CN115044883A - SiC纤维表面连续沉积PyC的系统 - Google Patents

SiC纤维表面连续沉积PyC的系统 Download PDF

Info

Publication number
CN115044883A
CN115044883A CN202210653598.9A CN202210653598A CN115044883A CN 115044883 A CN115044883 A CN 115044883A CN 202210653598 A CN202210653598 A CN 202210653598A CN 115044883 A CN115044883 A CN 115044883A
Authority
CN
China
Prior art keywords
pyc
deposition
chamber
sic
sic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210653598.9A
Other languages
English (en)
Inventor
陆子龙
焦健
齐哲
杨金华
刘虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202210653598.9A priority Critical patent/CN115044883A/zh
Publication of CN115044883A publication Critical patent/CN115044883A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及SiC纤维表面连续沉积PyC的系统,在一体化设备中,连续SiC纤维束从放丝装置出发,依次通过活化室和沉积室,在活化室内对SiC纤维表面进行活化,在沉积室内对活化后SiC纤维进行PyC沉积,达到在SiC纤维上高效率连续沉积PyC涂层的目的。(1)本发明能够显著提高SiC纤维表面PyC涂层的沉积效率(同等条件下沉积效率增加3~5倍)。

Description

SiC纤维表面连续沉积PyC的系统
技术领域
本发明涉及了SiC纤维表面连续沉积PyC的系统,涉及连续纤维增强结构复合材料领域。
背景技术
采用化学气相沉积工艺(CVD)在纤维表面沉积热解炭(PyC)涂层是很多连续SiC纤维应用前所必须进行的重要处理工序。依据后续使用条件和工艺要求的不同,在SiC纤维表面沉积所得的PyC涂层可以作为:(1)界面层,PyC涂层在SiC纤维增强复合材料中起到调节应力与载荷、偏转裂纹的作用;(2)保护层,PyC涂层在后续工序中起到保护SiC纤维免受环境侵蚀的作用;(3)碳源层,PyC涂层在后续工序中作为碳源参与反应,等到所需反应产物,如在反应融渗工艺中作为碳源参与反应得到碳化硅相。
采用CVD工艺在纤维表面制备PyC涂层的工艺可分为间歇式静止CVD沉积和连续CVD沉积两种工艺路线。其中的间歇式静止CVD沉积指的是将工件放置于沉积炉室内就不再移动,并随沉积炉升温、降温、最后取出的工艺路线。与之相对应的,在连续CVD沉积工艺路线中,纤维束丝利用收放装置,不间断地输送通过CVD反应区域,从而实现纤维表面涂层的连续批量生产,具有产量大、成本低、涂层均匀性好、产品性能稳定、利于自动化生产等一系列优点。
如何提高沉积反应的效率是连续CVD沉积工艺的重点和难点。与更传统的间歇式CVD工艺(沉积时长几十分钟至数小时)相比,为了保证生产效率,连续CVD工艺中每一小段纤维在反应区域中允许滞留的时间仅为数分钟,这对CVD反应的数率提出了很高的要求。这一问题在SiC纤维表面的PyC涂层沉积上表现得更加显著。这是由于PyC的沉积效率受沉积基底物质很大的影响,对于石墨、C纤维等基底材料,由于其与PyC相近的六元环结构,热解炭在其上沉积速度相对较快;而对于SiC纤维,由于其晶体结构与PyC相差较大,PyC在其表面难以沉积成膜——在利用间歇式CVD工艺在SiC纤维表面沉积PyC涂层时,甚至需要数小时的沉积时间才能得到足够厚度的PyC涂层——显然,这样的沉积效率是连续CVD沉积工艺无法接受的,因此,亟需一种在SiC纤维表面快速连续CVD沉积PyC涂层的方法。
发明内容
本发明的目的是:满足PyC界面沉积要求,提高产品质量和生产效率。
本发明的技术方案是:
提供SiC纤维表面连续沉积PyC的系统,包括活化室和沉积室;所述活化室的入口通入氩气,所述沉积室的入口通入烃类气体,且所述活化室的出口与沉积室的出口通过流量调节管连通,且所述流量调节管上开口排气口,且流量调节管上对应活化室的出口与沉积室的出口分别设置有限流阀,限流阀的最小开度能够保证SiC纤维通过;
所述沉积室用于对SiC纤维表面连续沉积PyC;
所述SiC纤维从放丝装置依次通过从活化室、流量调节管、沉积室到达收丝装置;
所述活化室设置有电子枪,用于发射电子束,使得电子束与氩气产生Ar+离子;在活化室中沿着SiC纤维输送方向设置多个电磁线圈,所述Ar+离子在电磁线圈的磁场的约束下,Ar+离子在运动中会轰击在SiC纤维表面,使得SiC纤维表面的原子被轰击离开后留下空位,破坏SiC晶体的完整度;所述空位为PyC沉积提供活性点。
进一步的,烃类气体为C3H6气体、甲烷或乙烷。
进一步的,活化室的通气流量为1~100sccm。
进一步的,活化室的通气压力为1~20Pa。
进一步的,电子枪的电压为500V,功率为800~1200W。
进一步的,沉积室的温度设定为800~1200℃。
进一步的,纤维输送速度设定为1~5m/min。
进一步的,沉积室的通气流量为200~1000sccm。
进一步的,沉积室的通气压力为50~500Pa。
本发明的优点是:(1)本发明能够显著提高SiC纤维表面PyC涂层的沉积效率(同等条件下沉积效率增加3~5倍)。
(2)本发明在改进提高沉积效率的同时,不增加额外的工艺步骤,也不会对纤维造成额外的损伤。
(3)本工艺在SiC纤维表面沉积所得PyC涂层均匀连续,可依据工艺需求作为SiC纤维表面的界面层、防护层或碳源层使用,也可依据不同需求灵活调整沉积所得PyC涂层的厚度和表面形貌。。
附图说明
图1是本发明的系统原理图;
图2a是另一实施例中限流阀最大通量示意图;
图2b是另一实施例中限流阀最小通量示意图;
其中:1-活化室、2-沉积室、3-流量调节管、4-限流阀、5-限流阀、6-排气口、A-活化室、B-沉积室。
具体实施方式
将参照附图更充分地描述所公开的示例,在附图中示出了所公开示例中的一些(但并非全部)。事实上,可描述许多不同的示例并且这些示例不应该被解释为限于本文中阐述的示例。相反,描述这些示例,使得本公开将是彻底和完全的,并且将把本公开的范围充分传达给本领域的技术人员。
实施例1,提供SiC纤维表面连续沉积PyC的系统,包括活化室和沉积室;所述活化室的入口通入氩气,所述沉积室的入口通入烃类气体,且所述活化室的出口与沉积室的出口通过流量调节管连通,且所述流量调节管上开口排气口,且流量调节管上对应活化室的出口与沉积室的出口分别设置有限流阀,限流阀的最小开度能够保证SiC纤维通过;
所述沉积室用于对SiC纤维表面连续沉积PyC;
所述SiC纤维从放丝装置依次通过从活化室、流量调节管、沉积室到达收丝装置;
所述活化室设置有电子枪,用于发射电子束,使得电子束与氩气产生Ar+离子;在活化室中沿着SiC纤维输送方向设置多个电磁线圈,所述Ar+离子在电磁线圈的磁场的约束下,Ar+离子在运动中会轰击在SiC纤维表面,使得SiC纤维表面的原子被轰击离开后留下空位,破坏SiC晶体的完整度;所述空位为PyC沉积提供活性点。
烃类气体为C3H6气体。
实施例2提供SiC纤维表面连续沉积PyC的系统,包括活化室和沉积室;所述活化室的入口通入氩气,所述沉积室的入口通入烃类气体,且所述活化室的出口与沉积室的出口通过流量调节管连通,且所述流量调节管上开口排气口,且流量调节管上对应活化室的出口与沉积室的出口分别设置有限流阀,限流阀的最小开度能够保证SiC纤维通过;
所述沉积室用于对SiC纤维表面连续沉积PyC;
所述SiC纤维从放丝装置依次通过从活化室、流量调节管、沉积室到达收丝装置;
所述活化室设置有电子枪,用于发射电子束,使得电子束与氩气产生Ar+离子;在活化室中沿着SiC纤维输送方向设置多个电磁线圈,所述Ar+离子在电磁线圈的磁场的约束下,Ar+离子在运动中会轰击在SiC纤维表面,使得SiC纤维表面的原子被轰击离开后留下空位,破坏SiC晶体的完整度;所述空位为PyC沉积提供活性点。
烃类气体为甲烷。
另一实施例中,如图2a和图2b,还给出了一种具体结构的限流阀,类似于相机快门结构,由环形均匀设置的多个叶片构成,多个叶片形成联动,每个叶片相对于流量调节管可转动联接,通过改变叶片转动位置,实现对流量调节管截面流通面积的改变,从而实现调节。
已出于例示和描述的目的展示了对不同有利布置的描述,但是该描述并不旨在是排他性的或限于所公开形式的示例。许多修改形式和变化形式对于本领域的普通技术人员而言将是显而易见的。另外,不同的有利示例可描述与其他有利示例相比不同的优点。选择和描述所选择的一个示例或多个示例,以便最佳地说明示例的原理、实际应用,并且使本领域的普通技术人员能够理解本公开有进行了适于所料想特定使用的各种修改的各种示例。

Claims (9)

1.SiC纤维表面连续沉积PyC的系统,其特征在于:包括活化室和沉积室;所述活化室的入口通入氩气,所述沉积室的入口通入烃类气体,且所述活化室的出口与沉积室的出口通过流量调节管连通,且所述流量调节管上开口排气口,且流量调节管上对应活化室的出口与沉积室的出口分别设置有限流阀,限流阀的最小开度能够保证SiC纤维通过;
所述沉积室用于对SiC纤维表面连续沉积PyC;
所述SiC纤维从放丝装置依次通过从活化室、流量调节管、沉积室到达收丝装置;
所述活化室设置有电子枪,用于发射电子束,使得电子束与氩气产生Ar+离子;在活化室中沿着SiC纤维输送方向设置多个电磁线圈,所述Ar+离子在电磁线圈的磁场的约束下,Ar+离子在运动中会轰击在SiC纤维表面,使得SiC纤维表面的原子被轰击离开后留下空位,破坏SiC晶体的完整度;所述空位为PyC沉积提供活性点。
2.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:烃类气体为C3H6气体、甲烷或乙烷。
3.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:活化室的通气流量为1~100sccm。
4.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:活化室的通气压力为1~20Pa。
5.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:电子枪的电压为500V,功率为800~1200W。
6.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:沉积室的温度设定为800~1200℃。
7.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:纤维输送速度设定为1~5m/min。
8.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:沉积室的通气流量为200~1000sccm。
9.根据权利要求1所述的SiC纤维表面连续沉积PyC的系统,其特征在于:沉积室的通气压力为50~500Pa。
CN202210653598.9A 2022-06-10 2022-06-10 SiC纤维表面连续沉积PyC的系统 Pending CN115044883A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210653598.9A CN115044883A (zh) 2022-06-10 2022-06-10 SiC纤维表面连续沉积PyC的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210653598.9A CN115044883A (zh) 2022-06-10 2022-06-10 SiC纤维表面连续沉积PyC的系统

Publications (1)

Publication Number Publication Date
CN115044883A true CN115044883A (zh) 2022-09-13

Family

ID=83161551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210653598.9A Pending CN115044883A (zh) 2022-06-10 2022-06-10 SiC纤维表面连续沉积PyC的系统

Country Status (1)

Country Link
CN (1) CN115044883A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367304A (en) * 1967-03-13 1968-02-06 Dow Corning Deposition chamber for manufacture of refractory coated filaments
GB8922587D0 (en) * 1989-10-06 1994-03-09 Chromalloy Gas Turbine Corp A process for coating fiber reinforced ceramic composites
US6787229B1 (en) * 2002-01-08 2004-09-07 University Of Central Florida Three-dimensional carbon fibers and method and apparatus for their production
US20070110913A1 (en) * 2005-10-05 2007-05-17 Snecma Method for metallic coating of fibres by liquid technique
US20140346136A1 (en) * 2011-12-22 2014-11-27 Commissariat à l'énergie atomique et aux énergies alternatives Method for enhancing the mechanical strength of an sic/sic ceramic matrix composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367304A (en) * 1967-03-13 1968-02-06 Dow Corning Deposition chamber for manufacture of refractory coated filaments
GB8922587D0 (en) * 1989-10-06 1994-03-09 Chromalloy Gas Turbine Corp A process for coating fiber reinforced ceramic composites
US6787229B1 (en) * 2002-01-08 2004-09-07 University Of Central Florida Three-dimensional carbon fibers and method and apparatus for their production
US20070110913A1 (en) * 2005-10-05 2007-05-17 Snecma Method for metallic coating of fibres by liquid technique
US20140346136A1 (en) * 2011-12-22 2014-11-27 Commissariat à l'énergie atomique et aux énergies alternatives Method for enhancing the mechanical strength of an sic/sic ceramic matrix composite material

Similar Documents

Publication Publication Date Title
US5443647A (en) Method and apparatus for depositing a refractory thin film by chemical vapor deposition
US5662965A (en) Method of depositing crystalline carbon-based thin films
US6063186A (en) Growth of very uniform silicon carbide epitaxial layers
US5392730A (en) Method for depositing compound semiconductor crystal
Kester et al. Deposition and characterization of boron nitride thin films
CN101589171A (zh) 用于大面积多层原子层化学气相处理薄膜的装置和方法
EP0946782A1 (en) Chemical vapor deposition apparatus
CN104817336A (zh) (BN/SiC)n复合界面相涂层、涂层纤维及其制备方法
US4704339A (en) Infra-red transparent optical components
CN1282801A (zh) 化学汽相淀积设备及利用该设备合成碳纳米管的方法
US20180087214A1 (en) Refractory oxide coated fiber and method of making
GB2129833A (en) Method and apparatus for depositing coatings in a glow discharge
JPH04210476A (ja) 炭化ケイ素膜の成膜方法
CN115044883A (zh) SiC纤维表面连续沉积PyC的系统
CN110528003B (zh) 一种涂层的复合制备方法
CN114212772B (zh) 一种制备单壁碳纳米管@六方氮化硼复合薄膜的方法
GB2165266A (en) Infra red transparent optical components
CN110468384A (zh) 一种单晶高温合金和涂层界面的阻扩散层及其制备方法
CN114105662A (zh) 一种多层界面涂层、制备方法及陶瓷基复合材料制备方法
CN111188027B (zh) 一种化学气相沉积设备和成膜方法
KR101165329B1 (ko) 입방정질화붕소 박막 제조방법 및 이를 통해 제조된 입방정질화붕소 박막 구조물
Olson et al. A mechanism of CVD diamond film growth deduced from the sequential deposition from sputtered carbon and atomic hydrogen
EP0106638A1 (en) Method and apparatus for growing material in a glow discharge
CN115404465B (zh) 连续纤维表面制备复合界面的设备及方法
US6406760B1 (en) Diamond film deposition on substrate arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination