CN115036362A - 基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法 - Google Patents

基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法 Download PDF

Info

Publication number
CN115036362A
CN115036362A CN202210610478.0A CN202210610478A CN115036362A CN 115036362 A CN115036362 A CN 115036362A CN 202210610478 A CN202210610478 A CN 202210610478A CN 115036362 A CN115036362 A CN 115036362A
Authority
CN
China
Prior art keywords
substrate
gan
layer
heterojunction
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210610478.0A
Other languages
English (en)
Inventor
许晟瑞
高源�
王心颢
王宇轩
张涛
张金凤
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202210610478.0A priority Critical patent/CN115036362A/zh
Publication of CN115036362A publication Critical patent/CN115036362A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/06Epitaxial-layer growth by reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法,主要解决现有技术在单晶金刚石衬底上外延生长的异质结晶体质量差的问题。其实现方案是:采用单晶金刚石材料作为衬底,且对该衬底进行离子注入和等离子体轰击处理;再在其上磁控溅射AlN层;接着在AlN层上通过MOCVD工艺生长GaN层,并进一步在GaN层上生长AlGaN层,形成自下而上包括衬底、磁控溅射AlN层、GaN外延层和AlGaN外延层的异质结结构。本发明由于对单晶金刚石衬底进行离子注入和轰击处理,因而为在衬底上的后续外延生长提供了更多悬挂键,提高异质结的质量,改善器件的散热能力,可用于大功率GaN基微波功率器件的制备。

Description

基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法
技术领域
本发明属于微电子技术领域,特别涉及一种AlGaN/GaN异质结及制作方法,可用于大功率GaN基微波功率器件的制备。
技术背景
由于硅等传统半导体的应用范围主要集中与高速计算、低功耗以及低电压应用场景,所以第三代半导体应运而生,用于补充传统半导体在高压大功率等应用领域的不足。其中GaN基电子器件被认为在高效率电能转换,微波功率等领域有着巨大的潜力。但是由于材料生长技术的限制,GaN材料目前只能通过异质外延的生长实现。
GaN的异质外延会导致GaN基电子器件热阻上升,严重限制器件微波功率以及大电压电流等应用场景下的性能。对于成熟的GaN外延衬底,无论是蓝宝石衬底,硅衬底,或者SiC衬底,其热导率分别为45,150和390W·m-1·K-1,均不能满足大功率下器件的稳定散热。而金刚石材料为目前自然界具有的最高热导率的材料,单晶金刚石的热导率可以达到2300W·m-1·K-1,有着极好的散热能力,可以很好的适用于GaN基电子器件的大功率应用。因此,目前金刚石衬底上GaN材料的制备成了一个热门的话题,开始被广泛的研究。
近年来,在金刚石衬底与GaN基电子器件的结合方面开展了大量的研究,主要包括低温键合技术、GaN基金刚石外延技术,以及金刚石衬底GaN薄膜外延技术。其中金刚石衬底外延GaN薄膜的技术路线的界面结合强度、界面热阻和整体器件热阻都是最优的,因此更有利于体现金刚石衬底散热能力强的优势。然而目前单晶金刚石衬底上外延的GaN材料由于材料晶系差异、晶格常数差异等问题,其晶体质量较差,且相关研究进展较为缓慢。
综上,由于现有技术下的单晶金刚石基GaN外延工艺无法同时满足高热导率和高晶体质量,进而限制了高质量、高散热能力的GaN基微波功率器件的发展和应用。因此现在迫切需要能有效提升金刚石基GaN材料质量的外延技术。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法,以提高单晶金刚石衬底上异质结的晶体质量,改善器件的散热能力和工作性能。
为实现上述目的,本发明的技术方案如下:
1.一种基于衬底处理的单晶金刚石衬底上的AlGaN/GaN异质结,其自下而上包括:衬底、GaN外延层和AlxGa1-xN外延层,其特征在于:
所述衬底,采用经离子注入和轰击处理后的单晶金刚石衬底,以改善GaN外延层的成核能力;
所述GaN外延层与衬底之间设有磁控溅射AlN层,用于为GaN的外延生长提供成核位点,提高GaN外延层的晶体质量。
所述金刚石衬底的离子注入元素为Al、C、或N,轰击所用等离子体为CF4
所述GaN外延层和AlxGa1-xN外延层之间形成异质结。
进一步,所述磁控溅射AlN层厚度为20-50nm。
进一步,所述GaN外延层,其厚度为200-500nm。
进一步,所述AlxGa1-xN外延层,其厚度为50-150nm,Al含量的调整范围为0.15-0.3。
2.一种基于衬底处理的单晶金刚石衬底上的AlGaN/GaN异质结制备方法,包括如下步骤:
1)对单晶金刚石衬底进行离子注入,注入材料为Al离子、N离子或C离子,注入计量为1015-1016cm-2,注入能量为30keV,注入方式为垂直注入;
2)将离子注入后的衬底进行清洗和烘干;
3)将清洗和烘干后的衬底上使用CF4等离子体进行表面轰击,轰击功率为150W,轰击时间为10min-30min,得到处理后的金刚石衬底;
4)制备磁控溅射AlN层:
在处理后的金刚石衬底上采用标准磁控溅射工艺在表面制备厚度为20nm-50nm的AlN层,完成磁控溅射AlN层的制备;
5)制作AlxGa1-xN/GaN异质结:
5a)在磁控溅射AlN层上,采用MOCVD工艺生长厚度为200-500nm的GaN层(3);
5b)在GaN层上,采用MOCVD工艺生长50-150nm的AlxGa1-xN层,Al含量x的范围为0.15-0.3。
与现有技术相比,本发明具有如下优点:
1.本发明由于采用经离子注入和轰击处理后的单晶金刚石衬底,相较于常规的单晶金刚石衬底,能在衬底表面产生了更多悬挂键,有利于GaN材料进行成核生长,能够提高外延的GaN材料的晶体质量,并提高异质结的晶体质量。
2.本发明由于设置了磁控溅射AlN层,改善了GaN材料在单晶金刚石衬底表面的成核能力,进一步提高了异质结的晶体质量并增强了器件的可靠性。
附图说明
图1是本发明的AlGaN/GaN异质结结构示意图;
图2是本发明制作图1异质结的流程示意图。
具体实施方式
以下结合附图对本发明做进一步详细说明。
参照图1,本发明的AlGaN/GaN异质结包括:衬底1、磁控溅射AlN层2、GaN外延层3、AlxGa1-xN外延层4。其中:
衬底1,采用通过Al离子、N离子或者C离子注入,再进行CF4等离子体轰击后的单晶金刚石,以增加GaN材料的成核能力。
磁控溅射AlN层2位于单晶金刚石衬底1之上,其厚度为20-50nm,用以进一步增加GaN外延层的成核能力。
GaN外延层3位于磁控溅射AlN层2之上,其厚度为200-500nm。
AlxGa1-xN层4位于GaN外延层3之上,其厚度为50nm-150nm,通过调整铝源的流量来调整Al的含量,Al含量的参数x调整范围为0.15-0.30,选取不同的x值可以调整与GaN层3之间的极化强度。
GaN外延层3和AlxGa1-xN层4之间形成异质结。
参照图2,本发明给出制作基于衬底处理的单晶金刚石上AlGaN/GaN异质结的三种实施例。
实施例1,在进行Al离子注入和30min的CF4等离子体处理后的单晶金刚石衬底,上自下而上制作厚度为50nm的磁控溅射AlN层,厚度为500nm的GaN外延层,厚度为150nm的Al0.3Ga0.7N外延层的异质结。
步骤1,对衬底进行处理和清洗,如图2(a)。
1a)将单晶金刚石衬底放入离子注入设备腔体内进行离子注入,注入离子选用Al离子,注入计量为1016cm-2,注入能量为30keV,注入方式为垂直注入;
1b)将离子注入后的衬底放入盛有丙酮溶液的容器内,并将其放入超声波清洗设备中清洗40min;
1c)将清洗后的衬底取出并放入烘干箱中,在80℃的温度下进行烘干处理;
1d)将烘干后的衬底放入稀盐酸溶液中浸泡40s;
1e)将浸泡后的衬底取出并放入烘干箱中,在120℃的温度下再次进行烘干处理;
1f)将烘干后的衬底上使用CF4等离子体进行轰击,轰击功率为150W,轰击时间为30min。
步骤2,制备磁控溅射AlN层,如图2(c)。
采用标准磁控溅射工艺,设置反应室温度为350℃,压力为2.0Pa,溅射功率为300W,使用铝为靶材,氮气为溅射气体,在经过步骤1处理后的单晶金刚石衬底表面溅射厚度为50nm的AlN。
步骤3,生长Al0.3Ga0.7N/GaN异质结。
3a)在磁控溅射AlN层制备完成后,将样品放入MOCVD设备腔体内,设置反应室的温度为1050℃,反应室的压力为30Torr,向反应室中同时通入流量为3500sccm的氨气,流量为90sccm的镓源这两种气体,在磁控溅射AlN层上生长厚度为500nm的GaN外延层,如图2(d);
3b)设置反应室的温度为1100℃,反应室的压力为20Torr,向反应室中同时通入流量为3000sccm的氨气、流量为100sccm的镓源和30sccm的铝源这三种气体,在GaN外延层上生长厚度为150nm的Al0.3Ga0.7N,完成Al0.3Ga0.7N/GaN异质结的制作,如图2(e)。
实施例2,在进行N离子注入和20min的CF4等离子体处理后的单晶金刚石衬底,上自下而上制作厚度为20nm的磁控溅射AlN层,厚度为200nm的GaN外延层,厚度为50nm的Al0.15Ga0.85N外延层的异质结。
步骤一,对衬底进行处理和清洗,如图2(a)。
1.1)将单晶金刚石衬底放入离子注入设备腔体内选用N离子,进行计量为5×1015cm-2,能量为30keV的离子垂直注入;
1.2)将离子注入后的衬底放入盛有丙酮溶液的容器内,并将其放入超声波清洗设备中清洗30min;再将清洗后的衬底取出并放入烘干箱中,在70℃的温度下进行烘干处理;
1.3)将烘干后的衬底放入稀盐酸溶液中浸泡50s,再将浸泡后的衬底取出并放入烘干箱中,在130℃的温度下再次进行烘干处理;
1.4)将烘干后的衬底上使用CF4等离子体,以150W的功率进行轰击20min。
步骤二,制备磁控溅射AlN层,如图2(c)。
采用标准磁控溅射方法,在反应室温度为350℃,压力为2.0Pa,溅射功率为300W,使用铝为靶材,氮气为溅射气体的工艺条件下,对经过步骤一处理后的单晶金刚石衬底表面溅射30nm厚的AlN层。
步骤三,生长Al0.20Ga0.80N/GaN异质结。
3.1)在磁控溅射AlN层制备完成后,将样品放入MOCVD设备腔体内,设置反应室的温度为1100℃,反应室的压力为55Torr,并同时向反应室中通入流量为5600sccm的氨气和流量为100sccm的镓源这两种气体,在磁控溅射AlN层上生长厚度为200nm的GaN外延层,如图2(d);
3.2)设置反应室的温度为1050℃,反应室的压力为40Torr,向反应室中同时通入流量为3200sccm的氨气、流量为100sccm的镓源和25sccm的铝源这三种气体,在GaN外延层上生长厚度50nm的Al0.2Ga0.8N,完成Al0.20Ga0.80N/GaN异质结的制作,如图2(e)。
实施例3,在进行C离子注入和10min的CF4等离子体处理后的单晶金刚石衬底,上自下而上制作厚度为40nm的磁控溅射AlN层,厚度为300nm的GaN外延层,厚度为100nm的Al0.2Ga0.8N外延层的异质结。
步骤A,对衬底进行处理和清洗,如图2(a)。
A1)将单晶金刚石衬底放入离子注入设备腔体内进行离子注入,注入离子选用C离子,注入计量为1015cm-2,注入能量为30keV,注入方式为垂直注入;
A2)将离子注入后的衬底放入盛有丙酮溶液的容器内,并将其放入超声波清洗设备中清洗35min;将清洗后的衬底取出并放入烘干箱中,在60℃的温度下进行烘干处理;再将烘干后的衬底放入稀盐酸溶液中浸泡55s;
A3)将浸泡后的衬底取出并放入烘干箱中,在140℃的温度下再次进行烘干处理;
A4)将烘干后的衬底上使用CF4等离子体进行轰击,轰击功率为150W,轰击时间为10min。
步骤B,制备磁控溅射AlN层,如图2(c)。
采用标准磁控溅射工艺,设置反应室温度为350℃,压力为2.0Pa,溅射功率为300W,使用铝为靶材,氮气为溅射气体的条件参数。在经过步骤A处理后的单晶金刚石衬底表面溅射厚度为40nm的AlN层。
步骤C,生长Al0.15Ga0.85N/GaN异质结。
C1)在磁控溅射AlN层制备完成后,将样品放入MOCVD设备腔体内,设置反应室的温度为1000℃,反应室的压力为20Torr,向反应室中同时通入流量为3400sccm的氨气,流量为50sccm的镓源这两种气体,在磁控溅射AlN层上生长厚度为300nm的GaN外延层,如图2(d);
C2)设置反应室的温度为1100℃,反应室的压力为55Torr,向反应室中同时通入流量为3400sccm的氨气、流量为100sccm的镓源和20sccm的铝源这三种气体,在GaN外延层上生长厚度100nm的Al0.15Ga0.85N,完成Al0.15Ga0.85N/GaN异质结的制作,如图2(e)。
以上描述仅是本发明的三个具体实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明的原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (9)

1.一种基于衬底处理的单晶金刚石衬底上的AlGaN/GaN异质结,其自下而上包括:衬底(1)、GaN外延层(3)和AlxGa1-xN外延层(4),其特征在于:
所述衬底(1),采用经离子注入和轰击处理后的单晶金刚石衬底,以改善GaN外延层的成核能力;
所述GaN外延层(3)与衬底(1)之间设有磁控溅射AlN层(2),用于为GaN的外延生长提供成核位点,提高GaN外延层的晶体质量。
所述金刚石衬底的离子注入元素为Al、C、或N,轰击所用等离子体为CF4。
所述GaN外延层(3)和AlxGa1-xN外延层(4)之间形成异质结。
2.根据权利要求1所述的异质结,其特征在于:所述磁控溅射AlN层(2)厚度为20-50nm。
3.根据权利要求1所述的异质结,其特征在于:所述GaN外延层(3),其厚度为200-500nm。
4.根据权利要求1所述的异质结,其特征在于:所述AlxGa1-xN外延层(4),其厚度为50-150nm,Al含量的调整范围为0.15-0.3。
5.一种基于衬底处理的单晶金刚石衬底上的AlGaN/GaN异质结制备方法,包括如下步骤:
1)对单晶金刚石衬底(1)进行离子注入,注入材料为Al离子、N离子或C离子,注入计量为1015-1016cm-2,注入能量为30keV,注入方式为垂直注入;
2)将离子注入后的衬底进行清洗和烘干;
3)将清洗和烘干后的衬底上使用CF4等离子体进行表面轰击,轰击功率为150W,轰击时间为10min-30min,得到处理后的金刚石衬底(1);
4)制备磁控溅射AlN层:
在处理后的金刚石衬底(1)上采用标准磁控溅射工艺在表面制备厚度为20nm-50nm的AlN层,完成磁控溅射AlN层(2)的制备;
5)制作AlxGa1-xN/GaN异质结:
5a)在磁控溅射AlN层(2)上,采用MOCVD工艺生长厚度为200-500nm的GaN层(3);
5b)在GaN层(3)上,采用MOCVD工艺生长50-150nm的AlxGa1-xN层(4),Al含量x的范围为0.15-0.3。
6.根据权利要求5所述的方法,其特征在于,所述2)中对离子注入后的衬底进行清洗和烘干,采用标准的清洗工艺,实现如下:
2a)将衬底放入盛有丙酮溶液的容器内,将其放入超声波清洗设备中清洗30-40min;
2b)将清洗后的衬底取出并放入烘干箱内,在60-80℃的温度下进行烘干处理;
2c)将烘干后的衬底放入稀盐酸溶液中浸泡40-55s;
2d)将浸泡后的衬底取出并放入烘干箱内,在120-140摄氏度的温度下再次进行烘干处理。
7.根据权利要求5所述的方法,其特征在于,步骤4)中采用的磁控溅射工艺生长AlN层,条件参数设置如下:
反应室温度为350℃,
压力为2.0Pa,
溅射功率为300W,
靶材为铝,溅射气体为氮气。
8.根据权利要求5所述的方法,其特征在于:步骤5a)中采用的MOCVD工艺,条件参数设置如下:
反应室温度为1000-1100℃,压力为20-55Torr;
向反应室中同时通入流量为3400-5600sccm的氨气和流量为50-100sccm的镓源这两种气体。
9.根据权利要求5所述的方法,其特征在于,步骤5b)中采用的MOCVD工艺,条件参数设置如下:
反应室温度为1000-1100℃、压力为20-55Torr;
向反应室同时通入流量为3000-3400sccm的氨气、流量为100sccm的镓源、流量为20-30sccm的铝源和这三种气体。
CN202210610478.0A 2022-05-31 2022-05-31 基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法 Pending CN115036362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210610478.0A CN115036362A (zh) 2022-05-31 2022-05-31 基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210610478.0A CN115036362A (zh) 2022-05-31 2022-05-31 基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法

Publications (1)

Publication Number Publication Date
CN115036362A true CN115036362A (zh) 2022-09-09

Family

ID=83123835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210610478.0A Pending CN115036362A (zh) 2022-05-31 2022-05-31 基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法

Country Status (1)

Country Link
CN (1) CN115036362A (zh)

Similar Documents

Publication Publication Date Title
CN105861987A (zh) 基于六方氮化硼和磁控溅射氮化铝的氮化镓生长方法
CN104051232A (zh) 具有AlzGa1-zN层的半导体晶片及其制造方法
CN108010956B (zh) 一种硅衬底上N极性面高频GaN整流器外延结构及其制备方法
CN110783177A (zh) 一种在蓝宝石模板上生长图形化GaN的方法及一种GaN外延片
WO2023087543A1 (zh) N极性GaN/AlGaN异质结外延结构及其制备方法
JP2004111848A (ja) サファイア基板とそれを用いたエピタキシャル基板およびその製造方法
CN115101639A (zh) InGaN基光电子器件的复合衬底及其制备方法和应用
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
US20230307249A1 (en) Heteroepitaxial structure with a diamond heat sink
CN113871303A (zh) 一种β-Ga2O3薄膜的制备方法及β-Ga2O3薄膜
CN210897292U (zh) 氮化镓外延层及半导体器件
JP6783063B2 (ja) 窒化物半導体テンプレートおよび窒化物半導体積層物
CN109545852A (zh) 非极性InAlN/GaN高电子迁移率晶体管及制备方法
CN109301027B (zh) 基于非极性InAlN/GaN异质结构的辐照探测器及其制备方法
CN109300974A (zh) 一种非极性InAlN/GaN高电子迁移率晶体管及制备方法
CN115036362A (zh) 基于衬底处理的单晶金刚石上AlGaN/GaN异质结及制备方法
CN112530803B (zh) GaN基HEMT器件的制备方法
CN101901758A (zh) 基于m面SiC衬底的非极性m面GaN薄膜的MOCVD生长方法
CN115274941A (zh) 一种外延片制备方法、外延片及led芯片
CN114899258A (zh) 非极性AlGaN基深紫外光电探测器外延结构及其制备方法
JP2005203666A (ja) 化合物半導体デバイスの製造方法
CN112736135B (zh) 基于质子辐照处理的金刚石基InAlN/GaN高电子迁移率晶体管及制备方法
CN111415858A (zh) AlN或AlGaN薄膜材料的制备方法及应用
CN110838518A (zh) 一种hemt器件的外延结构及其制备方法和应用
RU2802796C1 (ru) Гетероэпитаксиальная структура с алмазным теплоотводом для полупроводниковых приборов и способ ее изготовления

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination