7=1000nm。The thickness of the first silicon
如图3所述,硅芯2实现光束传播包括有两个外侧锥形波导21,两个外侧锥形波导21内侧有两个次外侧锥形波导22,两个次外侧锥形波导22内侧有两个内侧锥形波导23,两个内侧锥形波导23内侧有中间核心锥形波导24。As shown in FIG. 3 , the
外侧锥形波导21有宽度为WL,长度为L1的平行板波导,平行板波导连接有宽度从WL缩小到0,长度为L2的第一锥形波导;The outer
次外侧锥形波导22有宽度为WL,长度为L1的平行板波导,平行板波导连接有宽度从WL缩小到W1=WL/2,长度为L2的第二锥形波导,第二锥形波导连接有宽度从W1=WL/2缩小到0,长度L3的第三锥形波导;The secondary outer
内侧锥形波导23有宽度为WL,长度为L1的平行板波导,平行板波导连接有宽度从WL缩小到W2=2WL/3,长度为L2的第四锥形波导,第四锥形波导连接有W2=2WL/3缩小到W3=WL/3,长度L3的第五锥形波导,第五锥形波导连接有W3=WL/3缩小到0,长度L4第六锥形波导;The inner
中间核心锥形波导24有宽度WL,长度L1的平行板波导,平行板波导连接有宽度从WL增大到W1=(3WL+WR)/4,长度为L2的第七锥形波导,第七锥形波导连接有宽度从W1增大到W2=(WL+WR)/2,长度为L3的第八锥形波导,第八锥形波导连接有宽度从W2增大到W3=(WL+3WR)/4,长度为L4的第九锥形波导,第九锥形波导连接有宽度从W3增大到WR,长度为L5的第十锥形波导。The intermediate core tapered
其中在本实施例中,WL为输入端多重脊波导,WL=0.2μm,波导空隙间距g=0.45μm,WR为输出端脊波导的宽度,WR=1.5μm,光束的波长为1.564μm。In this embodiment, W L is the multiple ridge waveguide at the input end, W L = 0.2 μm, the waveguide gap spacing g = 0.45 μm, W R is the width of the ridge waveguide at the output end, W R = 1.5 μm, and the wavelength of the light beam is 1.564 μm.
图4、图5,为实际工作情况下InP基绝热导波系统试图。Fig. 4 and Fig. 5 are the attempts of the InP-based adiabatic guided wave system under actual working conditions.
本发明结构中各个片段的长度可以任意选择,均可设计出可以实现能量信息无损耗传输的InP基绝热导波系统。以L1=L2=L3=L4=L5=50μm的设计长度为例,通过仿真模拟可以得到该InP基绝热导波系统TE0模式输入和TE0模式输出的功率传输效率曲线,如图6所示,该图给出了不同长度下对应的功率传输效率。从图上可以看出,总长度为750μm就可以实现90%的功率传输效率,如果要实现更高的功率传输效率,则从图6中选择一个更长的长度,如要实现95%的功率传输效率,则需要1500μm的总长度。实际应用则需要根据应用需求,选择不同的长度,从而实现光通信和毫米波通信领域紧凑型InP基绝热导波系统的设计。The length of each segment in the structure of the present invention can be arbitrarily selected, and an InP-based adiabatic guided wave system that can realize lossless transmission of energy information can be designed. Taking the design length of L 1 =L 2 =L 3 =L 4 =L 5 =50μm as an example, the power transmission efficiency curves of the TE0 mode input and TE0 mode output of the InP-based adiabatic guided wave system can be obtained through simulation, as shown in the figure 6, which gives the corresponding power transfer efficiency for different lengths. As can be seen from the figure, a total length of 750μm can achieve 90% power transfer efficiency, if you want to achieve higher power transfer efficiency, select a longer length from Figure 6, if you want to achieve 95% power For transmission efficiency, a total length of 1500 μm is required. For practical applications, it is necessary to select different lengths according to the application requirements, so as to realize the design of a compact InP-based adiabatic guided wave system in the field of optical communication and millimeter wave communication.
L1、L2、L3、L4和L5是每个片段的设计长度,将它们作为各自独立完整的结构拼接在一起形成最终的InP基绝热导波系统,不同的L1、L2、L3、L4和L5值影响的是每个片段的“绝对长度”,而最终InP基绝热导波系统的“整体形状”是由各个片段的“相对长度”决定的,通过仿真扫描“绝对长度”就可以获得最终InP基绝热导波系统的“相对长度”,比如这里总长度750μm实现90%的传输效率就是最终InP基绝热导波系统的“相对长度”,这个长度就可用于实际的加工制造,测试传输效率就可以达到90%。L 1 , L 2 , L 3 , L 4 and L 5 are the design lengths of each segment, and they are spliced together as their respective independent and complete structures to form the final InP-based adiabatic guided wave system. Different L 1 , L 2 , L 3 , L 4 and L 5 affect the "absolute length" of each segment, and the "overall shape" of the final InP-based adiabatic guided wave system is determined by the "relative length" of each segment. The “absolute length” can be used to obtain the “relative length” of the final InP-based adiabatic guided wave system. For example, the total length of 750 μm to achieve 90% transmission efficiency is the “relative length” of the final InP-based adiabatic guided wave system. This length can be used for The actual processing and manufacturing, the test transmission efficiency can reach 90%.
虽然在上文中已经参考实施方式对本发明进行了描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的实施方式中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举性的描述仅仅是出于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施方式,而是包括落入权利要求的范围内的所有技术方案。Although the present invention has been described above with reference to the embodiments, various modifications may be made and equivalents may be substituted for parts thereof without departing from the scope of the invention. In particular, as long as there is no structural conflict, the various features in the disclosed embodiments of the present invention can be combined with each other in any way, and the description of these combinations is not exhaustive in this specification. For the sake of omitting space and saving resources. Therefore, the present invention is not limited to the specific embodiments disclosed herein, but includes all technical solutions falling within the scope of the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210748458.XA CN115061235B (en) | 2022-06-28 | 2022-06-28 | InP-based heat-insulating guided wave system suitable for optical communication and millimeter wave communication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210748458.XA CN115061235B (en) | 2022-06-28 | 2022-06-28 | InP-based heat-insulating guided wave system suitable for optical communication and millimeter wave communication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115061235A true CN115061235A (en) | 2022-09-16 |
CN115061235B CN115061235B (en) | 2023-08-25 |
Family
ID=83204206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210748458.XA Active CN115061235B (en) | 2022-06-28 | 2022-06-28 | InP-based heat-insulating guided wave system suitable for optical communication and millimeter wave communication |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115061235B (en) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120230635A1 (en) * | 2009-09-28 | 2012-09-13 | Haruhiko Yoshida | Optical coupling device and optical coupling-branching device |
CN106249355A (en) * | 2016-10-12 | 2016-12-21 | 北京交通大学 | The mode multiplexing demultiplexer mated based on silica-based optical waveguide mode |
US20180231714A1 (en) * | 2015-10-09 | 2018-08-16 | Caliopa N.V. | Optical coupling scheme |
US20200027798A1 (en) * | 2018-07-20 | 2020-01-23 | Finisar Corporation | Wafer level testing of optical components |
US10718898B1 (en) * | 2019-01-23 | 2020-07-21 | Nexus Photonics Llc | Integrated active devices with improved optical coupling to dielectric waveguides |
CN112041717A (en) * | 2018-04-26 | 2020-12-04 | 华为技术有限公司 | Light splitter with trident structure |
CN112327411A (en) * | 2020-11-19 | 2021-02-05 | 西南交通大学 | Silicon-based polarization beam splitting rotator based on adiabatic conical asymmetric coupling and Y-branch |
US11048045B1 (en) * | 2020-05-13 | 2021-06-29 | The Chinese University Of Hong Kong | Integrated lens mode size converter |
CN213659007U (en) * | 2020-12-01 | 2021-07-09 | 中国科学院上海微系统与信息技术研究所 | An Optical Power Beam Splitter with Arbitrary Split Ratio |
CN113359238A (en) * | 2021-04-22 | 2021-09-07 | 浙江大学 | Two-arm unequal-height asymmetric waveguide fiber end face coupler based on mode evolution |
US20210368611A1 (en) * | 2020-05-22 | 2021-11-25 | Anton Paar Gmbh | Waveguide injecting unit |
CN114114537A (en) * | 2021-12-08 | 2022-03-01 | 南通大学 | Design method of ultra-compact adiabatic tapered waveguide |
CN114114540A (en) * | 2021-12-09 | 2022-03-01 | 南通大学 | A Design Method for High Efficiency and Compact Adiabatic Mode Converters |
CN114167545A (en) * | 2021-12-06 | 2022-03-11 | 南通大学 | Design method of ultra-compact adiabatic mode coupler |
CN114252955A (en) * | 2021-12-09 | 2022-03-29 | 南通大学 | Efficient design method of adiabatic mode connector |
US11287573B1 (en) * | 2020-10-19 | 2022-03-29 | Nexus Photonics Llc | Heterogeneously integrated photonic devices with improved optical coupling between waveguides |
CN114326101A (en) * | 2022-01-10 | 2022-04-12 | 南通大学 | Design method of adiabatic mode evolver |
CN114488389A (en) * | 2022-02-24 | 2022-05-13 | 南通大学 | Adiabatic guided wave system |
-
2022
- 2022-06-28 CN CN202210748458.XA patent/CN115061235B/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120230635A1 (en) * | 2009-09-28 | 2012-09-13 | Haruhiko Yoshida | Optical coupling device and optical coupling-branching device |
US20180231714A1 (en) * | 2015-10-09 | 2018-08-16 | Caliopa N.V. | Optical coupling scheme |
CN106249355A (en) * | 2016-10-12 | 2016-12-21 | 北京交通大学 | The mode multiplexing demultiplexer mated based on silica-based optical waveguide mode |
CN112041717A (en) * | 2018-04-26 | 2020-12-04 | 华为技术有限公司 | Light splitter with trident structure |
US20200027798A1 (en) * | 2018-07-20 | 2020-01-23 | Finisar Corporation | Wafer level testing of optical components |
US10718898B1 (en) * | 2019-01-23 | 2020-07-21 | Nexus Photonics Llc | Integrated active devices with improved optical coupling to dielectric waveguides |
US11048045B1 (en) * | 2020-05-13 | 2021-06-29 | The Chinese University Of Hong Kong | Integrated lens mode size converter |
US20210368611A1 (en) * | 2020-05-22 | 2021-11-25 | Anton Paar Gmbh | Waveguide injecting unit |
US11287573B1 (en) * | 2020-10-19 | 2022-03-29 | Nexus Photonics Llc | Heterogeneously integrated photonic devices with improved optical coupling between waveguides |
CN112327411A (en) * | 2020-11-19 | 2021-02-05 | 西南交通大学 | Silicon-based polarization beam splitting rotator based on adiabatic conical asymmetric coupling and Y-branch |
CN213659007U (en) * | 2020-12-01 | 2021-07-09 | 中国科学院上海微系统与信息技术研究所 | An Optical Power Beam Splitter with Arbitrary Split Ratio |
CN113359238A (en) * | 2021-04-22 | 2021-09-07 | 浙江大学 | Two-arm unequal-height asymmetric waveguide fiber end face coupler based on mode evolution |
CN114167545A (en) * | 2021-12-06 | 2022-03-11 | 南通大学 | Design method of ultra-compact adiabatic mode coupler |
CN114114537A (en) * | 2021-12-08 | 2022-03-01 | 南通大学 | Design method of ultra-compact adiabatic tapered waveguide |
CN114114540A (en) * | 2021-12-09 | 2022-03-01 | 南通大学 | A Design Method for High Efficiency and Compact Adiabatic Mode Converters |
CN114252955A (en) * | 2021-12-09 | 2022-03-29 | 南通大学 | Efficient design method of adiabatic mode connector |
CN114326101A (en) * | 2022-01-10 | 2022-04-12 | 南通大学 | Design method of adiabatic mode evolver |
CN114488389A (en) * | 2022-02-24 | 2022-05-13 | 南通大学 | Adiabatic guided wave system |
Non-Patent Citations (5)
Title |
---|
W. BOGAERTS等: "Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends", 《IEEE PHOTONICS JOURNAL》, vol. 3, no. 3 * |
YUNFEI FU等: "Efficient adiabatic silicon-on-insulator waveguide taper", 《PHOTONICS RESEARCH》, vol. 2, no. 3, XP055552275, DOI: 10.1364/PRJ.2.000A41 * |
梁图禄: "纳米光子学中的无条件稳定时域有限差分法研究", 《中国知网博士电子期刊》 * |
韩啸等: "亚波长周期性金属光栅的ADI-FDTD分析", 《2018年全国微波毫米波会议》 * |
韩知勇等: "量子绝热捷径技术在三波导耦合器设计中的应用", 《上海大学学报(自然科学版)》, no. 1 * |
Also Published As
Publication number | Publication date |
---|---|
CN115061235B (en) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10197731B2 (en) | Optical coupler | |
CN105759357B (en) | A Compact Analog-to-Digital Converter Based on Slot Waveguide | |
CN108983352B (en) | End face coupler and preparation method thereof | |
CN111562650A (en) | End face coupler based on double-trident sub-wavelength grating structure | |
CN114167545B (en) | A design method for ultra-compact adiabatic mode coupler | |
CN114488389B (en) | Adiabatic guided wave system | |
CN117092748B (en) | Compact adiabatic mode evolution ware | |
CN112987173B (en) | Multilayer coupling structure | |
CN101881861A (en) | Non-linear taper inverted cone coupler structure | |
CN117826323A (en) | A double-layer adiabatic mode converter | |
CN112596155B (en) | Low insertion loss end face coupler based on LNOI material | |
CN111025469B (en) | A silicon-based multimode 3dB beam splitter based on multimode interference coupler | |
CN204188832U (en) | Polarization beam apparatus | |
CN105137538A (en) | Arrayed waveguide grating spectrum planarization method | |
CN113985522B (en) | Micro-ring optical switch based on silicon-silicon nitride three-dimensional integration | |
CN112965165B (en) | Multilayer three-dimensional optical connection structure | |
CN115061235B (en) | InP-based heat-insulating guided wave system suitable for optical communication and millimeter wave communication | |
CN114326101A (en) | Design method of adiabatic mode evolver | |
CN115857098B (en) | Optical circulator on silicon substrate | |
CN108594480A (en) | Few mould waveguide light emission structure based on nanometer bundle modulator | |
CN117761831A (en) | A kind of adiabatic coupler based on strip waveguide | |
CN114839722B (en) | Heterogeneous multimode waveguide coupler | |
CN117130098A (en) | Compact adiabatic optical isolator | |
CN113031148B (en) | Photonic crystal fiber based on photonic lead and preparation method thereof | |
CN105652371A (en) | Polarization beam splitter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |