CN115039009A - 光检测装置 - Google Patents

光检测装置 Download PDF

Info

Publication number
CN115039009A
CN115039009A CN202180011629.4A CN202180011629A CN115039009A CN 115039009 A CN115039009 A CN 115039009A CN 202180011629 A CN202180011629 A CN 202180011629A CN 115039009 A CN115039009 A CN 115039009A
Authority
CN
China
Prior art keywords
lens
light
lenses
lens system
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180011629.4A
Other languages
English (en)
Inventor
恩田一寿
木村祯祐
清野光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021008130A external-priority patent/JP2021124725A/ja
Application filed by Denso Corp filed Critical Denso Corp
Publication of CN115039009A publication Critical patent/CN115039009A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0076Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/18Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + only one component having a compound lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Abstract

本发明的光检测装置具备:发出激光光束的发光部;和接受测定对象物(1)反射激光光束而产生的反射光(RL)的受光部。受光部具有:检测元件(33);和聚光透镜系统(41),具有多个透镜(43、44、46、48),将反射光(RL)聚集在检测元件(33)上。在聚光透镜系统(41)中,作为使透镜系统整体相对于反射光(RL)的光焦度变动的因素,包括在高温时与低温时相比增大透镜系统整体的光焦度的温度变化因素、和在长波长时与短波长相比减小透镜系统整体的光焦度的色像差因素(CF)。基于温度变化量和峰值波长的偏移量的对应关系,分配各透镜(43、44、46、48)的光焦度,使得在假定峰值波长的偏移的波长范围内色像差因素与温度变化因素平衡。

Description

光检测装置
相关申请的交叉引用
本申请以在2020年1月31日在日本申请的日本专利申请第2020-015009号以及在2021年1月21日在日本申请的日本专利申请第2021-008130号为基础,通过参照将基础的申请的内容整体引用。
技术领域
根据本说明书的公开涉及光的检测。
背景技术
在专利文献1所公开的光检测装置中,将测定对象物反射发光部所发出的激光光束而产生的反射光聚集在检测元件上的光学透镜为一片结构。
专利文献1:美国专利第9470520号说明书。
另外,若在伴随温度变化的环境下使用光检测装置,则在成为反射光的光源的激光光束的峰值波长具有温度依存性的情况下,反射光的峰值波长根据温度而偏移。相对而言,在专利文献1的一片结构的光学透镜中,几乎不能调整色像差,因此若峰值波长偏移,则光焦度变动。由于该光焦度的变动而向检测元件的聚光状态变差,因此担心相对于温度变化无法维持高的检测性能。
发明内容
根据本说明书的公开的目的之一在于提供能够维持高的检测性能的光检测装置。
此处所公开的一个方式是光检测装置,构成为在伴随温度变化的环境下被使用,上述光检测装置具备:
发光部,发出激光光束,上述激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部,接受测定对象物反射激光光束而产生的反射光,
受光部具有:
检测元件,检测反射光;和
聚光透镜系统,具有由光学材料形成的多个透镜,透镜系统整体的光焦度为正,将反射光聚集在检测元件上,
在聚光透镜系统中,作为使透镜系统整体相对于反射光的光焦度变动的因素,包括在高温时与低温时相比增大透镜系统整体的光焦度的透镜的光学材料的温度变化因素、和在长波长时与短波长相比减小透镜系统整体的光焦度的色像差因素,
基于温度变化量和峰值波长的偏移量的对应关系,分配各透镜的光焦度,使得在假定峰值波长的偏移的波长范围内色像差因素与温度变化因素平衡。
在成为反射光的源的激光光束的峰值波长具有温度依存性的本方式中,在聚光透镜系统中,伴随环境的温度变化,由于光学材料引起的温度变化因素,透镜系统整体的光焦度在变大的方向上变动。在该温度变化的同时,也产生反射光的峰值波长的偏移,因此由于聚光透镜系统的色像差引起的色像差因素,透镜系统整体相对于反射光的光焦度也在变小的方向上变动。而且,聚光透镜系统所具有的多个透镜的光焦度的分配设定为在假定峰值波长的偏移的波长范围内色像差因素与温度变化因素平衡。
即,消除由光学材料引起的焦点向前侧的偏移那样的以长波长使焦点向后侧偏移的色像差基于温度变化量和峰值波长的偏移量的对应关系而设定。因此,即使相对于温度变化,也保持向检测元件的聚光状态。能够将反射光有效地聚集在检测元件上,因此能够将检测元件检测反射光的灵敏度、进而检测性能维持在高的状态。
此处所公开的另一个方式是光检测装置,构成为在伴随温度变化的环境下被使用,上述光检测装置具备:
发光部,发出激光光束,上述激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部,接受测定对象物反射激光光束而产生的反射光,
受光部具有:
检测元件,检测反射光;和
聚光透镜系统,具有由光学材料形成的多个透镜,透镜系统整体的光焦度为正,将反射光聚集在检测元件上,
聚光透镜系统具有:
第一透镜组,包括多个透镜中的一片以上的正透镜而构成;和
第二透镜组,包括从多个透镜中除去属于第一透镜组的透镜后而得到的透镜中的至少一部分透镜、即一片以上的负透镜而构成,
形成负透镜的光学材料具有比形成正透镜的光学材料高色散的色散特性、和折射率的温度微分的值比形成正透镜的光学材料大的折射率的温度依存性。
根据这样的方式,形成负透镜的光学材料具有比形成正透镜的光学材料高色散的色散特性、和折射率的温度微分的值比形成正透镜的光学材料大的折射率的温度依存性。由此,随着温度变高而产生的焦点移动作用、详细而言光学材料中的折射率的温度依存性引起的使焦点向前侧移动的作用和光学材料的色散特性引起的使焦点向后侧移动的作用双方被减弱。因此,能够避免应检测的反射光被较大地散焦的情况。
即,即使相对于温度变化,也能够容易地保持向检测元件的聚光状态。能够将反射光有效地聚集在检测元件上,因此,能够将检测元件检测反射光的灵敏度、进而检测性能维持在高的状态。
此处所公开的另一个方式是光检测装置,构成为在伴随温度变化的环境下被使用,上述光检测装置具备:
发光部,发出激光光束,上述激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部,接受测定对象物反射激光光束而产生的反射光,
发光部具有:
激光发光元件,发出激光光束;和
投光透镜系统,具有由光学材料形成的多个透镜,透镜系统整体的光焦度为正,将激光光束朝向测定对象物投射,
在投光透镜系统中,作为使透镜系统整体相对于激光光束的光焦度变动的因素,包括在高温时与低温时相比增大透镜系统整体的光焦度的光学材料的温度变化因素、和在长波长时与短波长相比减小透镜系统整体的放大率的色像差因素,
基于温度变化量和峰值波长的偏移量的对应关系,分配各透镜的光焦度,使得在假定峰值波长的偏移的波长范围内色像差因素与温度变化因素平衡。
根据这样的方式,在投光透镜系统中,伴随环境的温度变化,由于光学材料引起的温度变化因素,透镜系统整体的光焦度在变大的方向上变动。在该温度变化的同时,激光光束具有温度依存性,结果,也产生激光光束的峰值波长的偏移,因此由于投光透镜系统的色像差引起的色像差因素,透镜系统整体相对于激光光束的光焦度也在变小的方向上变动。而且,投光透镜系统所具有的多个透镜的光焦度的分配设定为在假定峰值波长的偏移的波长变动假定区域内色像差因素与温度变化因素平衡。
即,消除由光学材料引起的焦点向后侧的偏移那样的使长波长向前侧偏移的色像差基于温度变化量和峰值波长的偏移量的对应关系而设定。因此,即使相对于温度变化,也能保持在激光发光元件上聚焦的状态。对于被投射的激光光束,能够维持希望的光斑形状,因此能够有效地对测定对象物进行投射。因此,基于被测定对象物反射的反射光的测定对象物的检测性能也能够维持在高的状态。
此外,括号内的附图标记例示性地表示与后述的实施方式的部分的对应关系,并不意图限定技术范围。
附图说明
图1是表示光检测装置的整体像的图。
图2是表示发光部及受光部与扫描部的关系的图。
图3是表示检测面的主视图。
图4是聚光透镜系统的光路图。
图5是说明温度变化因素和具有正的放大率的透镜的关系的图。
图6是说明温度变化因素和具有负的放大率的透镜的关系的图。
图7是说明色像差因素和具有正的放大率的透镜的关系的图。
图8是说明色像差因素和具有负的放大率的透镜的关系的图。
图9是表示第二实施方式的聚光透镜系统以及检测元件的图。
图10是表示第三实施方式的光检测装置的外观的立体图。
图11是表示激光发光元件的主视图。
图12是第三实施方式的投光透镜系统的快轴-光轴面的光路图。
图13是第三实施方式的投光透镜系统的慢轴-光轴面的光路图。
图14是说明投光透镜系统中的温度变化和光线的路径的关系的图。
图15是第四实施方式的投光透镜系统的快轴-光轴面的光路图。
图16是第四实施方式的投光透镜系统的慢轴-光轴面的光路图。
图17是第五实施方式的投光透镜系统的快轴-光轴面的光路图。
图18是第五实施方式的投光透镜系统的慢轴-光轴面的光路图。
图19是表示第六实施方式的光检测装置的外观的立体图。
图20是第六实施方式中的与图2对应的图。
图21是表示第六实施方式的检测元件单元的剖视图。
图22是第六实施方式中的聚光透镜系统的光路图。
具体实施方式
以下,基于附图对多个实施方式进行说明。此外,在各实施方式中对应的构成要素标注相同的附图标记,从而有时省略重复的说明。在各实施方式中仅说明结构的一部分的情况下,对于该结构的其它部分,能够应用之前说明的其它实施方式的结构。另外,不仅是在各实施方式的说明中明示的结构的组合,特别是只要在组合中不产生障碍,即使没有明示也能够将多个实施方式的结构彼此部分地组合。
(第一实施方式)
如图1所示,本公开的第一实施方式的光检测装置10成为构成为搭载于作为移动体的车辆的光学雷达。光学雷达是Light Detection and Ranging/Laser ImagingDetection and Ranging的缩写。光检测装置10在伴随温度变化的环境下被使用。例如,光检测装置10配置于车辆的侧面部、或者车辆的车顶。光检测装置10能够向车辆周边中的规定的测定区域投射激光光束LL,通过该激光光束LL被测定对象物1反射的反射光RL,测定测定对象物1。此处,测定对象物1的测定例如是测定对象物1存在的方向的测定、从光检测装置10到测定对象物1的距离的测定等。
如图1、2所示,光检测装置10是包括发光部11、扫描部21以及受光部31的结构。发光部11朝向扫描部21发出激光光束LL。发光部11是包括发光元件单元12以及投光透镜系统15的结构。
发光元件单元12例如具有激光发光元件13以及发光控制部14。本实施方式的激光发光元件13例如是激光二极管(LD,Laser Diode)。激光发光元件13呈使发光源在基板上沿规定的一个方向排列而成的一列阵列状。激光发光元件13通过使用了法布里-珀罗谐振器构造的激光工艺,能够振荡作为相干光的激光光束LL。激光发光元件13在与来自发光控制部14的电信号相应的定时,发出脉冲状的激光光束LL,该发光控制部14是控制该激光发光元件13的电子电路。激光光束LL例如是从车辆的驾驶员等乘员以及外界的人难以视觉辨认的在近红外段具有一个峰值波长的单色的激光光束。例如20℃的常温下的峰值波长的值例如为905nm。以下,将905nm设为基准波长。
而且,激光光束LL的峰值波长具有随着温度变高而从短波长侧向长波长侧逐渐偏移的温度依存性。峰值波长可以根据在车载环境下假定的例如-40~125℃的范围的温度变化假定范围,例如在885~940nm的范围的波长变动假定范围内变动。在激光发光元件13的内部受激发射的光被法布里-珀罗谐振器构造放大的本实施方式中,实质上,峰值波长相对于温度的上升而线性地增大。即,在温度变化假定范围内,峰值波长的温度微分(一次微分)的值为正,能够看作取固定的值。
投光透镜系统15配置在激光发光元件13与扫描部21的反射镜22之间。投光透镜系统15是由一个透镜构成的结构或者是将多个透镜组合而成的结构,具有正的光焦度。投光透镜系统15折射各激光发光元件13分别独立地发出的各激光光束LL。投光透镜系统15使各激光光束LL合体,整形为线状的形成光斑形状的光束。
扫描部21是包括在发光部11及受光部31间共同或单独设置的可动光学部件的结构。可动光学部件例如是反射镜22。反射镜22利用其反射面23,将从投光透镜系统15射出的激光光束LL朝向光检测装置10的外部反射。反射面23的朝向在时间上变更。该反射面23的朝向的变更可以通过反射镜22的旋转运动或者往复运动等来实现。反射面23的朝向在时间上变更,从而激光光束LL在车辆的周边的测定区域内在时间上被扫描。
若被扫描的激光光束LL被位于测定区域内的测定对象物1反射,则其反射光RL的一部分返回到光检测装置10的内部。在应用于车辆的光检测装置10中,代表的测定对象物1是行人、骑车人、人以外的动物、以及其它车辆等移动物体、进而护栏、道路标志、道路框架的构造物等静止物体。
受光部31在使反射光RL经由扫描部21之后接受反射光RL。受光部31是包括检测元件单元32以及聚光透镜系统41的结构。
检测元件单元32例如具有检测元件33以及受光控制部36。在检测元件33中,可以采用各种光电二极管、各种光导管、光电倍增管等,特别是在本实施方式中,采用单光子雪崩二极管。单光子雪崩二极管是Single Photon Avalanche Diode,以下表记为SPAD。SPAD具有能够以高灵敏度检测短的脉冲状的反射光RL的特性。
如图3所示,检测元件33具有根据SPAD的排列在基板上排列成阵列状的多个像素35。多个像素35在规定的一维方向或二维方向上以规定的排列间隔PT而排列。此处,在基板表面中,排列有多个像素35的部分所形成的平面状区域被定义为检测面34。
如图1所示,受光控制部36是基于与发光控制部14的发光定时联动的特定的受光定时,来控制检测元件33的电子电路。具体而言,检测元件33中的各像素35由电子快门控制。基于接受到的反射光RL的电压值被输入到受光控制部36,从而检测元件单元32能够测定反射光RL的受光定时以及强度。
聚光透镜系统41配置在检测元件33与扫描部21的反射镜22之间。聚光透镜系统41是包括多个透镜43、44、46、48的组合的结构。构成聚光透镜系统41的多个透镜43、44、46、48的合成的光焦度、即透镜系统整体的光焦度为正。聚光透镜系统41折射经由反射镜22入射的反射光RL,并聚集到检测元件33上。如图4所示,聚光透镜系统41具有使反射光RL在检测元件33的检测面34上以聚焦的方式成像的功能。详细而言,聚光透镜系统41具有使反射光RL在检测元件33的检测面34上以后侧聚焦的方式成像的功能。聚光透镜系统41成为在上述的温度变化假定范围内实现无热化的光学系统。
聚光透镜系统41是包括前级透镜组42、中级透镜组45以及后级透镜组47的结构。前级透镜组42配置在各透镜组42、45、47中离检测元件33最远的位置。中级透镜组45配置在前级透镜组42与检测元件33之间,详细而言配置在前级透镜组42与后级透镜组47之间。后级透镜组47配置在各透镜组42、45、47中离检测元件33最近的位置。上述的透镜系统整体的光焦度成为前级透镜组42、中级透镜组45以及后级透镜组47的合成的光焦度。
在以下,将聚光透镜系统41中基于测定对象物1的反射光RL入射进来的入射侧记载为前侧,将聚光透镜系统41中朝向检测元件33射出该反射光RL的射出侧记载为后侧。即,在聚光透镜系统41中,前级透镜组42配置在最前侧,后级透镜组47配置在最后侧。
各透镜组42、45、47分别包括一片以上的透镜43、44、46、48而构成。特别是在本实施方式中,前级透镜组42由两片透镜43、44构成,中级透镜组45由一片透镜46构成,后级透镜组47由一片透镜48构成。即本实施方式的聚光透镜系统41是三组四片透镜结构。此外,连接各透镜43、44、46、48的顶点的假想的轴被定义为本实施方式中的聚光透镜系统41的光轴OA。
以下,对各透镜组42、45、47的详细情况进行说明。前级透镜组42由两片正透镜43、44构成。正透镜是具有正的光焦度的透镜。因此,前级透镜组42整体具有正的光焦度。本实施方式的两片正透镜43、44由相同的光学材料形成。形成两片正透镜43、44的光学材料是具有正常的色散特性的光学材料,例如可以采用冠系的玻璃材料。以下,在形成两片正透镜43、44的光学材料中,将对以氦为激发介质的d线(具体而言587.56nm)的折射率记载为na,将以d线为基准的阿贝数记载为va,将折射率的温度微分(一次微分)的值记载为dna/dt。
此外,各透镜43、44的折射面43a、43b、44a、44b可以是光学材料露出的结构,也可以是设置有防反射涂层等功能性涂层的结构。在光学材料露出的情况下,折射面43a、43b、44a、44b可以通过研磨加工等平滑地形成,也可以设置蛾眼结构等。这些折射面的结构的变更对于中级透镜组45以及后级透镜组47的各折射面46a、46b、48a、48b也同样可以。
前级透镜组42中位于前侧的正透镜43形成为将前侧折射面43a设为凸面状,将后侧折射面43b设为平面状或者稍微弯曲的凹面状的平凸透镜状。位于比正透镜43靠后侧的正透镜44形成为将前侧折射面44a设为凸面状,将后侧折射面44b设为凹面状,具有正的光焦度的凸弯月透镜状。
凸面状或者凹面状的折射面、即具有光焦度的折射面43a、43b、44a、44b可以形成为球面状,也可以形成为具有旋转不变性的旋转对称非球面形状,只要能够实现聚光透镜系统41的功能,也可以形成为环面形状。例如,本实施方式的各折射面43a、43b、44a、44b形成为球面状。这些折射面的结构的变更对于中级透镜组45以及后级透镜组47的各折射面46a、46b、48a、48b也同样可以。
在此处,正透镜43的前侧折射面43a的曲率半径比后侧折射面43b的曲率半径充分小。正透镜44的前侧折射面44a的曲率半径比后侧折射面44b的曲率半径小。
另外,正透镜44的前侧折射面44a的曲率半径比正透镜43的前侧折射面43a的曲率半径小,比后侧折射面44b的曲率半径小。正透镜44的后侧折射面44b的曲率半径比正透镜43的前侧折射面43a的曲率半径小,比后侧折射面43b的曲率半径小。此外,在曲率半径的大小的比较中,折射面为平面状的情况下的曲率半径被处理为无限大。进而,正透镜43的光焦度小于正透镜44的光焦度。
正透镜44的中心厚度比正透镜43的中心厚度大。正透镜43的后侧折射面43b的顶点和正透镜44的前侧折射面44a的顶点以小于正透镜43的中心厚度且小于正透镜44的中心厚度的间隔分离而配置。
正透镜44的后侧折射面44b的有效直径被设为比正透镜44的前侧折射面44a的有效直径小,以及比正透镜43的折射面43b的有效直径小,比折射面43a的有效直径小。在正透镜44中,在有效直径的范围外,以从外周侧整周包围后侧折射面44b的方式,形成有沿着相对于光轴OA的垂直方向的平面状的平面部44c。而且,在比正透镜44的后侧折射面44b靠后侧,在与该折射面44b及平面部44c接近的位置,设置有光阑49,该光阑具有比该折射面44b的有效直径稍微小的直径。此外,聚光透镜系统41的有效直径是指连接检测面34的端部和光阑49的孔径的端部的光线通过对象的折射面时的相对于光轴OA的高度。该高度是所谓的光线高度。
中级透镜组45由一片负透镜46构成。负透镜是具有负的光焦度的透镜。因此,中级透镜组45整体具有负的光焦度。形成负透镜46的光学材料是具有正常的色散特性的光学材料,例如可以采用火石系的玻璃材料。在形成负透镜46的光学材料中,将对d线的折射率记载为nb,将以d线为基准的阿贝数记载为vb,将折射率的温度微分(一次微分)的值记载为dnb/dt。
负透镜46形成为将前侧折射面46a设为凸面状,将后侧折射面46b设为凹面状,具有负的光焦度的凹弯月透镜状。在此处,负透镜46的前侧折射面46a的曲率半径比后侧折射面46b的曲率半径大。负透镜46的后侧折射面46b的有效直径被设为比负透镜46的前侧折射面46a的有效直径小。
后级透镜组47由一片校正透镜48构成。后级透镜组47整体具有正的光焦度。形成校正透镜48的光学材料是具有正常的色散特性的光学材料,例如可以采用冠系的玻璃材料。在形成校正透镜48的光学材料中,将对d线的折射率记载为nc,将以d线为基准的阿贝数记载为vc,将折射率的温度微分的值记载为dnc/dt。
校正透镜48形成为将前侧折射面48a设为凸面状,将后侧折射面48b设为凸面状,具有正的光焦度的双凸透镜状。在此处,校正透镜48的前侧折射面48a的曲率半径比后侧折射面48b的曲率半径小。校正透镜48的后侧折射面48b的有效直径是与校正透镜48的前侧折射面48a的有效直径大体相同的大小。
接下来,对各透镜组42、45、47的关系进行说明。具有负的光焦度的中级透镜组45配置在具有正的光焦度的前级透镜组42与检测元件33之间,从而聚光透镜系统41成为望远型的透镜结构。基于望远型的透镜结构的聚光透镜系统41使其主点位于聚光透镜系统41的外部空间,详细而言位于比实际配置各透镜43、44、46、48的位置靠前侧的空间。因此,能够扩大主点与检测元件33之间的距离。换言之,对于聚光透镜系统41的焦距,能够缩短聚光透镜系统41的镜筒的长度,因此光检测装置10能够小型化,向车辆的搭载性提高。另外,能够使基于受光部31的检测的视场角窄角化,因此能够高精度地检测特定的窄的范围。
后级透镜组47具有校正可能在前级透镜组42和中级透镜组45的望远型的组合中产生的聚光透镜系统41的畸变像差的功能。本实施方式中的畸变像差在温度变化假定范围以及波长变动假定范围内被校正为避免检测像素偏移的量。避免检测像素偏移的量被定义为在检测面34上,实际的聚光透镜系统41的成像位置相对于理想的成像位置的偏移量小于邻接像素间的排列间隔PT的量。因此,通过避免由与假定的像素35不同的像素35检测反射光RL的现象,从而能够抑制误检测。此外,理想的成像位置是聚光透镜系统41假想地满足正像条件时的成像位置。
此外,在聚光透镜系统41中,作为使透镜系统整体相对于反射光RL的光焦度变动的因素,包括温度变化因素TF和色像差因素CF。温度变化因素TF是在高温时与低温时相比使透镜系统整体的光焦度变大的因素。温度变化因素TF起因于在形成各透镜43、44、46、48的光学材料中存在折射率的温度依存性。形成各透镜43、44、46、48的光学材料的dna/dt、dnb/dt、dnc/dt的值分别为正。即,随着温度变高而各透镜43、44、46、48的折射率变大,因此各透镜43、44、46、48的光焦度的绝对值变大。透镜系统整体的光焦度为正,因此随着温度变高,必然地透镜系统整体的光焦度也变大,温度变化因素TF产生使焦点向更前侧移动的作用。
在本实施方式中,在聚光透镜系统41中使用折射率的温度微分的值亦即dn/dt相互不同的多个光学材料。通过由dn/dt比较大的光学材料形成的透镜46的光焦度和由dn/dt比较小的光学材料形成的透镜43、44、48的光焦度的分配,能够控制温度变化因素TF。
在此处,使用模仿了聚光透镜系统41的假想透镜系统模型的透镜PL、NL,对温度变化因素TF的控制进行说明。例如,如图5所示,在假想透镜系统模型的多个透镜中,如果形成具有正的光焦度的透镜PL的光学材料的dn/dt比较大,则温度变化因素TF较强地发挥使高温时的焦点F1相对于常温时的焦点F0向前侧移动的作用。另一方面,如果形成透镜PL的光学材料的dn/dt比较小,则温度变化因素TF较弱地发挥使高温时的焦点F2相对于常温时的焦点F0向前侧移动的作用。
另外,例如,如图6所示,假设在假想透镜系统模型的多个透镜中,如果形成具有负的光焦度的透镜NL的光学材料的dn/dt比较大,则温度变化因素TF较弱地发挥使高温时的焦点F1相对于常温时的焦点F0向前侧移动的作用。另一方面,假设形成透镜NL的光学材料的dn/dt比较小,则温度变化因素TF较强地发挥使高温时的焦点F2相对于常温时的焦点F0向前侧移动的作用。
色像差因素CF是在长波长时与短波长相比使透镜系统的光焦度变小的因素。色像差因素CF起因于在形成各透镜43、44、46、48的光学材料中存在色散特性。色像差因素CF产生随着波长变长而在更后侧形成焦点的作用。因此,色像差因素CF中的“色像差”是指轴上色像差。通过由低色散的光学材料形成的透镜43、44、48的光焦度和由高色散的光学材料形成的透镜46的光焦度的分配,能够控制色像差因素CF。
在此处,使用模仿了聚光透镜系统41的假想透镜系统模型的透镜PL、NL,对色像差因素CF的控制进行说明。例如,如图7所示,在假想透镜系统模型的多个透镜中,如果形成具有正的光焦度的透镜PL的光学材料的阿贝数比较大,则色像差因素CF较弱地发挥使长波长的焦点F3相对于对基准波长的焦点F0向后侧移动的作用。另一方面,如果形成透镜NL的光学材料的阿贝数比较小,则色像差因素CF较强地发挥使长波长的焦点F4相对于对基准波长的焦点F0向后侧移动的作用。此外,阿贝数比较大是指低色散。阿贝数比较小是指高色散。
另外,例如,如图8所示,在假想透镜系统模型的多个透镜中,如果形成具有负的光焦度的透镜NL的光学材料的阿贝数比较大,则色像差因素CF较强地发挥使长波长的焦点F3相对于对基准波长的焦点F0向后侧移动的作用。另一方面,如果形成透镜NL的光学材料的阿贝数比较小,则色像差因素CF较弱地发挥使长波长的焦点F4相对于对基准波长的焦点F0向后侧移动的作用。
假设是温度变化和检测光的波长变化没有相关性的透镜系统,则温度变化因素TF和色像差因素CF不会联动。然而,在成为聚光透镜系统41检测的反射光RL的源的激光光束LL的峰值波长中存在温度依存性的本实施方式中,温度变化因素TF和色像差因素CF联动。即,随着温度变高而激光光束LL的峰值波长向长波长侧偏移,因此基于温度变化量和峰值波长的偏移量的对应关系,色像差因素CF与温度变化因素TF联动。
在本实施方式的聚光透镜系统41中,基于这样的对应关系,在波长变动假定范围内,分配各透镜组42、45、47或各透镜43、44、46、48间的光焦度,使得色像差因素CF与温度变化因素TF平衡。在此处,色像差因素CF与温度变化因素TF平衡是指,抑制色像差因素CF和温度变化因素TF被消除的结果的光焦度的变动量,使得维持检测元件33中的检测面34包含在聚光透镜系统41的焦点附近的焦深的范围内的状态。
在实现上述平衡的本实施方式中,在前级透镜组42的光学材料中设定具有比中级透镜组45的光学材料低色散的色散特性和折射率的温度微分的值比中级透镜组45的光学材料小的折射率的温度依存性的材料。换言之,在中级透镜组45的光学材料中设定具有比前级透镜组42的光学材料高色散的色散特性和折射率的温度微分的值比前级透镜组42的光学材料大的折射率的温度依存性的材料。
如果用公式表示这些,则va>vb、dna/dt<dnb/dt成立。此处,严格来说,dna/dt以及dnb/dt不是固定的值,成为温度以及波长的函数,但在温度变化假定范围以及波长变动假定范围中的整个区域,优选维持dna/dt<dnb/dt的关系。
而且,在前级透镜组42的光学材料中分配正的放大率,在中级透镜组45的光学材料中分配负的放大率。这样,温度变化因素TF的使焦点向前侧移动的作用和色像差因素CF的使焦点向后侧移动的作用双方变弱。因此,温度变化因素TF及色像差因素CF中的一方一边倒地发挥作用,能够避免反射光RL相对于检测面34被较大地散焦的情况。
而且,在后级透镜组47的光学材料中设定具有折射率的温度微分的值比前级透镜组42的光学材料及中级透镜组45的光学材料小的折射率的温度依存性的材料。如果用公式表示这些,则dnc/dt<dna/dt、dnc/dt<dnb/dt成立。此处,严格来说,dnc/dt不是固定的值,成为温度以及波长的函数。在温度变化假定范围以及波长变动假定范围中的整个区域,优选维持dnc/dt<dna/dt、dnc/dt<dnb/dt的关系。这样,后级透镜组47本身对温度变化因素TF的贡献比前级透镜组42的贡献以及中级透镜组45的贡献小。
另外,在后级透镜组47的光学材料中设定具有比中级透镜组45的光学材料低色散的色散特性的材料。如用公式表示,则vc>vb成立。
(作用效果)
以下再次对以上说明的第一实施方式的作用效果进行说明。
在成为反射光RL的源的激光光束LL的峰值波长具有温度依存性的第一实施方式中,在聚光透镜系统41中,伴随环境的温度变化,由于光学材料引起的温度变化因素TF,透镜系统整体的光焦度向变大的方向变动。在该温度变化的同时,也产生反射光RL的峰值波长的偏移,因此由于聚光透镜系统41的色像差引起的色像差因素CF,透镜系统整体相对于反射光RL的光焦度也向变小的方向变动。而且,聚光透镜系统41所具有的多个透镜43、44、46、48的光焦度的分配设定为在假定峰值波长的偏移的波长变动假定区域内色像差因素CF与温度变化因素TF平衡。
即,消除由光学材料引起的焦点向前侧的偏移那样的以长波长使焦点向后侧偏移的色像差基于温度变化量和峰值波长的偏移量的对应关系而设定。因此,即使相对于温度变化,也能保持在检测元件33聚焦的聚光状态。能够将反射光RL有效地聚集在检测元件33上,因此能够将检测元件33检测反射光RL的灵敏度、进而检测性能维持在高的状态。
另外,根据第一实施方式,在由具有折射率的温度微分的值相互不同的折射率的温度依存性的光学材料形成的各透镜43、44、46、48之间,分配光焦度。通过这样的分配,调整为温度变化因素TF与色像差因素CF平衡,因此能够提高在检测元件33聚焦的聚光状态相对于温度变化的维持效果。
另外,根据第一实施方式,形成负透镜46的光学材料具有比形成正透镜43、44的光学材料高色散的色散特性、和折射率的温度微分的值比形成正透镜43、44的光学材料大的折射率的温度依存性。这样,随着温度变高而产生的焦点移动作用、详细而言由光学材料中的折射率的温度依存性引起的使焦点向前侧移动的作用和由光学材料的色散特性引起的使焦点向后侧移动的作用双方被减弱。因此,能够避免应检测的反射光RL相对于检测元件33被较大地散焦的情况。
即,即使相对于温度变化,也能够容易地保持在检测元件33聚焦的聚光状态。能够将反射光RL有效地聚集在检测元件33上,因此能够将检测元件33检测反射光RL的灵敏度、进而检测性能维持在高的状态。
另外,根据第一实施方式,具有负的光焦度的中级透镜组45配置在具有正的光焦度的前级透镜组42与检测元件33之间。在这样的透镜结构中,存在焦深变得比较浅的趋势,但通过使色像差因素CF和温度变化因素TF平衡,焦点本身相对于温度变化难以移动。因此,能够补偿焦深的浅度,将检测元件33检测反射光RL的灵敏度维持在高的状态。
另外,根据第一实施方式,在后级透镜组47中形成校正透镜48的光学材料具有折射率的温度微分的值比形成前级透镜组42的正透镜43、44的光学材料小的折射率的温度依存性。能够减小后级透镜组47对温度变化因素TF的贡献,因此抑制对校正透镜48的光焦度的分配被两因素TF、CF的平衡较大地限制。能够更高度地实现对后级透镜组47所要求的畸变像差的校正,因此使反射光RL在检测元件33上成像时的成像位置的精度变高。因此,能够将检测性能维持在高的状态。
另外,根据第一实施方式,由后级透镜组47校正的畸变像差成为如下范围:实际的聚光透镜系统41的成像位置相对于检测面34上的成像位置亦即满足整像条件的理想的成像位置的偏移量小于排列间隔PT。该排列间隔PT是检测面34中的多个像素35的间隔,因此避免由与假定的像素35不同的像素35检测反射光RL。因此,能够抑制误检测。
此外,第一实施方式中的前级透镜组42相当于“第一透镜组”。中级透镜组45相当于“第二透镜组”。后级透镜组47相当于“第三透镜组”。
(第二实施方式)
如图9所示,第二实施方式是第一实施方式的变形例。对于第二实施方式,以与第一实施方式不同的点为中心进行说明。
第二实施方式的聚光透镜系统241是包括前级透镜组242以及后级透镜组244的两组两片透镜结构。前级透镜组242配置在各透镜组242、244中离检测元件33最远的位置。后级透镜组244配置在前级透镜组242与检测元件33之间。透镜系统整体的光焦度成为前级透镜组242以及后级透镜组244的合成的光焦度。
前级透镜组242由一片负透镜243构成。因此,前级透镜组242整体具有负的放大率。例如,在形成负透镜243的光学材料中,可以采用与形成第一实施方式的中级透镜组45的光学材料相同的材料。
后级透镜组244由一片正透镜245构成。因此,后级透镜组244整体具有正的放大率。例如,在形成正透镜245的光学材料中,可以采用与形成第一实施方式的前级透镜组42的光学材料相同的材料。这样,第二实施方式的聚光透镜系统241成为反向望远型的透镜结构。在这样的透镜结构中,能够使基于受光部31的检测的视场角广角化,因此能够检测来自大范围的反射光RL。
根据以上说明的第二实施方式,具有负的光焦度的前级透镜组242配置在与检测元件33隔着具有正的光焦度的后级透镜组244的相反侧。在这样的透镜结构中,通过加深焦深,能够提高色像差因素CF和温度变化因素TF的平衡的允许性。因此,能够容易地保持在检测元件33聚焦的聚光状态。
此外,第二实施方式中的前级透镜组242相当于“第二透镜组”。后级透镜组244相当于“第一透镜组”。
(第三实施方式)
如图10~14所示,第三实施方式是第一实施方式的变形例。对于第三实施方式,以与第一实施方式不同的点、以及说明不足的点为中心进行说明。
在第三实施方式中,是如下结构:包括在第一实施方式中说明的扫描部21及受光部31,并且包括在第一实施方式中说明不足的壳体351及发光部11。
如图10所示,第三实施方式的壳体351具有外壁部352以及盖板355,构成光检测装置10的外装(外廓)。壳体351例如由合成树脂或者金属形成,形成为包括具有遮光性的外壁部352的长方体的箱状。壳体351可以由一个部件构成,也可以是将多个部件组合而成的结构。壳体351以被外壁部352包围的方式具有收容发光部11、扫描部21以及受光部31的收容室353。收容室353相对于发光部11及受光部31共同地设置,特别是在本实施方式中设置有一个。通过收容室353的共同化,抑制在发光部11与受光部31之间形成隔壁,因此能够抑制光检测装置10的体积扩大。
发光部11以及受光部31以相对于壳体351实质上固定的方式被保持。扫描部21相对于壳体351固定为能够通过马达的驱动而旋转运动,或者能够往复运动。
另外,壳体351将光学窗354形成为开口状,该光学窗使被投射的激光光束LL及其反射光RL的双方在与测定区域之间往复。光学窗354也相对于发光部11及受光部31的双方共同地设置,特别是在本实施方式中设置有一个。此外,激光光束LL也可以称为投光光束,反射光RL也可以称为反射光束。
盖板355是通过例如由合成树脂或玻璃等构成的基材,形成为能够使激光光束LL及其反射光RL透过的例如平板状的板状的部件。盖板355配置为封闭光学窗354的整个面,遮断想要从收容室353的外部向内部侵入的异物。
盖板355优选通过基材的着色、光学薄膜的成膜、或者膜向基材表面的粘贴等,使近红外段的光、更详细而言波长变动假定范围的光透过,并且具有遮挡可见光的透过率的波长依存性。这样,抑制从外部窥视收容室353的内部。另外,在盖板355的收容室353侧的表面以及测定区域侧的表面的至少一方可以露出镜面状的基材表面,也可以形成防反射膜,也可以形成蛾眼结构。
如图11所示,在第三实施方式的发光部11中,激光发光元件13与第一实施方式同样,呈使作为发光源的激光二极管13a在基板上沿规定的一个方向相互隔开间隔排列有多个而成的一列的阵列状。在上述的法布里-珀罗谐振器结构中,各激光二极管13a的PN接合层在相互共同的方向、即相对于阵列的排列方向的垂直方向上层叠。阵列的排列方向是形成线状的光斑形状的光束的长边方向。
沿着该垂直方向的轴成为激光二极管13a的快轴。另一方面,沿着阵列的排列方向的轴成为激光二极管13a的慢轴。激光光束LL在快轴方向FA上具有比慢轴方向SA大的发散角。
作为这样的激光二极管13a的集合体的纵观开口部,形成有发光窗部13b。特别是本实施方式的发光窗部13b成为细长的大致长方形。发光窗部13b的长边方向的尺寸被设定为比短边方向的尺寸例如大100倍以上的尺寸。此外,长边方向的尺寸是沿着慢轴方向SA的尺寸。短边方向的尺寸是沿着快轴方向FA的尺寸。此处,发光窗部13b的长边方向在一般的安装方式中,沿着车载状态的铅垂方向。另外,此处,沿着发光窗部13b的面被定义为发光面13c。另外,发光窗部13b例如由玻璃材料或者合成树脂材料形成,被具有透光性的薄板状的透光罩13d覆盖。
而且,发光部11发出在慢轴方向SA上延伸的线状的光束作为激光光束LL。该线状的光束可以通过各激光二极管13a同时发光来实现,也可以通过各激光二极管13a以带有微小的时间差的方式发光,从而作为相当于线状的光束的光束来实现。
相对而言,扫描部21的反射镜22通过使反射面23绕沿着慢轴方向SA的旋转轴RA往复运动,能够使线状的光束在沿着快轴方向FA的扫描方向上扫描。
在第三实施方式的发光部11中,投光透镜系统15是将多个透镜316a、317a组合而成的结构。构成投光透镜系统15的多个透镜316a、317a的合成的光焦度、即透镜系统整体的光焦度为正。
如图12和图13所示,投光透镜系统15配置为使透镜系统整体的焦点对焦在发光面13c上。详细而言,投光透镜系统15配置为使透镜系统整体的前侧焦点对焦在发光面13c上。其结果,激光光束LL以更细的状态到达远方。由存在于远方的测定对象物1反射激光光束LL而产生的反射光RL返回到受光部31的光量被确保,因此结果能够增大探测距离。投光透镜系统15成为在第一实施方式中说明的温度变化假定范围内实现无热化的光学系统。
投光透镜系统15是包括主透镜组316以及调整透镜组317的结构。主透镜组316配置在与隔着调整透镜组317的激光发光元件13相反侧。调整透镜组317配置在主透镜组316与激光发光元件13之间。
各透镜组316、317分别包括一片以上的透镜316a、317a而构成。特别是在本实施方式中,主透镜组316由一片透镜316a构成,调整透镜组317由一片透镜317a构成。此外,连接各透镜316a、317a的顶点,贯通发光窗部13b的中心的假想的轴被定义为本实施方式中的投光透镜系统15的光轴OA2。
以下,对各透镜组316、317的详细情况进行说明。主透镜组316由一片正透镜316a构成。因此,主透镜组316整体具有正的放大率。形成正透镜316a的光学材料是具有正常的色散特性的光学材料,例如可以采用冠系的玻璃材料或者聚碳酸酯树脂等合成树脂材料。在形成正透镜316a的光学材料中,将对d线的折射率记载为nx,将以d线为基准的阿贝数记载为vx,将折射率的温度微分的值记载为dnx/dt。例如dnx/dt>0。
此外,正透镜316a的折射面316b、316c可以是光学材料露出的结构,也可以是设置有防反射涂层等功能性涂层的结构。在光学材料露出的情况下,折射面316b、317c可以平滑地形成,也可以设置蛾眼结构等。这些折射面的结构的变更对于调整透镜组317的折射面317b、317c也同样地可以。
正透镜316a形成为将前侧折射面316b设为凸面状,将后侧折射面316c设为凸面状的双凸透镜。具有光焦度的折射面316b、316c可以形成为球面状,也可以形成为具有旋转不变性的旋转对称非球面形状。例如,正透镜316a的前侧折射面316b的曲率半径比后侧折射面316c的曲率半径大。
调整透镜组317由一片柱面透镜317a构成。本实施方式的柱面透镜317a在包含投光透镜系统15的光轴OA2以及激光发光元件13的快轴方向FA的截面内,实质上成为0的光焦度。以下,将包含投光透镜系统15的光轴OA2以及激光发光元件13的快轴方向FA的截面称为快轴-光轴面FP。另外,柱面透镜317a在包含光轴OA2以及激光发光元件13的慢轴方向SA的截面内,实质上具有正的光焦度。以下,将包含光轴OA2以及激光发光元件13的慢轴方向SA的截面称为慢轴-光轴面SP。形成柱面透镜317a的光学材料是具有正常的色散特性的光学材料,例如可以采用冠系的玻璃材料或者聚碳酸酯树脂等合成树脂材料。在形成柱面透镜317a的光学材料中,将对d线的折射率记载为ny,将以d线为基准的阿贝数记载为vy,将折射率的温度微分的值记载为dny/dt。dny/dt的符号与dnx/dt相同,例如是dny/dt>0。
柱面透镜317a的前侧折射面317b形成为平面状。另一方面,柱面透镜317a的后侧折射面317c形成为具有沿着快轴方向FA的母线的凸柱面状。即,后侧折射面317c不具有快轴方向FA的曲率,具有慢轴方向SA的曲率。不具有曲率是指曲率半径无限大。具有曲率是指曲率半径有限。其结果,在快轴-光轴面FP内,柱面透镜317a的截面如只是平的玻璃板那样,例如形成矩形截面。在慢轴-光轴面SP内,柱面透镜317a的截面形成平凸透镜状。调整透镜组317的柱面透镜317a与主透镜组316的正透镜316a的间隔小于柱面透镜317a的中心厚度,小于正透镜316a的中心厚度。
这样,投光透镜系统15在快轴-光轴面FP内,将激光光束LL校准,并向测定区域投射。此处所谓的校准不限于使来自激光发光元件13的激光光束LL完全成为平行光束的意思,也包含使激光光束LL比刚从激光发光元件13发光之后更接近平行光束的意思。在快轴-光轴面FP内,具有光焦度的实质上仅是正透镜316a,因此激光光束LL被各透镜组316、317中的主透镜组316校准。
另一方面,投光透镜系统15通过上述的柱面透镜317a的形状,在慢轴-光轴面SP内,发挥比快轴-光轴面FP内更强的聚光功能。具体而言,柱面透镜317a采用使慢轴方向SA的光焦度相对于快轴方向FA的光焦度向正方向偏移的结构。由此,能够使慢轴-光轴面SP内的激光光束LL的光束腰的位置接近快轴-光轴面FP内的激光光束LL的光束腰的位置。
与第一实施方式的受光部31中的聚光透镜系统41同样,投光透镜系统15包括色像差因素CF以及温度变化因素TF。而且,在投光透镜系统15的特别是快轴-光轴面FP内,分配各透镜316a、317a的光焦度,使得色像差因素CF与温度变化因素TF平衡。
特别是在第三实施方式中,在快轴-光轴面FP内将光焦度设为0的柱面透镜317a被插入正透镜316a与激光发光元件13之间。由此,激光发光元件13与正透镜316a之间的光路长度变长柱面透镜317a内的厚度乘以折射率-1而得到的量。由此,在柱面透镜317a中,具备调整前侧焦点的焦距的功能。该焦距的调整功能在与具有正的光焦度的正透镜316a的相对比较中,发挥与图6、8所示的具有负的光焦度的透镜NL相同的作用。这样,柱面透镜317a作为对于温度变化以及与其相应的波长变动,调整焦距的调整透镜发挥功能。
为了方便起见,图14表示从激光光束LL射出的方向相反地跟踪正透镜316a的焦点位置的示意图。例如,如该图14所示,若温度比常温上升,则在快轴-光轴面FP内透过柱面透镜317a的光线如光线R1所示,向比较内周侧偏移。然而,抑制相对于发光面13c的散焦。若温度比常温降低,则在快轴-光轴面FP内透过柱面透镜317a的光线如光线R2所示,向比较外周侧偏移。然而,抑制相对于发光面13c的散焦。
这样,在快轴-光轴面FP内,与慢轴-光轴面SP内相比,色像差因素CF和温度变化因素TF以高的精度平衡。换言之,快轴-光轴面SP内的温度变化假定范围或者波长变动假定范围的投光透镜系统15的焦点移动量比慢轴-光轴面SP内的温度变化假定范围或者波长变动假定范围的投光透镜系统15的焦点移动量小。
此处所谓的色像差因素CF和温度变化因素TF的平衡不仅单纯地通过正透镜316a和柱面透镜317a的光焦度的分配,而且通过与该分配一起进行的柱面透镜317a的厚度的设定而成为高精度的平衡。例如厚度能够以中心厚度为基准。这样的结果,快轴-光轴面FP内的投光透镜系统15的焦点移动量在温度变化假定范围内可以被抑制为15μm以下、例如12μm左右。
另外,在投光透镜系统15的前后,也可以如图12、13所示那样配置有一对光阑318、319。一对光阑318、319中的比正透镜316a靠激光发光元件13侧、例如配置在激光发光元件13与柱面透镜317a之间的光阑是视场光阑318。视场光阑318形成以慢轴方向SA为长边方向的呈大致矩形开口的前侧孔径。视场光阑318限制从发光窗部13b射出的激光光束LL的角度。
一对光阑318、319中的与隔着正透镜316a的视场光阑318相反侧、例如配置在正透镜316a与反射镜22之间的光阑是孔径光阑319。孔径光阑319形成以快轴方向FA为长边方向的呈大致矩形开口的后侧孔径。孔径光阑319能够使在快轴-光轴面FP内实质上成为平行光的激光光束LL透过,并且遮挡在慢轴-光轴面SP内产生的杂散光。投光透镜系统15的数值孔径可以由孔径光阑319控制,也可以基于各激光二极管13a的发散角特性。在本实施方式中,投光透镜系统15的数值孔径在快轴-光轴面FP内,比慢轴-光轴面SP内大。
这样,抑制投光透镜系统15的焦点特别是从激光发光元件13散焦。因此,从投光透镜系统15射出的激光光束LL的光斑形状在远场中也是细的状态,抑制对测定对象物1的照度降低。因此,也能够抑制伴随温度变化的光检测装置10的探测距离的降低。此外,激光光束LL的光斑形状在线状的光束中,在远场中也成为细长的状态。
在以上说明的第三实施方式中,在投光透镜系统15中,伴随环境的温度变化,由于光学材料引起的温度变化因素TF,透镜系统整体的光焦度向变大的方向变动。在该温度变化的同时,激光光束LL具有温度依存性,结果,也产生激光光束LL的峰值波长的偏移,因此由于投光透镜系统15的色像差引起的色像差因素CF,透镜系统整体相对于激光光束LL的光焦度也向变小的方向变动。而且,投光透镜系统15所具有的多个透镜316a、317a的光焦度的分配设定为在假定峰值波长的偏移的波长变动假定区域内色像差因素CF与温度变化因素TF平衡。
即,消除由光学材料引起的焦点向后侧的偏移那样的使长波长向前侧偏移的色像差基于温度变化量和峰值波长的偏移量的对应关系而设定。因此,即使相对于温度变化,也保持在激光发光元件13聚焦的状态。对于被投射的激光光束LL,能够维持希望的光斑形状,因此能够对测定对象物1有效地投射。因此,被测定对象物1反射的反射光RL的检测性能也能够维持在高的状态。
另外,根据第三实施方式,在投光透镜系统15中,快轴-光轴面FP内的波长变动假定范围的焦点移动量小于慢轴-光轴面SP内的波长变动假定范围的焦点移动量。即,即使在快轴-光轴面FP内的投光透镜系统15的焦深较浅的情况下,也容易使色像差因素CF与温度变化因素TF平衡。因此,能够实现在从激光发光元件13发出的激光光束LL的发散角比慢轴方向SA大的快轴方向FA上增大数值孔径而进一步提高激光光束LL的照射效率的投光透镜系统15。
另外,根据第三实施方式,在投光透镜系统15中,将正透镜316a和作为快轴-光轴面FP内的光焦度为0以下的调整透镜的柱面透镜317a组合。在这样的结构中,柱面透镜317a发挥对于温度变化以及与其相应的波长变动调整焦距的功能,因此能够抑制在快轴-光轴面FP投光透镜系统15的焦点从激光发光元件13散焦。
另外,根据第三实施方式,在柱面透镜317a中,快轴-光轴面FP内的光焦度与慢轴-光轴面SP内的光焦度之差为负。这样,投光透镜系统15能够将发光时快轴方向FA的发散角大于慢轴方向SA的发散角的激光光束LL以在测定区域内成为更小的光斑形状的方式投射。
另外,根据第三实施方式,在柱面透镜317a中,快轴-光轴面FP内的光焦度为0,慢轴-光轴面SP内的光焦度为正。在光焦度为0的快轴-光轴面FP内,通过利用了透镜317a的厚度的光路长度的变动功能,对于温度变化以及与其相应的波长变动,能够调整焦距。因此,能够抑制在快轴-光轴面FP投光透镜系统15的焦点从激光发光元件13散焦。
另外,根据第三实施方式,调整透镜组317配置在主透镜组316与激光发光元件13之间。在该配置中,激光光束LL在被主透镜组316校准之前,能够通过调整透镜组317。即,调整透镜组317能够根据温度变化使投射到远方的测定区域的激光光束LL向主透镜组316的入射角以能够维持测定区域中的光斑形状的方式变化。
(第四实施方式)
如图15和图16所示,第四实施方式是第三实施方式的变形例。对于第四实施方式,以与第三实施方式不同的点为中心进行说明。
在第四实施方式的投光透镜系统15中,柱面透镜417a在快轴-光轴面FP内,具有负的放大率。柱面透镜417a在慢轴-光轴面SP内,实质上成为0的光焦度。柱面透镜417a采用使快轴方向FA的光焦度相对于慢轴方向SA的光焦度向负方向偏移的结构与第三实施方式相同。
柱面透镜417a的前侧折射面417b与第三实施方式同样,形成为平面状。另一方面,柱面透镜417a的后侧折射面417c形成为具有沿着慢轴方向SA的母线的凹柱面状。即,后侧折射面417c不具有慢轴方向SA的曲率,具有快轴方向FA的曲率。其结果,在快轴-光轴面FP内,柱面透镜417a的截面形成平凹透镜状。在慢轴-光轴面SP内,柱面透镜417a的截面如仅仅平的玻璃板那样,例如形成矩形。
为了投光透镜系统15校准激光光束LL,第四实施方式的正透镜416a具有比第三实施方式的正透镜316a大的正的光焦度,以使抵消柱面透镜417a的负的光焦度。
根据以上说明的第四实施方式,在柱面透镜417a中,快轴-光轴面FP内的光焦度为负,慢轴-光轴面SP内的光焦度为0。在快轴-光轴面FP内,能够发挥抵消正透镜416a的温度变化影响的柱面透镜417a的温度变化影响。与此同时,在慢轴-光轴面SP内,通过利用了透镜417a的厚度的光路长度的变动功能,对于温度变化以及与其相应的波长变动,能够调整焦距。
(第五实施方式)
如图17和图18所示,第五实施方式是第三实施方式的变形例。对于第五实施方式,以与第四实施方式不同的点为中心进行说明。
在第五实施方式的投光透镜系统15中,柱面透镜517a在快轴-光轴面FP内,具有负的放大率。柱面透镜517a在慢轴-光轴面SP内,具有比快轴-光轴面FP内的光焦度向正方向偏移的负的光焦度。柱面透镜517a采用使快轴方向FA的光焦度相对于慢轴方向SA的光焦度向负方向偏移的结构与第三实施方式相同。
柱面透镜517a的前侧折射面517b是凹面状,形成为球面状或者具有旋转不变性的旋转对称非球面形状。柱面透镜517a的后侧折射面517c形成为具有沿着慢轴方向SA的母线的凹柱面状。即,后侧折射面517c不具有慢轴方向SA的曲率,具有快轴方向FA的曲率。其结果,在慢轴-光轴面SP内,柱面透镜517a的截面形成平凹透镜状。
为了投光透镜系统15校准激光光束LL,第五实施方式的正透镜516a具有比第三实施方式的正透镜316a大的正的光焦度,以使抵消柱面透镜517a的负的光焦度。
根据以上说明的第五实施方式,在柱面透镜317a中,快轴-光轴面FP内的光焦度为负,慢轴-光轴面SP内的光焦度为负。在两面FP、SP内,能够发挥抵消正透镜316a的温度变化影响的柱面透镜317a的温度变化影响。
(第六实施方式)
如图19~22所示,第六实施方式是第一实施方式的变形例。对于第六实施方式,以与第一实施方式不同的点为中心进行说明。
第六实施方式的光检测装置10是包括壳体651、发光受光体630以及扫描部621的结构。图19所示的壳体651例如形成为圆筒形状,是包括上底部652、下底部653以及光学窗部654的结构。壳体651通过组合上底部652、下底部653以及光学窗部654,形成收容发光受光体630以及扫描部621的收容室651a。
上底部652以及下底部653例如通过铝等金属或者合成树脂等,具有遮光性而形成。上底部652以及下底部653将发光受光体630支承为能够转动,并且保持扫描部621。也可以在上底部652及下底部653中的至少一方设置有端子ET,该端子ET具备从外部供给电力的功能以及将来自检测元件单元662的检测结果输出到外部的功能中的至少一方。
另外,也可以在上底部652及下底部653中的至少一方设置有散热器构造HS,该散热器构造HS对在收容室651a内产生的热进行散热。散热器构造HS例如是通过在圆筒形状的容器的周向上排列多个突起或槽,从而增加上底部652以及下底部653的表面积的构造。
光学窗部654配置在上底部652与下底部653之间,以连接上底部652和下底部653的方式,形成为在两底部652、653侧开口的圆筒管状。光学窗部654例如通过由合成树脂或玻璃等构成的基材,形成为能够使激光光束LL及其反射光RL透过。另外,光学窗部654优选通过基材的着色、光学薄膜的成膜、或者膜向基材表面的粘贴等,使近红外段的光、更详细而言波长变动假定范围的光透过,并且具有遮挡可见光的透过率的波长依存性。
如图20所示,发光受光体630在分别独立地划分发光部11以及受光部31的外壳分别收容并保持发光部11以及受光部31。外壳例如通过金属或合成树脂,具有遮光性而形成。这样,发光部11以及受光部31成为一体的单元。发光部11以及受光部31在向车辆的搭载状态下,例如配置成在上下方向上排列。发光部11以使投光透镜系统15与光学窗部654对置的姿势配置。受光部31以使聚光透镜系统41与光学窗部654对置的姿势配置。
第六实施方式的扫描部621不是通过可动光学部件来变更固定的发光部及受光部的光路的结构。扫描部621是通过旋转运动或者往复运动等变更发光受光体630本身的朝向,从而扫描来自发光部11的激光光束LL,使受光部31接受反射光RL的结构。扫描部621以马达622为主体而构成,该马达622沿着圆筒形状的壳体651的母线方向,使发光受光体630绕贯通发光部11以及受光部31的旋转轴RA旋转运动或者往复运动。
如图21所示,第六实施方式的检测元件单元662除了与第一实施方式相同的使用了SPAD的检测元件33及受光控制部36之外,还具有入射调整部663。入射调整部663通过调整入射到检测元件33的各像素635的反射光RL的入射状态,扩大动态范围,提高各像素635的检测性能。入射调整部663是包括孔径阵列664、透镜阵列665、带通滤波器666以及扩散滤波器667等的结构。在本实施方式中,从聚光透镜系统41朝向检测元件33依次配置有孔径阵列664、透镜阵列665、带通滤波器666、扩散滤波器667。
孔径阵列664具有例如由合成树脂形成为具有遮光性的平板状的遮光部、和在遮光部开设的多个孔径664a。多个孔径664a以与各像素635分别对应的方式例如设置为与像素数数目相同。多个孔径664a与像素635的排列方式对应,以与像素635的排列间隔PT实质上相同的间隔排列。孔径阵列664通过遮挡来自装置外部中与激光光束LL的照射方向不同的方向的斜入射到受光部31的杂散光,从而减少入射到检测元件33的噪声。
透镜阵列665配置在孔径阵列664与带通滤波器666之间。透镜阵列665以与各孔径664a分别对应的方式例如具有与孔径664a的配置数数目相同的微透镜665a。多个微透镜665a以与像素635的排列间隔PT实质上相同的间隔排列。各微透镜665a校准通过分别对应的孔径664a的反射光RL。
带通滤波器666配置在透镜阵列665与扩散滤波器667之间。带通滤波器666例如形成为薄板状,遮断透过透镜阵列665的光中的反射光RL以外的不需要检测的波长的光、即噪声。由此,基于检测元件33的反射光RL的检测精度提高。带通滤波器666具有使光朝向检测元件33透过的通带,以包含波长变动假定范围的整个区域。
扩散滤波器667配置成与检测元件33的检测面634对置。扩散滤波器667扩散透过带通滤波器666的反射光RL。扩散滤波器667也可以通过在例如由透光性的合成树脂或玻璃构成的基材中分散微珠等扩散粒子而形成为平板状。
扩散滤波器667也可以通过在带通滤波器666中的检测元件33侧的表面,以与各像素635分别对应的方式例如配置与像素数数目相同的扩散元件667a而构成。各扩散元件667a例如形成为透镜状,通过在由透光性的合成树脂或玻璃构成的基材中分散微珠等扩散粒子,或者使表面形成为粗面状,来扩散反射光RL。
各扩散元件667a也可以设定扩散角,以使由微透镜665a校准的反射光RL与一个像素的尺寸一致地扩散。各扩散元件667a也可以设定扩散角,以使由微透镜665a校准的反射光RL与一个SPAD的尺寸一致地扩散。即,优选在某个像素635中,仅入射通过了与该像素635单独对应的孔径664a的反射光RL,优选抑制通过与邻接的像素635等其它的像素635分别对应的孔径664a的反射光RL的入射。此外,在图21中,像素635、扩散元件667a、微透镜665a以及孔径664a的组仅图示了3组,但实际上,该组设置有像素数的量。
对应于这样的入射调整部663,第六实施方式的聚光透镜系统41如图22所示,配置为使其焦点不在检测元件33的检测面634上,而是与孔径阵列664对准。更详细而言,第六实施方式的聚光透镜系统41配置为使其后侧焦点不在检测元件33的检测面634上,而是与孔径阵列664对准。聚光透镜系统41与第一实施方式同样地成为实现无热化的光学系统。因此,能够避免反射光RL相对于孔径阵列664被较大地散焦的情况。
根据以上说明的第六实施方式,聚光透镜系统41对焦的是配置在聚光透镜系统41与检测元件33之间的孔径阵列664。即,反射光RL被有效地聚集在形成于孔径阵列664的多个孔径664a、即与检测元件33的各像素635分别对应的孔径664a。因此,能够抑制在孔径阵列664杂散光向检测元件33入射,并且能够确保通过孔径664a入射到像素635的反射光RL的光量。
(其它实施方式)
以上,对多个实施方式进行了说明,但本公开并不限定于这些实施方式来解释,能够在不脱离本公开的主旨的范围内应用于各种实施方式以及组合。
具体而言,作为变形例1,发光部11也可以设置有多个。例如也可以设置多对激光发光元件13和投光透镜系统15的对,并列配置该多对。也可以在多对之间使安装激光发光元件13的基板共同化。也可以在多对之间使投光透镜系统15的镜筒共同化。但是,优选在多对之间,激光发光元件13发出的激光光束LL的波长变动假定范围一致。
作为变形例2,由发光部11发出的激光光束LL也可以不被整形为形成线状的光斑形状的光束。激光光束LL的光斑形状可以是圆、椭圆等各种形状。
作为变形例3,扫描部21中的可动光学部件也可以采用平面反射镜、多面反射镜等光学元件。
作为变形例4,聚光透镜系统41中的透镜组的数量、以及属于各透镜组的透镜的片数能够适当地变更。对于投光透镜系统15也同样。在追加透镜组的情况下,关于追加的透镜组,优选对温度变化因素TF及色像差因素CF的影响相对于基本的透镜组充分小。在特定的透镜组中追加透镜的情况下,关于追加的透镜,优选对温度变化因素TF及色像差因素CF的影响例如通过相同的光学材料或同类的玻璃材料的采用,是与属于相同的透镜组的透镜相同的趋势,或者影响本身相对于属于相同的透镜组的透镜充分小。
作为变形例5,在聚光透镜系统41中,在多个透镜属于相同的透镜组的情况下,形成该多个透镜的光学材料只要满足与形成其它的透镜组的光学材料的参数的大小关系,也可以在该多个透镜间成为不同的光学材料。对于投光透镜系统15也同样。此外,与形成其它的透镜组的光学材料的参数的大小关系具体而言是阿贝数的大小关系、折射率的温度微分的值的大小关系。
作为变形例6,在聚光透镜系统41中,也可以包含将两片以上的透镜贴合而一体化的透镜。在聚光透镜系统41中,也可以包含衍射反射光RL的衍射透镜。对于投光透镜系统15也同样。
作为变形例7,聚光透镜系统41也可以是还包含带通滤波器的结构。带通滤波器遮断入射到聚光透镜系统41的光中的反射光以外的一部分光、即噪声。由此,基于检测元件33的反射光RL的检测精度提高。带通滤波器具有使光朝向检测元件33透过的频带,以包含波长变动假定范围的整个区域。
作为变形例8,检测元件33也可以例如由玻璃材料或合成树脂材料形成,被具有透光性的薄板状的透光罩覆盖。
作为与第三~五实施方式相关的变形例9,也可以在正透镜316a以及例如柱面透镜317a等调整透镜中设定具有正常的色散特性的光学材料,使得dnx/dt<0、dny/dt<0。在这种情况下,温度变化因素TF在高温时与低温时相比减小透镜系统整体的光焦度,但通过将调整透镜的例如中心厚度等的厚度相对于正透镜316a的例如中心厚度等的厚度设定得充分大,从而光路长度变长。因此,即使在该条件下,调整透镜也具有调整焦点位置的功能。因此,能够使温度变化因素TF和色像差因素CF平衡。并且,在正透镜316a以及调整透镜为dnx/dt<0、dny/dt<0的情况下,也可以在正透镜316a中设定具有异常的色散特性的光学材料。
作为与第五实施方式相关的变形例10,也可以设置环形透镜来代替柱面透镜517a。环形透镜在快轴-光轴面FP内,具有负的放大率。环形透镜在慢轴-光轴面SP内,具有比快轴-光轴面FP内的光焦度向正方向偏移的负的光焦度。例如,环形透镜的前侧折射面以及后侧折射面中的一方形成为环面状,另一方形成为平面状。
作为与第六实施方式相关的变形例11,只要孔径阵列664中的孔径664a与像素635分别对应,则也可以相对于一个像素设置多个。例如,也可以相对于一个像素,呈格子状排列形成有四个孔径664a。在这种情况下,微透镜665a以及扩散元件667a可以是相对于一个像素设置一个的结构,也可以是与孔径664a数目相同地设置的结构。
作为与第六实施方式相关的变形例12,在入射调整部663中,也可以采用追加的透镜阵列来代替孔径阵列664。在这种情况下,聚光透镜系统41也可以配置为在追加的透镜阵列上对焦。或者,聚光透镜系统41也可以配置为在基于追加的透镜阵列和透镜阵列665的透镜系统的主平面上对焦。另外,也可以设为仅在入射调整部663不设置孔径阵列664的结构,聚光透镜系统41配置为在透镜阵列665的主平面上对焦。
在变形例13中,色像差因素CF与温度变化因素TF平衡也可以意味着抑制消除色像差因素CF和温度变化因素TF的结果的焦点移动量,以维持发光面13c、检测面634、孔径阵列664等的基于透镜系统15、41的对焦的对象面包含在透镜系统15、41的焦点附近的焦深的范围内的状态。在这样的意义上,在光学材料的温度变化因素TF中,包括积极利用光焦度为0或负的透镜的厚度,使介质中的光路长度相对于温度变化而变动。
即,光学材料的温度变化因素TF可以是在高温时与低温时相比使透镜系统15、41的焦点与透镜系统15、41分离的因素。同样地,色像差因素CF可以是在长波长时与短波长相比使透镜系统15、41的焦点接近透镜系统的因素。
作为变形例14,温度变化假定范围可以是与假定的车载环境相应的范围。例如,温度变化假定范围也可以是以在搭载有光检测装置10的车辆的销售地区的销售前一年观测到的年最低气温为下限且以年最高气温为上限的范围。
(附言)
本公开也包含基于以上的实施方式的以下的技术思想。
<技术特征1>
一种光检测装置,构成为在伴随温度变化的环境下被使用,具备:
发光部(11),发出激光光束(LL),该激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部(31),接受测定对象物(1)反射激光光束而产生的反射光(RL),
受光部具有:
检测元件(33),检测反射光;和
聚光透镜系统(41、241),具有由光学材料形成的多个透镜(43、44、46、48、243、245),透镜系统整体的光焦度为正,将反射光聚集在检测元件上,
在聚光透镜系统中,作为使焦点位置变动的因素,包括在高温时与低温时相比使聚光透镜系统的焦点与聚光透镜系统分离的光学材料的温度变化因素(TF)、和在长波长时与短波长相比使聚光透镜系统的焦点接近聚光透镜系统的色像差因素(CF),
基于温度变化量和峰值波长的偏移量的对应关系,分配各透镜的光焦度,使得在假定峰值波长的偏移的波长范围内色像差因素与温度变化因素平衡。
根据这样的技术特征的采用,消除由光学材料引起的焦点向前侧的偏移那样的以长波长使焦点向后侧偏移的色像差基于温度变化量和峰值波长的偏移量的对应关系而设定。因此,即使相对于温度变化,也保持向检测元件的聚光状态。能够将反射光有效地聚集在检测元件上,因此能够将检测元件检测反射光的灵敏度、进而检测性能维持在高的状态。
<技术特征2>
一种光检测装置,构成为在伴随温度变化的环境下被使用,具备:
发光部(11),发出激光光束(LL),该激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部,接受测定对象物(1)反射激光光束而产生的反射光(RL),
发光部具有:
激光发光元件(13),发出激光光束;和
投光透镜系统(315),具有由光学材料形成的多个透镜(316a、317a、416a、417a、516a、517a),透镜系统整体的光焦度为正,将激光光束朝向测定对象物(1)投射,
在投光透镜系统中,作为使焦点位置变动的因素,包括在高温时与低温时相比使投光透镜系统的焦点与投光透镜系统分离的光学材料的温度变化因素(TF)、和在长波长时与短波长相比使投光透镜系统的焦点接近投光透镜系统的色像差因素(CF),
基于温度变化量和峰值波长的偏移量的对应关系,分配各透镜的光焦度,使得在假定峰值波长的偏移的波长范围内色像差因素与温度变化因素平衡。
根据这样的技术特征的采用,消除由光学材料引起的焦点向后侧的偏移那样的使长波长向前侧偏移的色像差基于温度变化量和峰值波长的偏移量的对应关系而设定。因此,即使相对于温度变化,也保持在激光发光元件上聚焦的状态。对于被投射的激光光束,能够维持希望的光斑形状,因此能够对测定对象物有效地投射。因此,基于被测定对象物反射的反射光的测定对象物的检测性能也能够维持在高的状态。
<技术特征3>
一种光检测装置,构成为在伴随温度变化的环境下被使用,具备:
发光部(11),发出激光光束(LL),该激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部,接受测定对象物(1)反射激光光束而产生的反射光(RL),
发光部具有:
激光发光元件(13),发出激光光束;和
投光透镜系统(315),具有由光学材料形成的多个透镜(316a、317a、416a、417a、516a、517a),透镜系统整体的光焦度为正,将激光光束朝向测定对象物(1)投射,
投光透镜系统具有:
主透镜组(316),包括多个透镜中的一片以上的正透镜(316a、416a、516a)而构成;和
调整透镜组(317),包括从多个透镜中除去属于第一透镜组的透镜后而得到的透镜中的至少一部分透镜、即快轴-光轴面内的光焦度为0以下的调整透镜(317a、417a、517a)而构成,
调整透镜组配置在主透镜组与激光发光元件之间。
根据这样的技术特征的采用,能够使在调整透镜的介质中通过的光线的光路长度相对于温度变化而变动。因此,对于伴随温度变化而偏移的峰值波长,能够通过调整透镜来抵消由正透镜中的色像差作用而引起的焦点位置的偏移。因此,即使相对于温度变化,也容易保持在激光发光元件上聚焦的状态。对于被投射的激光光束,能够维持希望的光斑形状,因此能够对测定对象物有效地投射。因此,基于被测定对象物反射的反射光的测定对象物的检测性能也能够维持在高的状态。
本公开以实施例为基准进行了描述,但应理解为本公开并不限定于该实施例、构造。本公开也包含各种变形例、等同范围内的变形。其中,本公开示出各种组合、方式,但仅包含它们中一个要素、一个以上、或一个以下的其它组合、方式也纳入到本公开的范畴、思想范围。

Claims (18)

1.一种光检测装置,构成为在伴随温度变化的环境下被使用,所述光检测装置具备:
发光部(11),发出激光光束(LL),该激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部(31),接受测定对象物(1)反射所述激光光束而产生的反射光(RL),
所述受光部具有:
检测元件(33),检测所述反射光;和
聚光透镜系统(41、241),具有由光学材料形成的多个透镜(43、44、46、48、243、245),透镜系统整体的光焦度为正,将所述反射光聚集到所述检测元件上,
在所述聚光透镜系统中,作为使所述透镜系统整体相对于所述反射光的光焦度变动的因素,包括在高温时与低温时相比增大所述透镜系统整体的光焦度的所述透镜的光学材料的温度变化因素(TF)、和在长波长时与短波长相比减小所述透镜系统整体的光焦度的色像差因素(CF),
基于温度变化量和所述峰值波长的偏移量的对应关系,分配各所述透镜的光焦度,使得在假定所述峰值波长的偏移的波长范围内所述色像差因素与所述温度变化因素平衡。
2.根据权利要求1所述的光检测装置,其中,
在由具有折射率的温度微分的值相互不同的折射率的温度依存性的光学材料形成的各所述透镜间,分配光焦度。
3.根据权利要求1或2所述的光检测装置,其中,
所述聚光透镜系统具有:
第一透镜组(42、244),包括所述多个透镜中的一片以上的正透镜(43、44、245)而构成;和
第二透镜组(45、242),包括从所述多个透镜中除去属于所述第一透镜组的透镜后而得到的透镜中的至少一部分透镜、即一片以上的负透镜(46、243)而构成,
形成所述负透镜的光学材料具有比形成所述正透镜的光学材料高色散的色散特性、和折射率的温度微分的值比形成所述正透镜的光学材料大的折射率的温度依存性。
4.一种光检测装置,构成为在伴随温度变化的环境下被使用,所述光检测装置具备:
发光部(11),发出激光光束(LL),该激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;
受光部(31),接受测定对象物(1)反射所述激光光束而产生的反射光(RL),
所述受光部具有:
检测元件(33),检测所述反射光;和
聚光透镜系统(41、241),具有由光学材料形成的多个透镜(43、44、46、48、243、245),透镜系统整体的光焦度为正,将所述反射光聚集到所述检测元件上,
所述聚光透镜系统具有:
第一透镜组(42、244),包括所述多个透镜中的一片以上的正透镜(43、44、245)而构成;和
第二透镜组(45、242),包括从所述多个透镜中除去属于所述第一透镜组的透镜后而得到的透镜中的至少一部分透镜、即一片以上的负透镜(46、243)而构成,
形成所述负透镜的光学材料具有比形成所述正透镜的光学材料高色散的色散特性、和折射率的温度微分的值比形成所述正透镜的光学材料大的折射率的温度依存性。
5.根据权利要求3或4所述的光检测装置,其中,
所述第二透镜组配置在所述第一透镜组与所述检测元件之间。
6.根据权利要求3或4所述的光检测装置,其中,
所述第二透镜组配置在与所述检测元件隔着所述第一透镜组的相反侧。
7.根据权利要求3~6中任一项所述的光检测装置,其中,
所述聚光透镜系统具有第三透镜组(47),所述第三透镜组包括从所述多个透镜中除去属于所述第一透镜组及所述第二透镜组的透镜后而得到的透镜中的至少一部分透镜、一片以上的校正透镜(48)而构成,校正由于所述第一透镜组和所述第二透镜组的组合而可能产生的所述聚光透镜系统的畸变像差,
形成所述校正透镜的光学材料具有折射率的温度微分的值比形成所述正透镜的光学材料小的折射率的温度依存性。
8.根据权利要求7所述的光检测装置,其中,
所述检测元件具有在检测面(34)上以规定的排列间隔(PT)排列的多个像素(35),
由所述第三透镜组校正的所述畸变像差成为实际的所述聚光透镜系统的成像位置相对于所述检测面上的成像位置亦即满足整像条件的理想的成像位置的偏移量小于所述排列间隔的范围。
9.根据权利要求1~7中任一项所述的光检测装置,其中,
所述检测元件具有在检测面(634)上排列的多个像素(635),
所述光检测装置还具备孔径阵列(664),所述孔径阵列配置在所述聚光透镜系统与所述检测元件之间,具有与各所述像素分别对应的多个孔径(664a),
所述聚光透镜系统配置为在所述孔径阵列上对焦。
10.一种光检测装置,构成为在伴随温度变化的环境下被使用,所述光检测装置具备:
发光部(11),发出激光光束(LL),该激光光束具有随着温度变高而向长波长侧偏移的峰值波长的温度依存性;和
受光部,接受测定对象物(1)反射所述激光光束而产生的反射光(RL),
所述发光部具有:
激光发光元件(13),发出所述激光光束;和
投光透镜系统(315),具有由光学材料形成的多个透镜(316a、317a、416a、417a、516a、517a),透镜系统整体的光焦度为正,将所述激光光束朝向测定对象物(1)投射,
在所述投光透镜系统中,作为使所述透镜系统整体相对于所述激光光束的光焦度变动的因素,包括在高温时与低温时相比增大所述透镜系统整体的光焦度的所述光学材料的温度变化因素(TF)、和在长波长时与短波长相比减小所述透镜系统整体的放大率的色像差因素(CF),
基于温度变化量和所述峰值波长的偏移量的对应关系,分配各所述透镜的光焦度,使得在假定所述峰值波长的偏移的波长范围内所述色像差因素与所述温度变化因素平衡。
11.根据权利要求10所述的光检测装置,其中,
所述激光发光元件具有相互正交的快轴方向(FA)以及慢轴方向(SA),
作为包含所述投光透镜系统的光轴(OA2)以及所述快轴方向的截面的快轴-光轴面(FP)内的所述波长范围内的焦点移动量小于作为包含所述光轴以及所述慢轴方向的截面的慢轴-光轴面(SP)内的所述波长范围内的焦点移动量。
12.根据权利要求11所述的光检测装置,其中,
所述投光透镜系统具有:
主透镜组(316),包括所述多个透镜中的一片以上的正透镜(316a、416a、516a)而构成;和
调整透镜组(317),包括从所述多个透镜中除去属于所述主透镜组的透镜后而得到的透镜中的至少一部分透镜、即所述快轴-光轴面内的光焦度为0以下的调整透镜(317a、417a、517a)而构成。
13.根据权利要求10所述的光检测装置,其中,
所述激光发光元件具有相互正交的快轴方向(FA)以及慢轴方向(SA),
所述投光透镜系统具有:
主透镜组,包括所述多个透镜中的一片以上的正透镜(316a、416a、516a)而构成;和
调整透镜组(317),包括从所述多个透镜中除去属于所述主透镜组的透镜后而得到的透镜中的至少一部分透镜、即作为包含所述投光透镜系统的光轴(OA2)以及所述快轴方向的截面的快轴-光轴面(FP)内的光焦度为0以下的调整透镜(317a、417a、517a)而构成。
14.根据权利要求13所述的光检测装置,其中,
在所述调整透镜中,所述快轴-光轴面内的光焦度与作为包含所述光轴以及所述慢轴方向的截面的慢轴-光轴面内的光焦度之差为负。
15.根据权利要求12或14所述的光检测装置,其中,
在所述调整透镜中,所述快轴-光轴面内的光焦度为0,所述慢轴-光轴面内的光焦度为正。
16.根据权利要求12或14所述的光检测装置,其中,
在所述调整透镜中,所述快轴-光轴面内的光焦度为负,所述慢轴-光轴面内的光焦度为0。
17.根据权利要求12或14所述的光检测装置,其中,
在所述调整透镜中,所述快轴-光轴面内的光焦度为负,所述慢轴-光轴面内的光焦度为负。
18.根据权利要求12~17中任一项所述的光检测装置,其中,
所述调整透镜组配置在所述主透镜组与所述激光发光元件之间。
CN202180011629.4A 2020-01-31 2021-01-26 光检测装置 Pending CN115039009A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020-015009 2020-01-31
JP2020015009 2020-01-31
JP2021-008130 2021-01-21
JP2021008130A JP2021124725A (ja) 2020-01-31 2021-01-21 光検出装置
PCT/JP2021/002583 WO2021153542A1 (ja) 2020-01-31 2021-01-26 光検出装置

Publications (1)

Publication Number Publication Date
CN115039009A true CN115039009A (zh) 2022-09-09

Family

ID=77078218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180011629.4A Pending CN115039009A (zh) 2020-01-31 2021-01-26 光检测装置

Country Status (3)

Country Link
US (1) US20220365178A1 (zh)
CN (1) CN115039009A (zh)
WO (1) WO2021153542A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189917A1 (ja) * 2022-03-31 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 測距装置及び測距方法
CN115452828A (zh) * 2022-09-22 2022-12-09 苏州灵猴机器人有限公司 一种物料的光学检测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304763A (ja) * 2001-04-06 2002-10-18 Konica Corp 光ピックアップ装置、記録・再生装置及び光ピックアップ装置における球面収差変動の補正方法
JP2012229988A (ja) * 2011-04-26 2012-11-22 Denso Corp 距離測定方法および距離測定装置
WO2013183320A1 (ja) * 2012-06-05 2013-12-12 リコーイメージング株式会社 焦点検出光学系
JP2015118152A (ja) * 2013-12-17 2015-06-25 富士フイルム株式会社 撮像レンズおよび撮像装置
WO2019010320A1 (en) * 2017-07-05 2019-01-10 Ouster, Inc. ELECTRONIC SCANNING EMITTER NETWORK LIGHT EMITTING DEVICE AND SYNCHRONIZED SENSOR ARRAY
US20190137733A1 (en) * 2017-11-03 2019-05-09 Genius Electronic Optical Co., Ltd. Optical lens assembly
US10466357B1 (en) * 2018-12-04 2019-11-05 Precitec Optronik Gmbh Optical measuring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302064A (ja) * 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd レーザアレイ結像レンズおよび画像形成装置
JP5257053B2 (ja) * 2008-12-24 2013-08-07 株式会社豊田中央研究所 光走査装置及びレーザレーダ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304763A (ja) * 2001-04-06 2002-10-18 Konica Corp 光ピックアップ装置、記録・再生装置及び光ピックアップ装置における球面収差変動の補正方法
JP2012229988A (ja) * 2011-04-26 2012-11-22 Denso Corp 距離測定方法および距離測定装置
WO2013183320A1 (ja) * 2012-06-05 2013-12-12 リコーイメージング株式会社 焦点検出光学系
JP2015118152A (ja) * 2013-12-17 2015-06-25 富士フイルム株式会社 撮像レンズおよび撮像装置
WO2019010320A1 (en) * 2017-07-05 2019-01-10 Ouster, Inc. ELECTRONIC SCANNING EMITTER NETWORK LIGHT EMITTING DEVICE AND SYNCHRONIZED SENSOR ARRAY
US20190137733A1 (en) * 2017-11-03 2019-05-09 Genius Electronic Optical Co., Ltd. Optical lens assembly
US10466357B1 (en) * 2018-12-04 2019-11-05 Precitec Optronik Gmbh Optical measuring device

Also Published As

Publication number Publication date
US20220365178A1 (en) 2022-11-17
WO2021153542A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
US5703351A (en) Autofocus module having a diffractively achromatized toroidal lens
US20220365178A1 (en) Optical detector
US10119815B2 (en) Binocular with integrated laser rangefinder
US10018836B2 (en) Geodetic instrument with diffractive optical elements
US10634485B2 (en) Device for contactless optical distance measurement
JP2021124725A (ja) 光検出装置
CN113640819A (zh) 激光雷达
GB2498858A (en) An infrared microscope
JP2021535407A (ja) 少なくとも1つの物体の位置を決定する測定ヘッド
KR20230006924A (ko) 대물 렌즈, 대물 렌즈의 사용, 대물 렌즈를 포함하는 측정 시스템, 및 대물 렌즈에서의 이중-비구면 플라스틱 렌즈의 사용
US20200041617A1 (en) Optoelectronic Sensor and Method for Detecting an Object
US6396647B1 (en) Optical system with extended boresight source
CN116500587B (zh) 可调激光测距系统
JP2011524519A (ja) 屈折及び反射構造を用いた角度分解能を持つスペクトル検出器
CN114730063B (zh) 物镜、物镜的用途和测量系统
EP3332277B1 (en) Backscatter reductant anamorphic beam sampler
KR102072623B1 (ko) 광학 빔 성형 유닛, 거리 측정 디바이스 및 레이저 조명기
KR20220122925A (ko) 디퓨저 기기
CN114930191A (zh) 激光测量装置及可移动平台
RU2517760C1 (ru) Объектив коллиматора
RU2093870C1 (ru) Телескопическая система для ик-излучения (варианты)
EP1736750A1 (en) Optoelectronic device for generating a plurality of spectral images of an object on a common sensor
WO2022266895A1 (en) Optical detection system with anamorphic prism
CN115656977B (zh) 一种基于vcsel阵列激光器的激光雷达
NL1011146C2 (nl) Spectrofotometer.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination