WO2022134004A1 - 激光测量装置及可移动平台 - Google Patents

激光测量装置及可移动平台 Download PDF

Info

Publication number
WO2022134004A1
WO2022134004A1 PCT/CN2020/139424 CN2020139424W WO2022134004A1 WO 2022134004 A1 WO2022134004 A1 WO 2022134004A1 CN 2020139424 W CN2020139424 W CN 2020139424W WO 2022134004 A1 WO2022134004 A1 WO 2022134004A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
module
laser
optical module
measuring device
Prior art date
Application number
PCT/CN2020/139424
Other languages
English (en)
French (fr)
Inventor
黄潇
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080069550.2A priority Critical patent/CN114930191A/zh
Priority to PCT/CN2020/139424 priority patent/WO2022134004A1/zh
Publication of WO2022134004A1 publication Critical patent/WO2022134004A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates

Definitions

  • the present application relates to the technical field of laser ranging, and in particular, to a laser measuring device and a movable platform.
  • Laser measurement devices such as lidar
  • the light-emitting module of the laser measurement device emits pulsed laser light to the detection object
  • the light-receiving module of the laser measurement device receives the pulsed laser image reflected by the detection object to obtain the distance.
  • the angular resolutions corresponding to different fields of view are different, resulting in a consistency error of the ranging accuracy of each field of view.
  • Embodiments of the present application provide a laser measurement device and a movable platform.
  • the laser measurement device of the embodiment of the present application includes a light-emitting module, a first optical module, a light-receiving module, and a second optical module.
  • the light-emitting module is used for emitting laser pulses.
  • the first optical module is located on the light-emitting optical path of the light-emitting module, and is used for processing the laser pulses from the light-emitting module to emit to the detection object.
  • the second optical module is located on the light-receiving optical path of the light-receiving module, and is used for processing the laser pulses reflected by the detection object to output to the light-receiving module.
  • the light-receiving module is used to convert the received laser pulses reflected by the detection object into electrical signals, and the image height of the detection object formed on the light-receiving module is the same as that of the second optical module.
  • the light-receiving half-field angle is a linear function.
  • the movable platform of the embodiment of the present application includes a movable platform body and a laser measurement device, and the laser measurement device is installed on the movable platform body.
  • the laser measuring device includes a light-emitting module, a first optical module, a light-receiving module, and a second optical module.
  • the light-emitting module is used for emitting laser pulses.
  • the first optical module is located on the light-emitting optical path of the light-emitting module, and is used for processing the laser pulses from the light-emitting module to emit to the detection object.
  • the second optical module is located on the light-receiving optical path of the light-receiving module, and is used for processing the laser pulses reflected by the detection object to output to the light-receiving module.
  • the light-receiving module is used to convert the received laser pulses reflected by the detection object into electrical signals, and the image height of the detection object formed on the light-receiving module is the same as that of the second optical module.
  • the light-receiving half-field angle is a linear function.
  • the laser measuring device and movable platform in the present application can satisfy that the image height imaged by the detector on the light-receiving module and the light-receiving half-field angle of the second optical module have a linear function relationship.
  • the module receives the pulsed laser imaging reflected back by the detected object to obtain the distance, it can realize the unification of the angular resolution of each field of view, which is conducive to improving the consistency of the three-dimensional imaging of the laser measuring device, thereby improving the ranging accuracy of each field of view .
  • FIG. 1 is a schematic structural diagram of a laser measuring device according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram of the imaging principle of the laser measuring device according to some embodiments of the present application.
  • FIG. 3 is a schematic diagram of an instantaneous half-angle of view of a second optical module of a laser measuring device according to some embodiments of the present application;
  • FIG. 4 is a schematic diagram of a laser pulse incident light-receiving module with different incident angles incident on the second optical module according to some embodiments of the present application;
  • 5 to 7 are schematic structural diagrams of a second optical module according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a laser measuring device according to some embodiments of the present application.
  • FIG. 9 to 11 are schematic structural diagrams of a first optical module according to some embodiments of the present application.
  • FIG. 12 is a schematic diagram of the principle of correcting the position coordinates of the probe in the signal processing circuit of the laser measuring device according to some embodiments of the present application;
  • FIG. 13 to 14 are schematic structural diagrams of a laser measuring device according to some embodiments of the present application.
  • 15 is a schematic structural diagram of a scanning module in a laser measuring device according to some embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of a movable platform according to some embodiments of the present application.
  • the laser measuring device 100 includes a light-emitting module 10 , a first optical module 20 , a light-receiving module 30 , and a second optical module 40 .
  • the light-emitting module 10 is used for emitting laser pulses;
  • the first optical module 20 is located on the light-emitting optical path of the light-emitting module 10, and is used for processing the laser pulses from the light-emitting module 10 to emit to the detection object;
  • the second optical module 40 is located on the light-receiving optical path of the light-receiving module 30, and is used to process the laser pulses reflected back by the detected object to be emitted to the light-receiving module 30;
  • the light-receiving module 30 is used to reflect the received detected object back.
  • the laser pulse is converted into an electrical signal, and the image height y2 imaged by the detector on the light receiving module 30 has a linear function relationship with the light receiving half-field angle ⁇ 2 of the second optical module 40
  • the laser measuring device 100 in the present application can satisfy that the image height y2 imaged by the probe on the light receiving module 30 and the light receiving half field angle ⁇ 2 of the second optical module 40 have a linear function relationship.
  • the module 30 receives the pulsed laser imaging reflected back by the detected object to obtain the distance, it can realize the unification of the angular resolution of each field of view, which is beneficial to improve the consistency of the three-dimensional imaging of the laser measuring device 100, thereby improving the measurement of each field of view. distance accuracy.
  • the laser measuring device 100 includes a light-emitting module 10 , a first optical module 20 , a light-receiving module 30 , and a second optical module 40 .
  • the first optical module 20 is located on the light-emitting optical path of the light-emitting module 10
  • the second optical module 40 is located on the light-receiving optical path of the light-receiving module 30 .
  • the laser pulse emitted by the light emitting module 10 is emitted to the detection object through the first optical module 20
  • the light receiving module 30 receives the laser pulse reflected by the detection object and passed through the second optical module 40 .
  • the light emitting module 10 is used for emitting laser pulses.
  • the light emitting module 10 may include an array of laser diodes.
  • the light-emitting module 10 includes a Vertical Cavity Surface Emitting Laser (VCSEL). Since the vertical cavity surface emitting laser is small in size and can be easily integrated into a large-area array, a vertical cavity surface emitting laser is used.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the volume of the light-emitting module 10 can be reduced, thereby reducing the volume of the laser measuring device 100 .
  • the light emitting module 10 includes an edge-emitting laser (EEL).
  • EEL edge-emitting laser
  • the edge-emitting laser can be a distributed feedback laser (Distributed Feedback Laser, DFB), and the edge-emitting laser is used as the light source in the light-emitting module 10.
  • DFB distributed Feedback Laser
  • the temperature drift of the edge-emitting laser is smaller than that of the VCSEL array, and on the other hand , Since the edge-emitting laser is a single-point light-emitting structure, there is no need to design an array structure, and the fabrication is simple and the cost is low.
  • the light emitting module 10 may include an array of light emitting diodes, which will not be exemplified here.
  • the light receiving module 30 is used to convert the received laser pulses reflected from the detected object into electrical signals.
  • the light receiving module 30 may include a photoelectric sensor 31, and the photoelectric sensor 31 may include a photodiode (Photo -Diode, PD), Avalanche Photo Diode (APD), Single-Photon Avalanche Diode (SPAD), Multi Pixel photon counter (MPPC), or silicon-based photomultiplier At least one of the tubes (Silicon photomultiplier, SiPM).
  • the pixels (not shown) in the photoelectric sensor 31 may be arranged in an area array, which is beneficial for the light receiving module 30 to receive the laser pulses reflected by the detection object.
  • the pixels in the photoelectric sensor 31 can also be arranged in a linear array, which is not limited here.
  • the first optical module 20 is located on the light-emitting light path of the light-emitting module 10 , and is used for processing the laser pulses from the light-emitting module 10 to emit to the detection object.
  • the second optical module 40 is located on the light-receiving optical path of the light-receiving module 30 , and the optical axis of the second optical module 40 is perpendicular to the imaging surface of the photoelectric sensor 31 of the light-receiving module 30 .
  • the second optical module 40 is used for processing the laser pulses reflected by the detected object to output to the light receiving module 30 .
  • the laser pulses emitted by the probe can be imaged on the light receiving module 30 after passing through the second optical module 40 , and the image height y2 of the probe imaged on the light receiving module 30 is the same as the second optical module 40 .
  • the light-receiving half angle of view ⁇ 2 is a linear function.
  • the effective focal length f2 of the second optical module 40 can be obtained according to the image height y2 of the detected object on the light-receiving module 30 and the light-receiving half angle of view ⁇ 2 of the second optical module 40.
  • the effective focal length f2 of the second optical module 40 is the ratio of the image height y2 imaged by the detector on the light-receiving module 30 to the light-receiving half-field angle ⁇ of the second optical module 40 .
  • the effective focal length f2 of the second optical module 40 can be obtained by substituting the image height y2 imaged by the detector on the light receiving module 30 and the light receiving half-field angle ⁇ 2 of the second optical module 40 into the above formula.
  • the photoelectric sensor in the light receiving module is composed of a plurality of pixels of the same size, the optical sensors at different angles of view position. For the target object, there is inconsistency in the angular resolution on the image plane.
  • the effective focal length f2 of the second optical module 40 is obtained according to the maximum radius y0 of the photoelectric sensor 31 in the light receiving module 30 and the maximum instantaneous half-field angle ⁇ 0 of the laser measuring device 100 .
  • the effective focal length f2 of the second optical module 40 is equal to the ratio of the maximum radius y0 of the photoelectric sensor 31 in the light receiving module 30 to the maximum instantaneous half-field angle ⁇ 0 of the laser measuring device 100 .
  • m1 is the second optical module 40 directly receiving laser light
  • m2 is the field of view of the laser pulse received by the second optical module 40 after being processed by other modules in the laser measuring device 100 .
  • the field of view angle of the second optical module 40 that can directly receive the laser pulse is 10°
  • other modules provided in the laser measuring device 100 can swing the field of view of the received laser pulse by 20°, so that the laser measuring device 100 The actual field of view is 50°.
  • the maximum instantaneous half-field angle of the laser measuring device 100 refers to the half-field angle ⁇ 0 at which the second optical module 40 receives the laser pulse at a certain moment.
  • the power P T of the laser pulse emitted by the light emitting module 10 the power P T of the laser pulse emitted by the light emitting module 10 , the scattering cross section ⁇ of the probe, the area A illum illuminated by the laser pulse,
  • the entrance pupil vignetting coefficient ⁇ vig , the preset limit range R of the laser measuring device 100 , and the overall transmittance ⁇ sys of the laser measuring device 100 obtain the entrance pupil diameter D of the second optical module 40 (as shown in FIG. 5 ).
  • the laser measurement module 100 satisfies the following relationship: Wherein, Ps is the minimum allowable optical power received by the light-receiving module 30; P T is the power of the laser pulse emitted by the light-emitting module 10; ⁇ is the scattering cross section of the probe; A illum is the area illuminated by the laser pulse; ⁇ vig is the entrance pupil vignetting coefficient; R is the preset limit range of the laser measuring device 100 ; ⁇ sys is the overall transmittance of the laser measuring device 100 ; D is the entrance pupil diameter of the second optical module 40 .
  • the entrance pupil diameter D of the second optical module 40 can be obtained. It should be noted that the entrance pupil vignetting coefficient is related to the shape of the entrance pupil and whether the entrance pupil is blocked. In particular, when the entrance pupil of the second optical module 40 is an unblocked circular pupil, the entrance pupil The vignetting coefficient ⁇ vig is equal to zero.
  • y is the image height
  • n is the refractive index of the medium
  • u is the aperture angle. That is to say, in an optical system, the product of the image height, the refractive index of the medium and the aperture angle is a constant.
  • the aperture angle u can be calculated by the formula where D is the entrance pupil diameter of the second optical module, and f is the focal length of the optical system.
  • Lach invariant it can be understood that when the two optical systems are in the same medium and have the same image height and the same Lach invariant J, the ratio between the entrance pupil diameter D and the focal length f is a constant value, that is, the entrance pupil diameter D and The focal length f is positively related.
  • the second optical The effective focal length f2 of the module 40 is greater than the f2 of the optical system in the existing laser measuring device.
  • the entrance pupil diameter D is positively correlated with the focal length f, so the laser measuring device 100 in the embodiment of the present application
  • the input of the second optical module 40 in the embodiment of the present application is The pupil diameter D is larger than the entrance pupil diameter D of the optical system in the existing laser measuring device. That is to say, the second optical module 40 in the embodiment of the present application has a larger entrance pupil diameter D, so that the light-receiving capability of the laser measuring device 100 can be improved.
  • the effective focal length f2 of the second optical module 40 is obtained according to the distortion amount ⁇ y2 of the second optical module 40 and the light-receiving half angle of view ⁇ 2 of the second optical module 40 . Specifically, there is a difference between the light-receiving half-view angle ⁇ 2 of the second optical module 40 and the tangent tan ⁇ 2 of the light-receiving half-view angle of the second optical module 40, and the effective The focal length f2 is the ratio of the distortion ⁇ y2 of the second optical module 40 to the difference.
  • the effective focal length f2 of the second optical module 40 can be calculated and obtained.
  • the second optical module 40 can vertically incident the chief rays L of the laser pulses incident on the second optical module 40 at different incident angles ⁇ to the light receiving module 30 for imaging noodle. That is to say, after being incident on the second optical module 40 at different incident angles ⁇ , after being processed by the second optical module 40 (including refraction or diffraction, etc.), the chief ray can be vertically incident on the light receiving module 30. imaging surface. For example, as shown in FIG.
  • the corresponding chief ray L1 is vertically incident on the light receiving module 30
  • the second optical module 40 in the embodiment of the present application can make the chief rays L of the laser pulses incident on the second optical module 40 at different incident angles ⁇ to be vertically incident on each pixel on the light receiving module 30, so that the Each pixel has a uniform illuminance, so that the images obtained at various angles of incidence have the same brightness, which is beneficial to improve the image quality of the final obtained image.
  • the second optical module 40 may include one or more lenses 41 , and the plurality of lenses 41 may be glass lenses or plastic lenses.
  • the second optical module 40 may include only one lens 41 , and the lens 41 may be made of glass or plastic.
  • the second optical module 40 may include a plurality of mirrors 41 , and the types and materials of the plurality of mirrors 41 and the distance between two adjacent mirrors 41 may be exactly the same; or a plurality of mirrors The type and material of 41 and the distance between two adjacent mirrors 41 may also be at least partially the same; or the types and materials of multiple mirrors 41 and the distance between two adjacent mirrors 41 may also be completely different.
  • the image height y2 of the detector on the light receiving module 30 is equal to the effective focal length f2 of the second optical module 40 multiplied by the light receiving half angle of view ⁇ 2 of the second optical module 40 That's it.
  • the effective focal length f2 of the second optical module 40 refers to the focal length after the combination of the plurality of lenses 41 .
  • the first optical module 20 and the second optical module 40 are the same module, that is, the first optical module 20 and the second optical module 40 share the same set of optical modules Group 401, the optical module 401 can be the same as the second optical module 40 described in any one of the above embodiments, and the optical module 401 is located on the light-emitting optical path of the emission module 10 and the light-receiving module at the same time. 30's light on the way.
  • the laser pulses are processed by the optical module 401 to be emitted to the detection object; the laser pulses reflected by the detected objects are processed and output to the light-receiving module 30 through the optical module 401.
  • the first optical module 20 and the second optical module 40 are two separate transceiver modules as shown in FIG. 1 and FIG. 13 , that is, the first optical module 20 and the second optical module
  • Each of the groups 40 uses a set of optical modules.
  • the second optical module 40 may be the second optical module 40 described in any of the above embodiments, and the first optical module 20 may be an existing optical system, that is, the height y1 of the light-emitting module and the first The light-emitting half-field angle ⁇ 1 of the optical module 20 does not satisfy the linear function relationship. In this way, only the second optical module 40 needs to be improved, so that the resolution of each field of view can be unified. Compared with the improvement of the first optical module 20, the cost can be reduced.
  • the second optical module 40 may be the second optical module described in any one of the above embodiments.
  • module 40 and the height y1 of the light-emitting module 10 and the light-emitting half-field angle ⁇ 1 of the first optical module 20 have a linear function relationship.
  • the effective focal length f1 of the first optical module 20 is obtained according to the height y1 of the detected object at the light-emitting module 10 and the light-emitting half-field angle ⁇ 1 of the first optical module 20 .
  • the first optical module 20 may also include one or more lenses 21 , and the plurality of lenses 21 may also be glass lenses or plastic lenses.
  • the first optical module 20 may include only one lens 21 , and the lens 21 may be made of glass or plastic; as shown in FIGS. 10 and 11 , the first optical The module 20 may include multiple lenses 21, and the types and materials of the multiple lenses 21 and the distance between the two adjacent lenses 21 may be exactly the same; or the types and materials of the multiple lenses 21 and the adjacent two lenses
  • the spacing between the lenses 21 may also be at least partially the same; or the types and materials of the plurality of lenses 21 and the spacing between two adjacent lenses 21 may also be completely different, which are not limited herein.
  • the operating wavelengths of the first optical module 20 and the second optical module 40 include at least one of 850 nm, 905 nm, 940 nm, and 1550 nm.
  • the laser pulse wavelength of the light-emitting module 10 matches the response spectrum of the light-receiving module 30 , and matches the working wavelength of at least one of the first optical module 20 and the second optical module 40 .
  • the working wavelength of the first optical module 20, the laser pulse wavelength of the light-emitting module 10 and the response spectrum of the light-receiving module 30 are matched, so that all the laser pulses emitted by the light-emitting module 10 can pass through the first optical module
  • the group 20 is emitted to the probe; or, the working wavelength of the second optical module 40, the laser pulse wavelength of the light-emitting module 10 and the response spectrum of the light-receiving module 30 are matched, so that the light-emitting module 10 emits and is reflected by the probe.
  • the latter laser pulses can pass through the second optical module 40 and enter the light receiving module 30; or, the working wavelength of the first optical module 20, the working wavelength of the second optical module 40, and the The wavelength of the laser pulse and the response spectrum of the light-receiving module 30 are all matched, so that all the laser pulses emitted by the light-emitting module 10 can pass through the first optical module 20 and be emitted to the detection object, and the laser pulses reflected by the detection object are all the same.
  • the light-receiving module 30 can pass through the second optical module 40 and enter the light-receiving module 30 , which is beneficial for the laser measuring device 100 to perform three-dimensional imaging.
  • the laser measuring device 100 may further include a driving circuit 50 and a signal processing circuit 60 .
  • the driving circuit 50 is electrically connected to the light emitting module 10 , and the driving circuit 50 is used for driving the light emitting module 10 to emit light.
  • the signal processing circuit 60 is electrically connected to the light receiving module 30, and is used for processing the electrical signal converted by the light receiving module 30 to obtain three-dimensional information of the detected object.
  • the signal processing circuit 60 is further configured to correct the position coordinates of the probe in a plane perpendicular to the optical axis according to a preset distortion correction function F(x'). Specifically, the signal processing circuit 60 substitutes the acquired coordinates of the detected object on the light-receiving surface of the light-receiving module 30 into the distortion correction function F(x') for calculation, so as to obtain the point in the plane perpendicular to the optical axis. The actual position coordinates, thereby correcting the position coordinates of the probe in the plane perpendicular to the optical axis.
  • the preset distortion correction function F(x') is obtained by calibration through a large number of experiments according to the principle of one-to-one correspondence between object image spaces before the laser measurement module 100 leaves the factory. Specifically, as shown in FIG. 12 , a plurality of objects are calibrated in the object space, and each object has a unique object space coordinate x corresponding to the object space, and then the received data of each object in the light receiving module 30 are collected separately. The coordinates on the light surface are marked as image space coordinates x', and the actual object space coordinates x and the corresponding image coordinates are obtained by means of numerical fitting methods such as the least squares method for multiple object space coordinates x and corresponding image space coordinates x'.
  • mapping function H(x) can be obtained, that is, the corresponding image space coordinate x' can be obtained by substituting the object space coordinate x into H(x). Since there is a strict one-to-one correspondence in the object-image space, that is, the mapping function H(x) is reversible, the inverse mapping function F(x') of the mapping function H(x) can be obtained, that is, the image space coordinate x' is substituted into the inverse The mapping function F(x') can obtain the corresponding space coordinate x. In this way, the inverse mapping function F(x') is used as the preset distortion correction function F(x').
  • the actual position coordinates of the detected object in the plane perpendicular to the optical axis can be obtained.
  • the object A1 at the object space coordinate x 3 can be imaged on the light-receiving module 30, and the signal processing circuit 60 can obtain the object A1 on the light-receiving surface.
  • the signal processing circuit 60 substitutes the image space coordinate x' 3 of the object A1 into the preset distortion correction function F(x') to obtain the corrected coordinate X 3 of the object A1, since F(x') is H(x)
  • the inverse mapping function of then the corrected coordinate X 3 of the object A1 is the same as the coordinate x 3 of the object A1 in the object space. That is to say, the position coordinates of the probe in the plane perpendicular to the optical axis obtained after correction by the signal processing circuit 60 are the same as the actual position coordinates of the probe in the object space, so that the measurement accuracy of the laser measuring device 100 can be improved.
  • the laser measurement module 100 may further include a scanning module 70 .
  • the scanning module 70 is located on the light-emitting light path and the light-receiving light path, and is used to change the laser pulses from the light-emitting module 10 to different transmission directions and transmit the laser pulses reflected back from the detected object to the light-receiving module 30 .
  • the scanning module 70 includes a controller 71 , a driver 72 and an optical element 73 .
  • the controller 71 is electrically connected to the driver 72, and the driver 72 is used to drive the optical element 73 to move, so as to change the transmission direction of the laser light passing through the optical element 73.
  • the optical element 73 may be a lens, a mirror, a prism, a grating, an optical phased array (Optical Phased Array) or any combination of the above optical elements.
  • the driver 72 can drive the optical element 73 to rotate, vibrate, move cyclically along a predetermined track, or move back and forth along a predetermined track, which is not limited herein. Since the laser measurement module 100 further includes the scanning module 70 , the scanning module 70 can further expand the light-emitting field of view and the light-receiving field of view of the laser measurement device 100 , thereby helping to expand the measurement range of the laser measurement device 100 .
  • an embodiment of the present application further provides a movable platform 1000 .
  • the movable platform 1000 includes a movable platform body 200 and the laser measurement device 100 of any of the above embodiments.
  • the laser measuring device 100 is mounted on the movable platform body 200 .
  • the movable platform 1000 may be an unmanned aerial vehicle, an unmanned vehicle, an unmanned ship, a robot, an armored combat vehicle, or the like.
  • a movable platform 1000 may be configured with one or more laser measurement modules 100 .
  • the laser measurement module 100 can be used to detect the environment around the movable platform 1000, so that the movable platform 1000 can further perform operations such as obstacle avoidance and trajectory selection according to the surrounding environment.
  • the front part or the upper part is not limited in this application.
  • the laser measuring device 100 in the movable platform 1000 can satisfy that the image height y2 imaged by the detector on the light receiving module 30 and the light receiving half-field angle ⁇ 2 of the second optical module 40 have a linear function relationship.
  • the light receiving module 30 receives the pulsed laser imaging reflected back by the detected object to obtain the distance, it can realize the unification of the angular resolution of each field of view, which is beneficial to improve the consistency of the three-dimensional imaging of the laser measuring device 100, so that the movable The platform 1000 obtains a more accurate surrounding environment, thereby improving the ranging accuracy of each field of view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光测量装置(100)及可移动平台(1000)。激光测量装置(100)包括发光模组(10)、第一光学模组(20)、收光模组(30)、及第二光学模组(40),发光模组(10)的激光脉冲经第一光学模组(20)后出射至探测物,探测物反射回的激光脉冲经第二光学模组(40)后入射至收光模组(30)。探测物在收光模组(30)上所成像的像高与第二光学模组(40)的收光半视场角呈线性函数关系。

Description

激光测量装置及可移动平台 技术领域
本申请涉及激光测距技术领域,特别涉及一种激光测量装置及可移动平台。
背景技术
激光测量装置,例如激光雷达,通常用来测距。具体地,激光测量装置的发光模组通过向探测物发射脉冲激光,并由激光测量装置的收光模组接收被探测物反射回的脉冲激光成像以获取距离。然而,对于激光测量装置而言,当收光模组的像素尺寸确定时,不同视场对应不同的角分辨率不同,会产生各视场测距精度的一致性误差。
发明内容
本申请实施方式提供一种激光测量装置及可移动平台。
本申请实施方式的激光测量装置包括发光模组、第一光学模组、收光模组、及第二光学模组。所述发光模组用于发射激光脉冲。所述第一光学模组位于所述发光模组的发光光路上,用于对来自所述发光模组的激光脉冲进行处理以出射至探测物。所述第二光学模组位于所述收光模组的收光光路上,用于对被所述探测物反射回的激光脉冲进行处理以出射至所述收光模组。所述收光模组用于将接收的所述探测物反射回的激光脉冲转换为电信号,所述探测物在所述收光模组上所成像的像高与所述第二光学模组的收光半视场角呈线性函数关系。
本申请实施方式的可移动平台包括可移动平台本体及激光测量装置,所述激光测量装置安装在所述可移动平台本体上。所述激光测量装置包括发光模组、第一光学模组、收光模组、及第二光学模组。所述发光模组用于发射激光脉冲。所述第一光学模组位于所述发光模组的发光光路上,用于对来自所述发光模组的激光脉冲进行处理以出射至探测物。所述第二光学模组位于所述收光模组的收光光路上,用于对被所述探测物反射回的激光脉冲进行处理以出射至所述收光模组。所述收光模组用于将接收的所述探测物反射回的激光脉冲转换为电信号,所述探测物在所述收光模组上所成像的像高与所述第二光学模组的收光半视场角呈线性函数关系。
本申请中的激光测量装置及可移动平台,能够满足探测物在收光模组上所成像的像高与第二光学模组的收光半视场角呈线性函数关系,如此,在收光模组接收被探测物反射回的脉冲激光成像以获取距离时,能够实现各视场的角分辨率的统一,有利于提高激光测量装置三维成像的一致性,进而提升各视场的测距精度。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的激光测量装置的结构示意图;
图2是本申请某些实施方式的激光测量装置成像的原理示意图;
图3是本申请某些实施方式的激光测量装置的第二光学模组的瞬时半视场角的示意图;
图4是本申请某些实施方式的不同入射角入射至第二光学模组上的激光脉冲入射收光模组的示意图;
图5至图7是本申请某些实施方式的第二光学模组的结构示意图;
图8是本申请某些实施方式的激光测量装置的结构示意图;
图9至图11是本申请某些实施方式的第一光学模组的结构示意图;
图12是本申请某些实施方式的激光测量装置中信号处理电路校正探测物位置坐标的原理示意图;
图13至图14是本申请某些实施方式的激光测量装置的结构示意图;
图15是本申请某些实施方式的激光测量装置中扫描模组的结构示意图;
图16是本申请某些实施方式的可移动平台的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
请参阅图1及图2,激光测量装置100包括发光模组10、第一光学模组20、收光模组30、及第二光学模组40。发光模组10用于发射激光脉冲;第一光学模组20位于发光模组10的发光光路上,用于对来自发光模组10的激光脉冲进行处理以出射至探测物;第二光学模组40位于收光模组30的收光光路上,用于对被探测物反射回的激光脉冲进行处理以出射至收光模组30;收光模组30用于将接收的探测物反射回的激光脉冲转换为电信号,探测物在收光模组30上所成像的像高y2与第二光学模组40的收光半视场角θ2呈线性函数关系。
本申请中的激光测量装置100能够满足探测物在收光模组30上所成像的像高y2与第 二光学模组40的收光半视场角θ2呈线性函数关系,如此,在收光模组30接收被探测物反射回的脉冲激光成像以获取距离时,能够实现各视场的角分辨率的统一,有利于提高激光测量装置100三维成像的一致性,进而提升各视场的测距精度。
下面结合附图做进一步说明。
请参阅图1,激光测量装置100包括发光模组10、第一光学模组20、收光模组30、及第二光学模组40。第一光学模组20位于发光模组10的发光光路上,第二光学模组40位于收光模组30的收光光路上。发光模组10发射的激光脉冲经过第一光学模组20出射至探测物上,收光模组30接收由探测物反射并经过第二光学模组40的激光脉冲。
具体地,发光模组10用于发射激光脉冲。在一些实施例中,发光模组10可包括激光二极管阵列。例如,在一些实施例中,发光模组10包括垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL),由于垂直腔面发射激光器体积小且易集成为大面积阵列,采用垂直腔面发射激光器作为发光模组10中的光源,能够减小发光模组10的体积,进而减小激光测量装置100的体积。再例如,在一些实施例中,发光模组10包括边发射激光器(Edge-Emitting Laser,EEL)。具体地,边发射激光器可以是分布反馈式激光器(Distributed Feedback Laser,DFB),采用边发射激光器作为发光模组10中的光源,一方面边发射激光器较VCSEL阵列的温漂较小,另一方面,由于边发射激光器为单点发光结构,无需设计阵列结构,制作简单及成本较低。当然,在一些实施例中,发光模组10可包括发光二极管阵列,在此不再一一举例。
请结合图2,收光模组30用于将接收的探测物反射回的激光脉冲转换为电信号,示例地,收光模组30可包括光电传感器31,光电传感器31可以包括光电二极管(Photo-Diode,PD)、雪崩光电二极管(Avalanche Photo Diode,APD)、单光子雪崩二极管(Single-Photon Avalanche Diode,SPAD)、多像素光子计数器件(Multi Pixel photon counter,MPPC)、或硅基光电倍增管(Silicon photomultiplier,SiPM)中的至少一种。在一些实施例中,光电传感器31中的像素(图未示)可以呈面阵排列,如此有利于收光模组30接收探测物反射回的激光脉冲。当然,光电传感器31中的像素也可以呈线阵排列,在此不作限制。
请参阅图1及图2,第一光学模组20位于发光模组10的发光光路上,用于对来自发光模组10的激光脉冲进行处理以出射至探测物。第二光学模组40位于收光模组30的收光光路上,且第二光学模组40的光轴与收光模组30的光电传感器31的成像面垂直。第二光学模组40用于对被探测物反射回的激光脉冲进行处理以出射至收光模组30。由探测物发射回的激光脉冲在经过第二光学模组40后能够在收光模组30上成像,并且探测物在收光模组30上所成像的像高y2与第二光学模组40的收光半视场角θ2呈线性函数关系。
具体地,第二光学模组40的有效焦距f2可以根据探测物在收光模组30上所成像的像 高y2与第二光学模组40的收光半视场角θ2获取。在一些实施例中,第二光学模组40的有效焦距f2为探测物在收光模组30上所成像的像高y2与第二光学模组40的收光半视场角θ的比值。例如,激光测量模组100满足以下关系式:y2=f2×θ2,其中:y2为探测物在收光模组30上所成像的像高,f2为第二光学模组40的有效焦距,θ2为第二光学模组40的收光半视场角。将探测物在收光模组30上所成像的像高y2及第二光学模组40的收光半视场角θ2代入上述公式计算,即可获得第二光学模组40的有效焦距f2。
需要说明的是,在现有的激光测量装置满足以下关系:y =f ×tanθ ,其中y 为探测物在现在的激光测量装置中收光模组上所成像的像高、f 为现有的激光测量装置中光学系统的有效焦距、及θ 为现有的激光测量装置中光学系统的收光半视场角。也即是说,在现有的激光测量装置中,接收光学系统通常满足点切投影成像关系,当收光模组中的光电传感器由多个相同尺寸像素组成时,处于不同视场角位置的目标物体,在像面上的角分辨率存在不一致性。然而,在本申请实施例中,激光测量模组100满足关系式y2=f2×θ2,对上述公式的两端求微分有△y2=f2×△θ2。可以理解,当接收模组30的光电传感器31的像素尺寸为△y2时,每单位像素对应单位视场角△θ2。在有效的视场范围内,各像素均对应相等的角度,即实现了各视场角分辨率的统一。
另外,当本申请实施例中的激光测量装置100与现有的激光测量装置具有同样的像高及同样的焦距时,即y2=y 且f2=f 时,本申请实施例中的第二光学模组40的半视场角θ2大于现有的激光测量装置中光学系统的收光半视场角θ 。也即是说,本申请实施例中的激光测量装置100与现有的激光测量装置相比,在同样的像高及同样的焦距的情况下,本申请实施例中的激光测量装置100能够获得更大的视场角,从而能够扩大探测范围。
请一并参阅图2及图3,在一些实施例中,在确定收光模组30中光电传感器阵列的半径y0,及激光测量模组100所需要到达的最大瞬时半视场角θ0后,根据收光模组30中的光电传感器31的最大半径y0与激光测量装置100的最大瞬时半视场角θ0获取的第二光学模组40的有效焦距f2。在一些实施例中,第二光学模组40的有效焦距f2是等于收光模组30中的光电传感器31的最大半径y0与激光测量装置100的最大瞬时半视场角θ0的比值。例如,激光测量模组100满足以下关系式:y0=f2×θ0,其中:y0为光电传感器31的最大半径,f2为第二光学模组40的有效焦距,θ0为激光测量装置100的最大瞬时半视场角。
需要说明的是,激光测量装置100中可能还会有其他模组,能够进一步扩大激光测量装置100的接收激光脉冲的视场,如图3所示,m1为第二光学模组40直接接收激光脉冲的视场,m2为经过激光测量装置100中其他模组处理后第二光学模组40接收激光脉冲的视场。例如,假设第二光学模组40能够直接接收激光脉冲的视场角为10°,激光测量装置100中设置的其他模组能够使接收的激光脉冲的视场上下摆动20°,如此激光测量装置100 实际的视场角为50°,当在某个瞬间激光测量装置100能够获取10°内的探测物反射的激光脉冲,但在不同时刻总共能看到50°的探测物反射的激光脉冲。激光测量装置100的最大瞬时半视场角是指某一时刻,第二光学模组40接收激光脉冲的半视场角θ0。
在一些实施例中,根据收光模组30接收到的最小允许光功率P S、发光模组10发射激光脉冲的功率P T、探测物的散射截面σ、激光脉冲照亮的面积A illum、入瞳渐晕系数η vig、激光测量装置100预设的极限量程R、及激光测量装置100整体的透射率η sys获取第二光学模组40的入瞳直径D(如图5所示)。例如,激光测量模组100满足以下关系式:
Figure PCTCN2020139424-appb-000001
其中,Ps为收光模组30接收到的最小允许光功率;P T为发光模组10发射激光脉冲的功率;σ为探测物的散射截面;A illum为激光脉冲照亮的面积;η vig为入瞳渐晕系数;R为激光测量装置100预设的极限量程;η sys为激光测量装置100整体的透射率;D为第二光学模组40的入瞳直径。在获得收光模组30接收到的最小允许光功率Ps、发光模组10发射激光脉冲的功率P T、探测物的散射截面σ、激光脉冲照亮的面积A illum、入瞳渐晕系数η vig、激光测量装置100预设的极限量程R、及激光测量装置100整体的透射率η sys后,代入上述计算公式:
Figure PCTCN2020139424-appb-000002
计算,即可获得第二光学模组40的入瞳直径D。需要说明的是,入瞳渐晕系数与入瞳的形状、及入瞳处是否有遮挡有关,特别地,当第二光学模组40的入瞳为无遮挡的圆形光瞳时,入瞳渐晕系数η vig等于0。
由于在任何光学系统内均满足拉赫不变量J=n×y×u,其中y为像高、n为介质折射率及u为孔径角。也即是说,在光学系统中,像高、介质折射率及孔径角的乘积为一常数。并且孔径角u可以通过计算公式
Figure PCTCN2020139424-appb-000003
获得,其中D为第二光学模组的入瞳直径,f为光学系统的焦距。如此拉赫不变量
Figure PCTCN2020139424-appb-000004
可以理解当两个光学系统处于同一个介质中,并且具有同样的像高及相同的拉赫不变量J时,入瞳直径D与焦距f之间的比值为定值,即入瞳直径D与焦距f成正相关。如前所述,本申请实施例中的激光测量模组100满足以下关系式:y2=f2×θ2,且现有的激光测量装置满足以下关系:y =f ×tanθ ,当本申请实施例中的激光测量装置100与现有的激光测量装置具有同样的像高及同样的半视场角时,即y2=y 且θ2=θ 时,本申请实施例中的第二光学模组40的有效焦距f2大于现有的激光测量装置中光学系统的f 。又因为当两个光学系统处于同一个介质中,并且具有同样的像高及相同的拉赫不变量J时,入瞳直径D与焦距f成正相关,因此本申请实施例中的激光测量装置100与现有的激光测量装置处于同一个介质中,并且具有同样的像高、同样的半视场角及相同的拉赫不变量J时,本申请实施例中的第二光学模组40的入瞳直径D大于现有的激光测量装置中光学系统的入瞳直径D 。也即是说,本申请实施例中的第二光学模组40具有更大的入瞳直径D,从而能够提高激光测量装置100的收光能力。
在一些实施例中,第二光学模组40的有效焦距f2是根据第二光学模组40的畸变量δy2与第二光学模组40的收光半视场角θ2获取的。具体地,第二光学模组40的收光半视场角θ2与第二光学模组40的收光半视场角的正切值tanθ2之间具有一差值,第二光学模组40的有效焦距f2为第二光学模组40的畸变量δy2与差值的比值。例如,第二光学模组40的畸变量δy2满足公式:δy2=f2×(θ2-tanθ2),其中:δy2为第二光学模组40的畸变量,θ2为第二光学模组40的收光半视场角。在获得第二光学模组40的畸变量δy2及第二光学模组40的收光半视场角θ2后代入上述公式,即可计算获得第二光学模组40的有效焦距f2。
请参阅图4,在一些实施例中,第二光学模组40能够将以不同入射角度α入射至第二光学模组40上的激光脉冲的主光线L垂直入射至收光模组30的成像面。也即是说,以不同入射角度α入射至第二光学模组40后,经过第二光学模组40的处理(包括折射或衍射等),其主光线能够垂直入射至收光模组30的成像面。例如,如图4所示,以入射角α1入射至第二光学模组40上的激光脉冲,经过第二光学模组40的处理后,其对应的主光线L1垂直入射至收光模组30的成像面;沿垂直第二光学模组40收光面方向入射的激光脉冲,经过第二光学模组40的处理后,其对应的主光线L2也垂直入射至收光模组30的成像面。如此本申请实施例中的第二光学模组40能够使不同入射角度α入射至第二光学模组40上的激光脉冲的主光线L垂直入射至收光模组30上各个像素上,以使各个像素具有均匀的照度,从而满足各角度入射获得的图像具有一样的亮度,有利于提高最终获得图像的图像品质。
请参阅图5至图7,第二光学模组40可包括一个或多个镜片41,多个镜片41可以为玻璃镜片或塑料镜片。例如,如图5所示,第二光学模组40可仅包括一个镜片41,镜片41可以是由玻璃制成,也可以是由塑料制成。如图6及图7所示,第二光学模组40可包括多个镜片41,多个镜片41的类型、材质及相邻的两个镜片41之间的间距可以完全相同;或者多个镜片41的类型、材质及相邻的两个镜片41之间的间距也可以至少部分相同;或者多个镜片41的类型、材质及相邻的两个镜片41之间的间距也可以完全不相同,在此不作限制,仅需要满足探测物在收光模组30上所成像的像高y2等于第二光学模组40的有效焦距f2乘以第二光学模组40的收光半视场角θ2即可。需要说明的是,当第二光学模组40包括多个镜片41时,第二光学模组40的有效焦距f2是指多个镜片41组合后的焦距。
在一些实施例中,如图8及图14,第一光学模组20与第二光学模组40为同一模组,即第一光学模组20与第二光学模组40共用同一套光学模组401,该光学模组401可以与上述任意一项实施例中所述的第二光学模组40相同,且该光学模组401同时位于发射模组10的发光光路上、及收光模组30的收光光路上。当发光模组10发射激光脉冲后,激光脉冲经过该光学模组401处理以出射至探测物;被探测物反射回的激光脉冲经过该光学模 组401处理出射至收光模组30。
当然,在一些实施例中,第一光学模组20与第二光学模组40为收发分立的两个模组如图1及图13所示,即第一光学模组20与第二光学模组40各用一套光学模组。其中第二光学模组40可以是上述任意一项实施例中所述的第二光学模组40,第一光学模组20可以为现有的光学系统,即发光模组的高度y1与第一光学模组20的发光半视场角θ1不满足线性函数关系。如此仅需要对第二光学模组40进行改进,即可实现各视场角分辨率的统一,相较于对第一光学模组20也加以改进,能够降低成本。
在一些实施例中,当第一光学模组20与第二光学模组40为收发分立的两个模组,第二光学模组40可以是上述任意一项实施例中所述的第二光学模组40,并且发光模组10的高度y1与第一光学模组20的发光半视场角θ1呈线性函数关系。具体地,如图9所示,第一光学模组20的有效焦距f1是根据探测物在发光模组10的高度y1与第一光学模组20的发光半视场角θ1获取的。激光测量模组100满足以下关系式:y1=f1×θ1,其中:y1为发光模组10的高度,f1为第一光学模组20的有效焦距,θ1为第一光学模组20的发光半视场角。在确定收发光模组10的高度y1值及第一光学模组20的发光半视场角θ1值之后,代入上述计算公式y1=f1×θ1计算,即可获得第一光学模组20的有效焦距f1。如此可实现各方向的激光脉冲发散角一致,有利于提高激光测量装置100三维成像的一致性。
请参阅图9至图11,第一光学模组20也可包括一个或多个镜片21,多个镜片21也可以为玻璃镜片或塑料镜片。例如,如图9所示,第一光学模组20可仅包括一个镜片21,镜片21可以是由玻璃制成,也可以是由塑料制成;如图10及图11所示,第一光学模组20可包括多个镜片21,多个镜片21的类型、材质及相邻的两个镜片21之间的间距可以完全相同;或者多个镜片21的类型、材质及相邻的两个镜片21之间的间距也可以至少部分相同;或者多个镜片21的类型、材质及相邻的两个镜片21之间的间距也可以完全不相同,在此不作限制。
在一些实施例中,第一光学模组20及第二光学模组40的工作波长包括850nm、905nm、940nm、1550nm中的至少一个。发光模组10的激光脉冲波长及收光模组30响应光谱相匹配,并与第一光学模组20及第二光学模组40中至少一个的工作波长相匹配。例如,第一光学模组20的工作波长、发光模组10的激光脉冲波长及收光模组30响应光谱三者匹配,如此发光模组10发射的全部激光脉冲均能够穿过第一光学模组20出射至探测物;或者,第二光学模组40的工作波长、发光模组10的激光脉冲波长及收光模组30响应光谱三者匹配,如此发光模组10发射并经过探测物反射后的激光脉冲,均能够穿过第二光学模组40入射到收光模组30;或者,第一光学模组20的工作波长、第二光学模组40的工作波长、发光模组10的激光脉冲波长及收光模组30响应光谱四者均匹配,如此发光模组10发射的 全部激光脉冲均能够穿过第一光学模组20出射至探测物,并且探测物反射后的激光脉冲均能够穿过第二光学模组40入射到收光模组30,有利于激光测量装置100进行三维成像。
请参阅图1,激光测量装置100还可包括驱动电路50及信号处理电路60,驱动电路50与发光模组10电连接,驱动电路50用于驱动发光模组10发光。信号处理电路60与收光模组电30连接,用于对收光模组30转换后的电信号进行处理以得到探测物的三维信息。
在一些实施例中,信号处理电路60还用于根据预设的畸变校正函数F(x’)校正探测物在垂直光轴的平面内的位置坐标。具体地,信号处理电路60将获取到得探测物在收光模组30的收光面上的坐标代入畸变校正函数F(x’)中计算,以获得该点在垂直光轴的平面内的实际位置坐标,从而校正探测物在垂直光轴的平面内的位置坐标。
需要说明的是,预设的畸变校正函数F(x’)是在激光测量模组100出厂前,根据物像空间一一对应的原则,通过大量的实验进行标定获得的。具体地,如图12所示,在物空间对多个物体进行标定,并每个物体都有在物空间唯一对应的物空间坐标x,再分别采集每一个物体在收光模组30的收光面上的坐标记为像空间坐标x’,对多个物空间坐标x及对应的像空间坐标x’通过最小二乘法等数值拟合手段,标定得出实际物空间坐标x与对应的像空间坐标x’的映射关系,根据该映射关系以获得映射函数H(x),即将物空间坐标x代入H(x)能够获得对应的像空间坐标x’。由于物像空间存在严格的一一对应关系,即映射函数H(x)是可逆的,可求出映射函数H(x)的逆映射函数F(x’),即将像空间坐标x’代入逆映射函数F(x’)即可获得对应物空间坐标x。如此将逆映射函数F(x’)作为预设的畸变校正函数F(x’),当将探测物在收光模组30的收光面上的坐标代入畸变校正函数F(x’)后计算,即可获得探测物实际在垂直光轴的平面内的位置坐标。例如,如图12所示,在激光测量装置100使用过程中,在物空间坐标x 3的物体A1能够在收光模组30上成像,并且信号处理电路60能够获得物体A1在收光面上的像空间坐标x’ 3,其中像空间坐标x’ 3与物空间坐标x 3存在映射关系H(x),即H(x 3)=x’ 3。信号处理电路60将其物体A1的像空间坐标x’ 3代入预设的畸变校正函数F(x’)中能够获得物体A1校正后的坐标X 3,由于F(x’)为H(x)的逆映射函数,则物体A1校正后的坐标X 3与物体A1在物空间坐标x 3相同。也即是说,经过信号处理电路60校正后获得的探测物在垂直光轴的平面内的位置坐标,与探测物在物空间的实际位置坐标相同,从而能够提升激光测量装置100的测量精确度。
请参阅图13及图14,在一些实施例中,激光测量模组100还可包括扫描模组70。扫描模组70位于发光光路和收光光路上,用于将来自发光模组10的激光脉冲改变至不同传输方向出射、及将被探测物反射回的激光脉冲传导至收光模组30。具体地,请参阅图15,扫描模组70包括控制器71、驱动器72及光学元件73。控制器71与驱动器72电连接,驱 动器72用于驱动光学元件73运动,以改变经过光学元件73的激光的传输方向。光学元件73可以是透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。驱动器72可以驱动光学元件73转动、振动、沿预定轨迹循环移动或者沿预定轨迹来回移动,在此不做限制。由于激光测量模组100还包括扫描模组70,扫描模组70能够进一步扩大激光测量装置100的发光视场及收光视场,从而有利于扩大激光测量装置100的测量范围。
请参阅图16,本申请实施方式还提供一种可移动平台1000,可移动平台1000包括可移动平台本体200及上述任一实施方式的激光测量装置100。激光测量装置100安装在可移动平台本体200上。可移动平台1000可以是无人飞行器、无人车、无人船、机器人、装甲战车等。一个可移动平台1000可以配置有一个或多个激光测量模组100。激光测量模组100可以用于探测可移动平台1000周围的环境,以便于可移动平台1000进一步依据周围的环境进行避障、轨迹选择等操作,激光测量模组100可以设置在可移动平台1000的前部或上部,本申请对此不作限制。
可移动平台1000中的激光测量装置100能够满足探测物在收光模组30上所成像的像高y2与第二光学模组40的收光半视场角θ2呈线性函数关系,如此,在收光模组30接收被探测物反射回的脉冲激光成像以获取距离时,能够实现各视场的角分辨率的统一,有利于提高激光测量装置100三维成像的一致性,从而能够使可移动平台1000获取更加精确的周围的环境,进而提升各视场的测距精度。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (23)

  1. 一种激光测量装置,其特征在于,包括发光模组、第一光学模组、收光模组、及第二光学模组;
    所述发光模组用于发射激光脉冲;
    所述第一光学模组位于所述发光模组的发光光路上,用于对来自所述发光模组的激光脉冲进行处理以出射至探测物;
    所述第二光学模组位于所述收光模组的收光光路上,用于对被所述探测物反射回的激光脉冲进行处理以出射至所述收光模组;
    所述收光模组用于将接收的所述探测物反射回的激光脉冲转换为电信号,所述探测物在所述收光模组上所成像的像高与所述第二光学模组的收光半视场角呈线性函数关系。
  2. 根据权利要求1所述的激光测量装置,其特征在于,所述第二光学模组的有效焦距是根据所述探测物在所述收光模组上所成像的像高与所述第二光学模组的收光半视场角获取的。
  3. 根据权利要求2所述的激光测量装置,其特征在于,所述收光模组包括光电传感器,所述第二光学模组的有效焦距是根据所述光电传感器的最大半径与所述激光测量装置的最大瞬时半视场角获取的。
  4. 根据权利要求1所述的激光测量装置,其特征在于,所述第二光学模组的入瞳直径是根据所述收光模组接收到的最小允许光功率、所述发光模组发射激光脉冲的功率、所述探测物的散射截面、所述激光脉冲照亮的面积、入瞳渐晕系数、所述激光测量装置预设的极限量程、及所述激光测量装置整体的透射率获取的;其中,当所述第二光学模组的入瞳为无遮挡的圆形光瞳时,入瞳渐晕系数为零。
  5. 根据权利要求1所述的激光测量装置,其特征在于,所述第二光学模组的有效焦距是根据所述第二光学模组的畸变量与所述第二光学模组的收光半视场角获取的。
  6. 根据权利要求1所述的激光测量装置,其特征在于,所述第二光学模组能够将以不同入射角度入射至所述第二光学模组上的激光脉冲的主光线垂直入射至所述收光模组的成像面。
  7. 根据权利要求1所述的激光测量装置,其特征在于,所述第一光学模组与所述第二光学模组为收发分立的两个模组;或所述第一光学模组与所述第二光学模组为同一模组。
  8. 根据权利要求1所述的激光测量装置,其特征在于,所述第一光学模组与所述第二光学模组为收发分立的两个模组,所述发光模组的高度与所述第一光学模组的发光半视场角呈线性函数关系。
  9. 根据权利要求8所述的激光测量装置,其特征在于,所述第一光学模组的有效焦距是根据所述发光模组的高度与所述第一光学模组的发光半视场角获取的。
  10. 根据权利要求1所述的激光测量装置,其特征在于,所述第一光学模组包括一个或多个镜片;和/或,所述第二光学模组包括一个或多个镜片。
  11. 根据权利要求10所述的激光测量装置,其特征在于,所述镜片为玻璃镜片或塑料镜片。
  12. 根据权利要求1所述的激光测量装置,其特征在于,所述收光模组包括光电传感器,所述光电传感器包括光电二极管、雪崩光电二极管、单光子雪崩二极管、多像素光子计数器件、或硅基光电倍增管中的至少一种。
  13. 根据权利要求1所述的激光测量装置,其特征在于,所述收光模组包括光电传感器,所述光电传感器中的像素呈线阵排列或面阵排列,所述第二光学模组的光轴与所述光电传感器的成像面垂直。
  14. 根据权利要求1所述的激光测量装置,其特征在于,所述发光模组包括激光二极管阵列或发光二极管阵列。
  15. 根据权利要求1所述的激光测量装置,其特征在于,所述发光模组包括垂直腔面发射激光器或边发射激光器。
  16. 根据权利要求1-15任意一项所述的激光测量装置,其特征在于,所述第一光 学模组的工作波长、所述发光模组发射的激光脉冲的波长、及所述收光模组的响应光谱三者匹配;和/或
    所述第二光学模组的工作波长、所述发光模组发射的激光脉冲的波长、及所述收光模组的响应光谱三者匹配。
  17. 根据权利要求16所述的激光测量装置,其特征在于,所述工作波长包括850nm、905nm、940nm、1550nm中的至少一个。
  18. 根据权利要求1-15任意一项所述的激光测量装置,其特征在于,所述激光测量装置还包括驱动电路,所述驱动电路与所述发光模组电连接,用于驱动所述发光模组发光。
  19. 根据权利要求1-15任意一项所述的激光测量装置,其特征在于,所述激光测量装置还包括信号处理电路,所述信号处理电路与所述收光模组电连接,用于对所述电信号进行处理以得到所述探测物的三维信息。
  20. 根据权利要求19所述的激光测量装置,其特征在于,所述信号处理电路用于根据预设的畸变校正函数校正所述探测物在垂直光轴的平面内的位置坐标。
  21. 根据权利要求1-15任意一项所述的激光测量装置,其特征在于,所述激光测量装置还包括扫描模组,所述扫描模组位于所述发光光路和所述收光光路上,用于将来自所述发光模组的激光脉冲改变至不同传输方向出射、及将被所述探测物反射回的激光脉冲传导至所述收光模组。
  22. 一种可移动平台,其特征在于,包括:
    可移动平台本体;及
    权利要求1-21任意一项所述的激光测量装置,所述激光测量装置安装在所述可移动平台本体上。
  23. 根据权利要求22所述的可移动平台,其特征在于,所述可移动平台本体包括无人机、无人车、无人船、机器人中的至少一种。
PCT/CN2020/139424 2020-12-25 2020-12-25 激光测量装置及可移动平台 WO2022134004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080069550.2A CN114930191A (zh) 2020-12-25 2020-12-25 激光测量装置及可移动平台
PCT/CN2020/139424 WO2022134004A1 (zh) 2020-12-25 2020-12-25 激光测量装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139424 WO2022134004A1 (zh) 2020-12-25 2020-12-25 激光测量装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2022134004A1 true WO2022134004A1 (zh) 2022-06-30

Family

ID=82157265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139424 WO2022134004A1 (zh) 2020-12-25 2020-12-25 激光测量装置及可移动平台

Country Status (2)

Country Link
CN (1) CN114930191A (zh)
WO (1) WO2022134004A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144163B (zh) * 2022-08-31 2022-11-18 柯泰光芯(常州)测试技术有限公司 一种分区点亮半导体激光器模组的自动化liv测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007365A (zh) * 2017-11-21 2018-05-08 大族激光科技产业集团股份有限公司 三维测量系统及使用方法
CN108152830A (zh) * 2017-12-26 2018-06-12 苏州镭图光电科技有限公司 一种激光雷达扫描成像系统及其测量方法
US10254112B1 (en) * 2015-10-29 2019-04-09 National Technology & Engineering Solutions Of Sandia, Llc Full-field surface roughness
US20190120756A1 (en) * 2017-10-25 2019-04-25 Electronics And Telecommunications Research Institute Terahertz reflection imaging system using rotating polyhedral mirror and telecentric f-theta lens
WO2020062080A1 (zh) * 2018-09-28 2020-04-02 深圳市大疆创新科技有限公司 一种激光测距装置及移动设备
CN112505713A (zh) * 2020-11-27 2021-03-16 Oppo(重庆)智能科技有限公司 距离测量装置及方法、计算机可读介质和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10254112B1 (en) * 2015-10-29 2019-04-09 National Technology & Engineering Solutions Of Sandia, Llc Full-field surface roughness
US20190120756A1 (en) * 2017-10-25 2019-04-25 Electronics And Telecommunications Research Institute Terahertz reflection imaging system using rotating polyhedral mirror and telecentric f-theta lens
CN108007365A (zh) * 2017-11-21 2018-05-08 大族激光科技产业集团股份有限公司 三维测量系统及使用方法
CN108152830A (zh) * 2017-12-26 2018-06-12 苏州镭图光电科技有限公司 一种激光雷达扫描成像系统及其测量方法
WO2020062080A1 (zh) * 2018-09-28 2020-04-02 深圳市大疆创新科技有限公司 一种激光测距装置及移动设备
CN112505713A (zh) * 2020-11-27 2021-03-16 Oppo(重庆)智能科技有限公司 距离测量装置及方法、计算机可读介质和电子设备

Also Published As

Publication number Publication date
CN114930191A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
US20230146379A1 (en) Multi-channel lidar sensor module
JP2020521954A5 (zh)
CN108267749A (zh) 校准飞行时间光学系统的光检测器
WO2021244011A1 (zh) 一种距离测量方法、系统及计算机可读存储介质
US20180164414A1 (en) LiDAR Apparatus
KR102209500B1 (ko) 라이다 장치
US10864679B2 (en) Method of manufacturing an optoelectronic sensor
US20200300977A1 (en) Time of flight-based three-dimensional sensing system
CN111965658B (zh) 一种距离测量系统、方法及计算机可读存储介质
US11762151B2 (en) Optical radar device
KR20200102900A (ko) 라이다 장치
US20220163634A1 (en) Active illumination systems for changing illumination wavelength with field angle
CN113015882A (zh) 用于确定至少一个对象的位置的测量头
WO2022134004A1 (zh) 激光测量装置及可移动平台
JP6833924B2 (ja) 光電センサ及び物体検出方法
US20200264284A1 (en) Optoelectronic sensor and method for detecting an object
CN111965659B (zh) 一种距离测量系统、方法及计算机可读存储介质
CN115702363A (zh) 立体图像捕获系统
CN112946666A (zh) 一种激光雷达系统
WO2023201159A1 (en) Photosensor having range parallax compensation
WO2023201160A1 (en) Detector having parallax compensation
WO2022198386A1 (zh) 激光测距装置、激光测距方法和可移动平台
JPH04248509A (ja) 多点測距装置
CN114063111A (zh) 图像融合激光的雷达探测系统及方法
CN114651194A (zh) 用于固态lidar系统的投影仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966569

Country of ref document: EP

Kind code of ref document: A1