CN115043598B - 一种LaF3:Tb3+下转换减反射膜及其制备方法和用途 - Google Patents

一种LaF3:Tb3+下转换减反射膜及其制备方法和用途 Download PDF

Info

Publication number
CN115043598B
CN115043598B CN202210642963.6A CN202210642963A CN115043598B CN 115043598 B CN115043598 B CN 115043598B CN 202210642963 A CN202210642963 A CN 202210642963A CN 115043598 B CN115043598 B CN 115043598B
Authority
CN
China
Prior art keywords
laf
conversion
antireflection film
slide
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210642963.6A
Other languages
English (en)
Other versions
CN115043598A (zh
Inventor
黄建勇
费广涛
许少辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Xiyuan New Energy Technology Co ltd
Original Assignee
Shanghai Xiyuan New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Xiyuan New Energy Technology Co ltd filed Critical Shanghai Xiyuan New Energy Technology Co ltd
Priority to CN202210642963.6A priority Critical patent/CN115043598B/zh
Publication of CN115043598A publication Critical patent/CN115043598A/zh
Application granted granted Critical
Publication of CN115043598B publication Critical patent/CN115043598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明属于光学薄膜领域,具体涉及一种LaF3:Tb3+下转换减反射膜及其制备方法和用途。本发明用水热法制备了LaF3:Tb3+纳米颗粒,颗粒尺寸为30nm左右。并且获得了分散均匀的LaF3:Tb3+纳米颗粒镀膜溶液,通过提拉法制备出LaF3:Tb3+薄膜。这种方法简单,技术成熟,成本低,而且不需要精密仪器。实现了在400~1100nm波段光的减反射,使玻璃的平均透过率从89.92%提高到96.09%,并且在602nm波长处的峰值透过率达到98.87%。这种LaF3:Tb3+纳米颗粒可以吸收350~380nm的光,主要发射出544nm左右的光,具有下转换功能。

Description

一种LaF3:Tb3+下转换减反射膜及其制备方法和用途
技术领域
本发明属于光学薄膜领域,具体涉及一种LaF3:Tb3+下转换减反射膜及其制备方法和用途。
背景技术
太阳能是一种可再生能源,而太阳能电池可以直接将太阳能转换为电能,因此,一直受到人们的广泛关注。然而,两个主要瓶颈限制了太阳能电池的效率。一是,太阳能器件表面的反射,二是,太阳能电池的响应光谱波长与太阳辐射到地面的光谱不匹配(以硅半导体太阳能为例,响应波长为400~1100nm,太阳光谱辐射到地球表面的波长为250~2500nm)(Phys Chem Chem Phys,11(2009)11081-11095.)。由于这两部分的限制,太阳能电池有一个极限效率为29%(Chemical Society Reviews 42(2013)173-201.)。因此,减少光的反射和光谱不匹配对于太阳能电池来说非常重要。
太阳能光伏玻璃是透明的,可以起到保护太阳能电池免受物理冲击和腐蚀。但是光伏玻璃的折射率一般为1.52,会造成将近8%的光反射。现有技术通过在光伏玻璃表面制备一层减反射膜来进一步提高太阳能电池效率,这些减反射薄膜在较宽的光学范围内会表现出较低的光吸收和高的透光率。
近年来,LaF3具有耐腐蚀性强,耐湿性能好,热稳定性高等特点,而作为表面保护和修饰层广泛应用于不同的光电器件。但是LaF3薄膜的制备技术非常昂贵,而且需要精密的仪器。虽然减反射膜可以减少光的反射,但是还是不能减少太阳光与太阳能电池的光谱不匹配问题,而下转换可以将紫外光转化为可见光。近年来,LaF3掺杂各种稀土材料制备的下转换荧光粉已经被广泛的研究(J Fluorine Chem,2017,200:18-23.),但是荧光粉的颗粒尺寸大,会对光造成严重的散射,而且,制备出的稀土掺杂的LaF3纳米颗粒不容易均匀地分散在极性溶剂中。因此,提供一种低成本、具有下转换功能且纳米尺度下分散均匀的LaF3减反射膜的制备方法,将具有重要的意义。
发明内容
本发明的目的之一是提供一种LaF3:Tb3+下转换减反射膜,以解决现有技术中LaF3薄膜的制备工艺昂贵,稀土掺杂的LaF3纳米颗粒大分布不均匀的问题。
为实现上述目的,本发明采用了以下技术方案:一种LaF3:Tb3+下转换减反射膜的制备方法,包括如下步骤:
S1、称取质量比为1:1.3:(0.1~0.3):0.6:0.3:(10~20)的氧化镧、浓硝酸、六水硝酸铽、氟化氨、聚乙烯吡咯烷酮K30、水,在水中逐次加入氧化镧、浓硝酸、六水硝酸铽、氟化氨和聚乙烯吡咯烷酮K30,充分搅拌得到混合液;
S2、调节混合液的pH呈弱酸性,然后装入反应釜中,在100~200℃的烘箱中加热5~15h,反应结束后离心洗涤,即制得LaF3:Tb3+纳米颗粒,将LaF3:Tb3+纳米颗粒分散在无水乙醇中,制得镀膜溶液;
S3、取干净的玻片在镀膜溶液中提拉镀膜后取出,高温退火获得LaF3:Tb3+薄膜。
作为LaF3:Tb3+下转换减反射膜的制备方法进一步的改进:
优选的,步骤S1中氧化镧、浓硝酸、六水硝酸铽、氟化氨、聚乙烯吡咯烷酮K30和水的质量比为1:1.3:0.12:0.6:0.3:15。
优选的,步骤S2中混合液的pH为4-7。
优选的,步骤S2中LaF3:Tb3+纳米颗粒在无水乙醇中分散的质量比为(0.5~2):50。
优选的,步骤S3的提拉镀膜中镀膜机的下降速度为50~100mm/min,浸渍时间为30~60s,上升速度为50~100mm/min。
优选的,步骤S3中高温退火的温度为200~500℃,时间为1~2h。
优选的,步骤S3中将玻片依次用KOH溶液和乙醇浸泡后,再用去离子冲洗后烘干,即得到干净的玻片。
本发明的目的之二是提供一种由上述制备方法制得的LaF3:Tb3+下转换减反射膜。
本发明的目的之三是提供一种上述LaF3:Tb3+下转换减反射膜在太阳能电池玻璃上的用途。
本发明相比现有技术的有益效果在于:
(1)本发明用水热法制备了LaF3:Tb3+纳米颗粒,颗粒尺寸为30nm左右。并且获得了分散均匀的LaF3:Tb3+纳米颗粒镀膜溶液,通过提拉法制备出LaF3:Tb3+薄膜。这种方法简单,技术成熟,成本低,而且不需要精密仪器。
(2)本发明制得的LaF3:Tb3+减反膜在实现光的下转换同时,仍保持了良好的减反效果。镀膜样品在602nm处的峰值透过率到达98.87%,在400nm~1100nm波长范围内,使玻璃的平均透过率从89.92%提高到96.09%。这种LaF3:Tb3+纳米颗粒可以吸收350~380nm的光,主要发射出544nm左右的光,具有下转换功能。不仅可以应用于光伏系统,还有望应用到光学元件领域。
(3)本发明制备出的LaF3:Tb3+纳米颗粒镀膜溶液中纳米颗粒分布均匀,不团聚。镀膜涂层的厚度可以根据LaF3:Tb3+的浓度和提拉速度来控制。
附图说明
图1是实施例1制得的LaF3:Tb3+纳米颗粒的透射图片。
图2是实施例1分散均匀的LaF3:Tb3+纳米颗粒镀膜溶液。
图3是实施例1制得LaF3:Tb3+减反膜的表面形貌;
图4是镀有实施例1制得LaF3:Tb3+减反膜的玻片和纯玻片的透过率。
图5是实施例1的LaF3:Tb3+纳米颗粒退火后的光致发光激发谱和发射谱。
图6是实施例1的LaF3:Tb3+薄膜退火后用365nm紫光灯照射发光照片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种LaF3:Tb3+下转换减反射膜的制备方法,包括如下步骤:
(1)玻片的清洗:将合适大小的玻片放在KOH溶液中浸泡10分钟,然后将玻片放在自来水下冲洗,并且用绸布擦拭。然后再放在乙醇中浸泡数分钟,倒掉无水乙醇,再用去离子水冲一遍,最后放在烘箱中烘干即可。
(2)LaF3:Tb3+纳米颗粒的制备:首先称取的氧化镧(La2O3)、加入去离子水,然后加入浓硝酸充分搅拌,再加入的六水硝酸铽(Tb(NO3)3·6H2O)充分搅拌,随后加入氟化氨(NH4F)的水溶液,再充分搅拌,之后加入聚乙烯吡咯烷酮K30(PVP-K30),充分搅拌。其中,氧化镧、浓硝酸、六水硝酸铽、氟化氨、聚乙烯吡咯烷酮K30、水的质量比为1:1.3:0.12:0.6:0.3:15;然后加入氨水调节PH值,使溶液呈弱酸性。搅拌数分钟之后,将其倒入反应釜内胆中,装入反应釜,将其在150℃的烘箱中,加热10h。反应结束后,经过离心洗涤,可以获得LaF3:Tb3+纳米颗粒。
(3)浸渍提拉镀膜:具体操作如下:将(2)中制备的LaF3:Tb3+纳米颗粒。分散在一定量的无水乙醇中,制备成分散均匀的镀膜溶液,然后将洗净的玻璃片通过镀膜机提拉镀膜。镀膜机的下降速度为100mm/min,浸渍时间为50s,上升速度为100mm/min。涂层的厚度可以根据LaF3:Tb3+的浓度和提拉速度来控制,循环提拉6次,最后,在500℃管式炉中退火1.5h,获得LaF3:Tb3+薄膜样品1。
测试LaF3:Tb3+薄膜样品1的透射图片,如图1所示,由图1可知,LaF3:Tb3+纳米颗粒尺寸为20~40nm。
图2为上述步骤(3)中分散均匀的镀膜溶液,由图2可知,LaF3:Tb3+纳米颗粒均匀的分布在无水乙醇中。
图3是LaF3:Tb3+薄膜样品1的表面形貌,由图3可知,薄膜表面均匀多孔。可以降低散射,提高透过率。
将LaF3:Tb3+薄膜样品1镀在干净的玻片上,分别测试镀膜玻片和纯玻片的透过率,如图4所示,镀有LaF3:Tb3+减反膜的玻片在602nm处的峰值透过率到达98.87%,在400nm~1100nm波长范围内,使玻璃的平均透过率从89.92%提高到96.09%。
将步骤(2)制得的LaF3:Tb3+纳米颗粒在500℃下退火,测试其光致发光激发谱和发射谱,结果如图5所示,由图5可知,LaF3:Tb3+纳米颗粒可以吸收350~380nm的光,主要发射出544nm左右的光,具有下转换功能
将LaF3:Tb3+薄膜样品1在500℃下退火,用365nm紫光灯照射,发光照片如图6所示,由图6可知,LaF3:Tb3+薄膜也具有下转换功能,不仅可以应用于光伏系统,还有望应用到光学元件领域。
实施例2
本实施例提供一种LaF3:Tb3+下转换减反射膜的制备方法,具体步骤参照实施例1,不同之处在于步骤(3)中循环提拉镀膜5次,制得LaF3:Tb3+薄膜样品2。
经测试,镀有LaF3:Tb3+薄膜样品2的玻片在557nm处的峰值透过率到达97.81%,在400nm~1100nm波长范围内,使玻璃的平均透过率从89.92%提高到95.10%。
实施例3
本实施例提供一种LaF3:Tb3+下转换减反射膜的制备方法,具体步骤参照实施例1,不同之处在于步骤(3)中循环提拉镀膜7次,制得LaF3:Tb3+薄膜样品3。
经测试,镀有LaF3:Tb3+薄膜样品3的玻片在701nm处的峰值透过率到达97.16%,在400nm~1100nm波长范围内,使玻璃的平均透过率从89.92%提高到94.12%。
实施例4
本实施例提供一种LaF3:Tb3+下转换减反射膜的制备方法,具体步骤参照实施例1,不同之处在于步骤(3)中镀膜机的下降速度为75mm/min,上升速度为75mm/min,循环提拉6次,制得LaF3:Tb3+薄膜样品4。
经测试,镀有LaF3:Tb3+薄膜样品4的玻片在542nm处的峰值透过率到达96.56%,在400nm~1100nm波长范围内,使玻璃的平均透过率从89.92%提高到93.56%。
本领域的技术人员应理解,以上所述仅为本发明的若干个具体实施方式,而不是全部实施例。应当指出,对于本领域的普通技术人员来说,还可以做出许多变形和改进,所有未超出权利要求所述的变形或改进均应视为本发明的保护范围。

Claims (7)

1.一种LaF3:Tb3+下转换减反射膜的制备方法,其特征在于,包括如下步骤:
S1、称取质量比为1:1.3:(0.1~0.3):0.6:0.3:(10~20)的氧化镧、浓硝酸、六水硝酸铽、氟化氨、聚乙烯吡咯烷酮K30、水,在水中逐次加入氧化镧、浓硝酸、六水硝酸铽、氟化氨和聚乙烯吡咯烷酮K30,充分搅拌得到混合液;
S2、调节混合液的pH呈弱酸性,然后装入反应釜中,在100~200℃的烘箱中加热5~15h,反应结束后离心洗涤,即制得LaF3:Tb3+纳米颗粒,将LaF3:Tb3+纳米颗粒以(0.5~2):50的质量比分散在无水乙醇中,制得镀膜溶液;
S3、取干净的玻片在镀膜溶液中提拉镀膜后取出,200~500℃下高温退火1~2h获得LaF3:Tb3+薄膜。
2.根据权利要求1所述的LaF3:Tb3+下转换减反射膜的制备方法,其特征在于,步骤S1中氧化镧、浓硝酸、六水硝酸铽、氟化氨、聚乙烯吡咯烷酮K30和水的质量比为1:1.3:0.12:0.6:0.3:15。
3.根据权利要求1所述的LaF3:Tb3+下转换减反射膜的制备方法,其特征在于,步骤S2中混合液的pH为4-7。
4.根据权利要求1所述的LaF3:Tb3+下转换减反射膜的制备方法,其特征在于,步骤S3的提拉镀膜中镀膜机的下降速度为50~100mm/min,浸渍时间为30~60s,上升速度为50~100mm/min。
5.根据权利要求1所述的LaF3:Tb3+下转换减反射膜的制备方法,其特征在于,步骤S3中将玻片依次用KOH溶液和乙醇浸泡后,再用去离子冲洗后烘干,即得到干净的玻片。
6.一种权利要求1-5任意一项所述LaF3:Tb3+下转换减反射膜的制备方法制得的LaF3:Tb3+下转换减反射膜。
7.一种权利要求6所述LaF3:Tb3+下转换减反射膜在太阳能电池玻璃上的用途。
CN202210642963.6A 2022-06-08 2022-06-08 一种LaF3:Tb3+下转换减反射膜及其制备方法和用途 Active CN115043598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210642963.6A CN115043598B (zh) 2022-06-08 2022-06-08 一种LaF3:Tb3+下转换减反射膜及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210642963.6A CN115043598B (zh) 2022-06-08 2022-06-08 一种LaF3:Tb3+下转换减反射膜及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN115043598A CN115043598A (zh) 2022-09-13
CN115043598B true CN115043598B (zh) 2024-04-16

Family

ID=83162018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210642963.6A Active CN115043598B (zh) 2022-06-08 2022-06-08 一种LaF3:Tb3+下转换减反射膜及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN115043598B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381093A (zh) * 2008-10-15 2009-03-11 东华大学 分步法稀土掺杂氟化物LnF3:Re3+纳米发光颗粒的制备
CN101864314A (zh) * 2010-06-13 2010-10-20 武汉大学 微波液相合成稀土氟化物荧光纳米微粒的方法
CN102093892A (zh) * 2011-03-01 2011-06-15 上海大学 多元溶剂热法制备稀土掺杂氟化镧发光空心纳米粉体的方法
CN103058529A (zh) * 2012-12-29 2013-04-24 西北大学 光波转换-减反射双功能溶胶材料及其薄膜的制备方法
CN108192616A (zh) * 2018-01-25 2018-06-22 重庆文理学院 一种LaF3:Ce3+,Tb3+纳米颗粒荧光体及其制备方法
CN108753300A (zh) * 2018-07-18 2018-11-06 重庆文理学院 一种Y0.95F3:0.05Tb3+纳米颗粒荧光体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006113998A1 (en) * 2005-04-26 2006-11-02 University Of Victoria Innovation And Development Corporation Production of light from sol-gel derived thin films made with lanthanide doped nanoparticles, and preparation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381093A (zh) * 2008-10-15 2009-03-11 东华大学 分步法稀土掺杂氟化物LnF3:Re3+纳米发光颗粒的制备
CN101864314A (zh) * 2010-06-13 2010-10-20 武汉大学 微波液相合成稀土氟化物荧光纳米微粒的方法
CN102093892A (zh) * 2011-03-01 2011-06-15 上海大学 多元溶剂热法制备稀土掺杂氟化镧发光空心纳米粉体的方法
CN103058529A (zh) * 2012-12-29 2013-04-24 西北大学 光波转换-减反射双功能溶胶材料及其薄膜的制备方法
CN108192616A (zh) * 2018-01-25 2018-06-22 重庆文理学院 一种LaF3:Ce3+,Tb3+纳米颗粒荧光体及其制备方法
CN108753300A (zh) * 2018-07-18 2018-11-06 重庆文理学院 一种Y0.95F3:0.05Tb3+纳米颗粒荧光体的制备方法

Also Published As

Publication number Publication date
CN115043598A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN101567406B (zh) 硅基太阳能电池表面量子点光波转换层的制备方法
Karunakaran et al. Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors
CN112768533B (zh) 一种ZnO量子点掺杂的SiO2下转换减反射膜及其制备方法
CN103289683A (zh) 一种SiO2包覆的CdS量子点纳米复合薄膜的制备方法
Correia et al. Lanthanide-based downshifting layers tested in a solar car race
Wang et al. Controlled synthesis and optical characterization of multifunctional ordered Y 2 O 3: Er 3+ porous pyramid arrays
Das et al. Spectral conversion by silicon nanocrystal dispersed gel glass: Efficiency enhancement of silicon solar cell
CN109638164B (zh) 一种水处理SnO2薄膜及其钙钛矿太阳能电池的制备方法
CN115043598B (zh) 一种LaF3:Tb3+下转换减反射膜及其制备方法和用途
Huang et al. Efficiency improvement of silicon nanostructure-based solar cells
CN112898966A (zh) 铜锌铟硫量子点、光阳极、光电化学电池及制备方法
CN109467724B (zh) 一种上转换多色及白光纳米荧光体复合薄膜的制备方法
CN115557709A (zh) 一种增透型转光玻璃膜层及其制备方法
CN113788631B (zh) 一种ZnO-SiO2双涂层的下转换减反射膜及其制备方法
CN115895640A (zh) 一种纳米中空碳球修饰的钙钛矿微晶及其制备方法
CN112992424B (zh) 一种直接制备银纳米线/铕掺杂钼酸钙复合发光透明导电薄膜的方法
CN113461341A (zh) 一种ZnO量子点掺杂的下转换减反射膜及其制备方法
CN111518540B (zh) Zn-CuInSe2/ZnSe核壳量子点的合成方法
CN109728171B (zh) 一种钙钛矿太阳电池的电子传输层及其制备方法
CN109904270B (zh) 一种基于碳量子点的荧光太阳集光器的制备方法
Dandan et al. Dy3+ activated LaVO4 films synthesized by precursors with different solution concentrations
CN107240623B (zh) 表面等离激元和界面场协同增强型单晶硅电池的制备方法
CN108191256A (zh) 一种下转换增透薄膜及其制备方法与应用
CN116004229B (zh) 一种叶绿素修饰的CsPbCl3:Yb3+钙钛矿薄膜及其制备方法和应用
CN113410326B (zh) 一种基于平面波导的光伏玻璃窗

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant