CN115021073A - A high-power silicon-based semiconductor laser based on apodized gratings - Google Patents
A high-power silicon-based semiconductor laser based on apodized gratings Download PDFInfo
- Publication number
- CN115021073A CN115021073A CN202210486992.8A CN202210486992A CN115021073A CN 115021073 A CN115021073 A CN 115021073A CN 202210486992 A CN202210486992 A CN 202210486992A CN 115021073 A CN115021073 A CN 115021073A
- Authority
- CN
- China
- Prior art keywords
- grating
- apodized
- thickness
- layer
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 34
- 239000010703 silicon Substances 0.000 title claims abstract description 34
- 239000004065 semiconductor Substances 0.000 title claims abstract description 27
- 230000003287 optical effect Effects 0.000 claims abstract description 24
- 238000005253 cladding Methods 0.000 claims abstract description 22
- 125000006850 spacer group Chemical group 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 230000008878 coupling Effects 0.000 claims description 38
- 238000010168 coupling process Methods 0.000 claims description 38
- 238000005859 coupling reaction Methods 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 36
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- 230000004888 barrier function Effects 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 6
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 abstract description 16
- 238000005516 engineering process Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001459 lithography Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1231—Grating growth or overgrowth details
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明涉及一种基于切趾光栅的高功率硅基半导体激光器,包括:衬底、埋入氧化层、波导层、辅助键合层、间隔层、包层、量子阱有源区、顶包覆层、欧姆接触层、P型电极、N型电极;波导层中沿谐振腔的腔长方向刻蚀有切趾光栅;本发明通过切趾光栅的设计,激光器腔两端光子密度具有不对称性,输出光功率及利用效率明显提升,在保证稳定单模输出的同时,有效解决λ/4相移激光器出光功率/效率低的问题。与λ/4相移激光器相比,本发明基于切趾光栅的谐振腔具有更加平缓的腔内光场分布,从而解决λ/4相移激光器的空间烧孔的影响,得到更好的激光器性能。
The invention relates to a high-power silicon-based semiconductor laser based on apodization grating, comprising: a substrate, a buried oxide layer, a waveguide layer, an auxiliary bonding layer, a spacer layer, a cladding layer, a quantum well active region, and a top cladding layer, ohmic contact layer, P-type electrode, and N-type electrode; an apodized grating is etched in the waveguide layer along the cavity length direction of the resonant cavity; the invention adopts the design of the apodized grating, and the photon density at both ends of the laser cavity has asymmetry , the output optical power and utilization efficiency are significantly improved, while ensuring stable single-mode output, it effectively solves the problem of low output optical power/efficiency of the λ/4 phase-shift laser. Compared with the λ/4 phase-shift laser, the resonant cavity based on the apodized grating of the present invention has a more gentle distribution of the light field in the cavity, so as to solve the influence of the spatial hole burning of the λ/4 phase-shift laser and obtain better laser performance. .
Description
技术领域technical field
本发明涉及一种基于切趾光栅的高功率硅基半导体激光器,属于光电子技术领域。The invention relates to a high-power silicon-based semiconductor laser based on an apodized grating, belonging to the technical field of optoelectronics.
背景技术Background technique
随着硅光子集成技术在高速率光通信、大数据以及高效率计算等领域的应用,实现高效率的硅光集成光源成为人们关注的重点。由于硅是间接带隙半导体材料,存在自由载流子吸收、俄歇复合和间接复合效应,光辐射效率极低,难以制备成激光光源。目前,利用晶圆键合技术,将直接带隙III-V族半导体增益材料粘附在绝缘体上的硅(SOI)波导上方可以综合SOI材料高折射率差和III-V族材料高增益的优势,已经成为制作硅基激光器的主流方案之一。With the application of silicon photonics integration technology in the fields of high-speed optical communication, big data, and high-efficiency computing, the realization of high-efficiency silicon photonics integrated light sources has become the focus of attention. Since silicon is an indirect band gap semiconductor material, there are free carrier absorption, Auger recombination and indirect recombination effects, and the light radiation efficiency is extremely low, making it difficult to prepare a laser light source. At present, the advantages of high refractive index difference of SOI material and high gain of III-V material can be combined by using wafer bonding technology to adhere the direct bandgap III-V semiconductor gain material above the silicon-on-insulator (SOI) waveguide. , has become one of the mainstream solutions for making silicon-based lasers.
分布式反馈激光器(DFB-LD)由于可以在一定的电流范围以及温度范围内实现稳定的单模输出,在III-V/SOI混合集成平台中得到普遍应用。一般均匀光栅的DFB激光器,当激光器两端腔面反射率为0时,在布拉格波长两边存在两个兼并的纵模,无法实现单模输出。在传统的III-V族DFB激光器中,可以通过在腔两端镀膜的方式,引入端面的反射与随机的相位,一定程度上消除模式兼并问题,实现激光器的单模输出。然而当应用于III-V/SOI混合集成时,难以将激光器切割并在端面镀膜,因此硅基III-V族DFB激光器通常采用在腔中心引入一个四分之一波长(λ/4)相移区的方式,实现激光器的单模输出。这种λ/4相移激光器在布拉格波长处具有最低阈值增益,可以形成稳定的单模输出,并且得益于成熟的CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺,相较于III-V族DFB激光器可以大大减小光栅的制作难度。但是由于腔的对称性,光在腔两端的输出功率相等,通常只有一端的输出光可以得到利用,这导致激光器输出光功率和利用效率较低,且λ/4相移激光器腔内光场大多集中于腔的中心位置容易导致严重的纵向空间烧孔效应,一定程度上限制了激光器的性能。Distributed feedback lasers (DFB-LDs) are widely used in III-V/SOI hybrid integration platforms because they can achieve stable single-mode output in a certain current range and temperature range. Generally, for a DFB laser with a uniform grating, when the reflectivity of the cavity surfaces at both ends of the laser is 0, there are two merged longitudinal modes on both sides of the Bragg wavelength, and single-mode output cannot be achieved. In the traditional III-V DFB laser, the reflection and random phase of the end face can be introduced by coating both ends of the cavity, which can eliminate the mode merger problem to a certain extent and realize the single-mode output of the laser. However, when applied to III-V/SOI hybrid integration, it is difficult to cut the laser and coat the end faces, so silicon-based III-V DFB lasers usually introduce a quarter-wavelength (λ/4) phase shift in the center of the cavity. The mode of the region realizes the single-mode output of the laser. This λ/4 phase-shift laser has the lowest threshold gain at the Bragg wavelength, can form a stable single-mode output, and benefits from the mature CMOS (Complementary Metal Oxide Semiconductor) process, compared to III -V group DFB laser can greatly reduce the difficulty of making gratings. However, due to the symmetry of the cavity, the output power of the light at both ends of the cavity is equal, and usually only the output light of one end can be used, which leads to the low output optical power and utilization efficiency of the laser, and the optical field in the cavity of the λ/4 phase-shift laser is mostly Concentrating on the central position of the cavity easily leads to severe vertical space hole burning effect, which limits the performance of the laser to a certain extent.
发明内容SUMMARY OF THE INVENTION
本发明采用切趾光栅,使谐振腔两端出光具有不对称性,输出光功率和利用效率明显提升,在保证稳定单模输出的同时,有效解决λ/4相移激光器输出光功率和利用效率低的问题。The invention adopts the apodized grating, so that the light output at both ends of the resonator has asymmetry, the output optical power and utilization efficiency are obviously improved, and the output optical power and utilization efficiency of the λ/4 phase-shift laser are effectively solved while ensuring stable single-mode output. low problem.
与λ/4相移激光器相比,本发明的激光器谐振腔具有更加平缓的腔内光场分布,可以有效减小λ/4相移激光器的空间烧孔问题,得到更好的激光器性能。Compared with the λ/4 phase-shift laser, the laser resonator of the present invention has a smoother intra-cavity optical field distribution, which can effectively reduce the space hole burning problem of the λ/4 phase-shift laser and obtain better laser performance.
术语解释:Terminology Explanation:
1、光栅耦合系数,光栅周期性波纹结构可以使本来沿腔长方向独立传播的前向和后向波之间产生了分布式的相互耦合,光栅耦合系数可以表征光栅的反馈强弱,即前、后向光之间耦合强弱,是DFB激光器重要参数,表达式如下:1. Grating coupling coefficient. The periodic corrugated structure of the grating can generate distributed mutual coupling between the forward and backward waves that originally propagated independently along the cavity length direction. The grating coupling coefficient can characterize the feedback strength of the grating, that is, the forward , the coupling strength between the backward light is an important parameter of the DFB laser, and the expression is as follows:
其中,D表示占空比,表示光栅同一周期中高折射率部分和低折射率部分的有效折射率,λ0为布拉格波长。where D represents the duty cycle, represents the effective refractive index of the high refractive index part and the low refractive index part in the same period of the grating, and λ 0 is the Bragg wavelength.
2、有效折射率,有效折射率用来描述相对于真空中单位长度相位延迟而言,波导中单位长度相位延迟的量,定义为neff=β/k0。其中,β指的是光波的传播常数,描述为光在介质或者波导中传播单位距离上的相位变化;k0为真空波数。2. Effective refractive index, the effective refractive index is used to describe the amount of phase retardation per unit length in the waveguide relative to the phase retardation per unit length in vacuum, and is defined as n eff =β/k 0 . Among them, β refers to the propagation constant of light wave, which is described as the phase change of light propagating unit distance in medium or waveguide; k 0 is the vacuum wave number.
3、二氧化硅介质层分子键合技术,就是指通过SiO2介质层作为键合界面的分子键合技术。3. The molecular bonding technology of the silicon dioxide dielectric layer refers to the molecular bonding technology that uses the SiO2 dielectric layer as the bonding interface.
键合技术主要原理是将III-V直接带隙的半导体材料通过键合技术粘附在SOI硅波导上方,可以避免异质外延生长晶格不匹配的难题,而且其工艺简单,可集成度高,因此具有非常好的应用前景。按照键合材料的不同,可以利用四种不同的键合技术制备用于硅光互连的混合集成单模硅基激光器:Flip-chip键合技术、直接分子键合技术、SiO2介质层分子键合技术、DVS-BCB键合技术。The main principle of the bonding technology is to adhere the III-V direct bandgap semiconductor material on the SOI silicon waveguide by bonding technology, which can avoid the problem of lattice mismatch in heteroepitaxial growth, and the process is simple and can be highly integrated. , so it has a very good application prospect. According to the different bonding materials, four different bonding technologies can be used to prepare hybrid integrated single-mode silicon-based lasers for silicon photonic interconnection: Flip-chip bonding technology, direct molecular bonding technology, SiO 2 dielectric layer molecules Bonding technology, DVS-BCB bonding technology.
直接分子键合技术在其键合过程中会生成H2和H2O,导致键合层内部存在气泡,因此会降低键合质量以及成品率。SiO2介质层分子键合技术可以有效解决键合过程中生成副气体的问题,提高键合质量,并且提高增益区与硅波导间的耦合效率。The direct molecular bonding technique generates H 2 and H 2 O during its bonding process, resulting in the existence of air bubbles inside the bonding layer, thus reducing the bonding quality and yield. The SiO 2 dielectric layer molecular bonding technology can effectively solve the problem of auxiliary gas generated during the bonding process, improve the bonding quality, and improve the coupling efficiency between the gain region and the silicon waveguide.
本发明的技术方案为:The technical scheme of the present invention is:
一种基于切趾光栅的高功率硅基半导体激光器,包括:衬底、埋入氧化层、波导层、辅助键合层、间隔层、包层、量子阱有源区、顶包覆层、欧姆接触层、P型电极、N型电极;A high-power silicon-based semiconductor laser based on apodization grating, comprising: substrate, buried oxide layer, waveguide layer, auxiliary bonding layer, spacer layer, cladding layer, quantum well active region, top cladding layer, ohmic layer Contact layer, P-type electrode, N-type electrode;
所述波导层中沿谐振腔的腔长方向刻蚀有切趾光栅;An apodized grating is etched in the waveguide layer along the cavity length direction of the resonant cavity;
通过调制切趾光栅的横向宽度,使得谐振腔的有效折射率及光栅耦合系数沿谐振腔的腔长方向变化。By modulating the lateral width of the apodized grating, the effective refractive index of the resonant cavity and the coupling coefficient of the grating are changed along the cavity length direction of the resonant cavity.
进一步优选的,通过调制切趾光栅的横向宽度,使得谐振腔的有效折射率及光栅耦合系数沿谐振腔的腔长方向变化,通过调整、选择合适的光栅横向宽度,来选择光栅低折射率部分和高折射率部分的有效折射率从而选择光栅的有效折射率neff和光栅耦合系数k; D表示占空比,λ0为布拉格波长。Further preferably, by modulating the transverse width of the apodized grating, the effective refractive index of the resonant cavity and the coupling coefficient of the grating are changed along the cavity length direction of the resonant cavity, and the low refractive index part of the grating is selected by adjusting and selecting an appropriate transverse width of the grating. and the effective refractive index of the high refractive index part Thus, the effective refractive index n eff of the grating and the coupling coefficient k of the grating are selected; D represents the duty cycle, and λ 0 is the Bragg wavelength.
根据本发明优选的,谐振腔从左到右依次划分为第一均匀区域、切趾区域及第二均匀区域,第一均匀区域及第二均匀区域中,光栅耦合系数及有效折射率保持不变;切趾区域中,光栅耦合系数及有效折射率呈线性变化。Preferably according to the present invention, the resonant cavity is divided into a first uniform area, an apodization area and a second uniform area in sequence from left to right. In the first uniform area and the second uniform area, the grating coupling coefficient and effective refractive index remain unchanged ; In the apodized region, the grating coupling coefficient and effective refractive index change linearly.
进一步优选的,设第一均匀区域有效折射率为neff1,光栅耦合系数k1;第二均匀区域有效折射率为neff2,光栅耦合系数k2;切趾区域光栅耦合系数从k1到k2线性变化,有效折射率从neff1到neff2线性变化;Further preferably, set the effective refractive index of the first uniform region as n eff1 , and the grating coupling coefficient k 1 ; the effective refractive index of the second uniform region is n eff2 , the grating coupling coefficient k 2 ; the grating coupling coefficient of the apodized region is from k 1 to k 2 Linear change, the effective refractive index changes linearly from n eff1 to n eff2 ;
假设第一均匀区域、切趾区域、第二均匀区域的长度分别为l1、l2、l3,设切趾区域某一位置距离谐振腔最左端的距离为z,0<z<l1+l2+l3,切趾区域光栅耦合系数分布k(z)和有效折射率分布neff(z)表示为式(I)和式(II):Assuming that the lengths of the first uniform region, the apodized region, and the second uniform region are l 1 , l 2 , and l 3 respectively, and the distance from a certain position of the apodized region to the leftmost end of the resonator is z, 0<z<l 1 +l 2 +l 3 , the apodized region grating coupling coefficient distribution k(z) and effective refractive index distribution n eff (z) are expressed as equations (I) and (II):
通过仿真确定最优的neff1、neff2、k1、k2,使输出光获得最高的SMSR和最高的输出光功率以及平滑的光场分布。The optimal n eff1 , n eff2 , k 1 , and k 2 are determined through simulation, so that the output light can obtain the highest SMSR, the highest output optical power and a smooth light field distribution.
根据本发明优选的,切趾光栅沿谐振腔的腔长方向的总长度为300-1000μm,第一均匀区域沿谐振腔的腔长方向的长度为200-900μm,切趾区域沿谐振腔的腔长方向的长度为5-50μm,第二均匀区域沿谐振腔的腔长方向的长度为30-200μm。Preferably according to the present invention, the total length of the apodized grating along the cavity length direction of the resonant cavity is 300-1000 μm, the length of the first uniform region along the cavity length direction of the resonant cavity is 200-900 μm, and the apodized region along the cavity length direction of the resonant cavity is 200-900 μm. The length in the long direction is 5-50 μm, and the length of the second uniform region along the cavity length direction of the resonant cavity is 30-200 μm.
根据本发明优选的,切趾光栅的占空比为0.4-0.6。Preferably according to the present invention, the duty cycle of the apodized grating is 0.4-0.6.
根据本发明优选的,切趾光栅的光栅宽度W1为0-2μm,切趾光栅的光栅宽度W2为0.3-7μm;光栅宽度W1是指光栅低折射率部分的宽度;光栅宽度W2是指光栅高折射率部分的宽度。Preferably according to the present invention, the grating width W 1 of the apodized grating is 0-2 μm, and the grating width W 2 of the apodized grating is 0.3-7 μm; the grating width W 1 refers to the width of the low refractive index portion of the grating; the grating width W 2 is the width of the high refractive index portion of the grating.
进一步优选的,切趾光栅沿谐振腔的腔长方向的总长度为500μm,第一均匀区域沿谐振腔的腔长方向的长度为410μm,切趾区域沿谐振腔的腔长方向的长度为20μm,第二均匀区域沿谐振腔的腔长方向的长度为70μm;切趾光栅的光栅周期为240.3nm,切趾光栅的占空比为0.5;切趾光栅的光栅宽度W1取0-2μm,切趾光栅的光栅宽度W2取0.3-7μm。Further preferably, the total length of the apodized grating along the cavity length direction of the resonant cavity is 500 μm, the length of the first uniform region along the cavity length direction of the resonant cavity is 410 μm, and the length of the apodized grating along the cavity length direction of the resonant cavity is 20 μm. , the length of the second uniform region along the cavity length direction of the resonator is 70 μm; the grating period of the apodized grating is 240.3 nm, and the duty cycle of the apodized grating is 0.5; the grating width W1 of the apodized grating is 0-2 μm, The grating width W 2 of the apodized grating takes 0.3-7 μm.
根据本发明优选的,所述波导层中沿谐振腔的腔长方向刻蚀有切趾光栅,包括:Preferably according to the present invention, an apodized grating is etched in the waveguide layer along the cavity length direction of the resonant cavity, including:
首先,在所述波导层表面沉积一层光刻掩膜,进行光刻形成图形化结构;接着,进行干法刻蚀,形成第一刻蚀深度光栅结构;First, a layer of photolithography mask is deposited on the surface of the waveguide layer, and photolithography is performed to form a patterned structure; then, dry etching is performed to form a first etching depth grating structure;
其次,依次进行光刻和干法刻蚀,形成第二刻蚀深度光栅结构;Next, photolithography and dry etching are performed in sequence to form a second etching depth grating structure;
最后,依次进行光刻和干法刻蚀,直至刻蚀至埋入氧化层,形成条波导。Finally, photolithography and dry etching are sequentially performed until the buried oxide layer is etched to form a strip waveguide.
根据本发明优选的,所述衬底的材质为Si;所述埋入氧化层的材质为SiO2,厚度为0.5-3μm;所述波导层的材质为Si,厚度为220-500nm;所述辅助键合层的材质为SiO2,厚度为0-300nm;所述间隔层的材质为InP,厚度为10-200nm;所述包层的材质为SiO2,厚度为200-3000nm;所述量子阱有源区的材质为InAlGaAs或InGaAsP,厚度为300-600nm,宽度为1.5-10μm;所述顶包覆层的材质为InP,厚度为1.4-1.8μm,顶端宽度为1.5-10μm,底端宽度为1.5-9μm;所述欧姆接触层的材质为InGaAs,厚度为150nm;所述P型电极的材质为TiPtAu-Au或Ti/Al,厚度为200-4000nm;所述N型电极的材质为TiPtAu-Au或Ti/Al,厚度为200-4000nm。Preferably according to the present invention, the material of the substrate is Si; the material of the buried oxide layer is SiO 2 , and the thickness is 0.5-3 μm; the material of the waveguide layer is Si, and the thickness is 220-500 nm; The auxiliary bonding layer is made of SiO 2 with a thickness of 0-300 nm; the spacer layer is made of InP with a thickness of 10-200 nm; the cladding layer is made of SiO 2 and has a thickness of 200-3000 nm; the quantum The material of the well active region is InAlGaAs or InGaAsP, the thickness is 300-600nm, and the width is 1.5-10μm; the material of the top cladding layer is InP, the thickness is 1.4-1.8μm, the top width is 1.5-10μm, and the bottom end is 1.5-10μm. The width is 1.5-9 μm; the material of the ohmic contact layer is InGaAs, and the thickness is 150nm; the material of the P-type electrode is TiPtAu-Au or Ti/Al, and the thickness is 200-4000nm; the material of the N-type electrode is TiPtAu-Au or Ti/Al with a thickness of 200-4000nm.
进一步优选的,所述衬底的厚度为750μm;所述埋入氧化层的厚度为1000nm;所述波导层的厚度为400nm;所述辅助键合层的厚度为70nm;所述间隔层的厚度为150nm;所述包层的厚度为2000nm;所述量子阱有源区的厚度为400nm,宽度为7μm,所述量子阱有源区包括三个阱层和四个垒层,交叉排列,每个阱层厚度为7nm,每个垒层厚度为9nm;所述顶包覆层的厚度为1.6μm,顶端宽度为4μm,底端宽度为2.5μm;所述欧姆接触层的厚度为150nm;所述P型电极的厚度为2000nm;所述N型电极的厚度为2000nm。Further preferably, the thickness of the substrate is 750 μm; the thickness of the buried oxide layer is 1000 nm; the thickness of the waveguide layer is 400 nm; the thickness of the auxiliary bonding layer is 70 nm; the thickness of the spacer layer is 150 nm; the thickness of the cladding layer is 2000 nm; the thickness of the quantum well active region is 400 nm and the width is 7 μm, and the quantum well active region includes three well layers and four barrier layers, which are arranged in a cross, each The thickness of each well layer is 7 nm, and the thickness of each barrier layer is 9 nm; the thickness of the top cladding layer is 1.6 μm, the top width is 4 μm, and the bottom width is 2.5 μm; the thickness of the ohmic contact layer is 150 nm; The thickness of the P-type electrode is 2000 nm; the thickness of the N-type electrode is 2000 nm.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明综合了III-V增益芯片高发光效率和SOI硅光芯片高集成度和高传输容量的优势。同时,通过切趾光栅的设计,激光器腔两端光子密度具有不对称性,输出光功率及利用效率明显提升,在保证稳定单模输出的同时,有效解决λ/4相移激光器出光功率/效率低的问题。与λ/4相移激光器相比,本发明基于切趾光栅的谐振腔具有更加平缓的腔内光场分布,从而解决λ/4相移激光器的空间烧孔的影响,得到更好的激光器性能。The invention combines the advantages of the high luminous efficiency of the III-V gain chip and the high integration and high transmission capacity of the SOI silicon optical chip. At the same time, through the design of the apodized grating, the photon density at both ends of the laser cavity has asymmetry, and the output optical power and utilization efficiency are significantly improved. While ensuring stable single-mode output, the output power/efficiency of the λ/4 phase-shifted laser can be effectively solved. low problem. Compared with the λ/4 phase-shift laser, the resonant cavity based on the apodized grating of the present invention has a more gentle distribution of the light field in the cavity, so as to solve the influence of the spatial hole burning of the λ/4 phase-shift laser and obtain better laser performance. .
附图说明Description of drawings
图1为本发明基于切趾光栅的高功率硅基半导体激光器的结构示意图;1 is a schematic structural diagram of a high-power silicon-based semiconductor laser based on apodized gratings of the present invention;
图2为本发明切趾光栅的示意图;Fig. 2 is the schematic diagram of apodized grating of the present invention;
图3为本发明基于切趾光栅的高功率硅基半导体激光器的激射光谱示意图;3 is a schematic diagram of a lasing spectrum of a high-power silicon-based semiconductor laser based on apodized gratings of the present invention;
图4为归一化腔内光子浓度示意图;Fig. 4 is a schematic diagram of normalized intracavity photon concentration;
图5为本发明基于切趾光栅的高功率硅基半导体激光器的LI曲线示意图。FIG. 5 is a schematic diagram of the LI curve of the high-power silicon-based semiconductor laser based on the apodized grating of the present invention.
1、衬底,2、埋入氧化层,3、波导层,4、辅助键合层,5、间隔层,6、包层,7、量子阱有源区,8、顶包覆层,9、欧姆接触层,10、P型电极,11、N型电极。1. Substrate, 2. Buried oxide layer, 3. Waveguide layer, 4. Auxiliary bonding layer, 5. Spacer layer, 6. Cladding layer, 7. Quantum well active region, 8. Top cladding layer, 9 , Ohmic contact layer, 10, P-type electrode, 11, N-type electrode.
具体实施方式Detailed ways
下面结合说明书附图和实施例对本发明作进一步限定,但不限于此。The present invention is further defined below with reference to the accompanying drawings and embodiments of the description, but is not limited thereto.
实施例1Example 1
一种基于切趾光栅的高功率硅基半导体激光器,如图1所示,包括:衬底1、埋入氧化层2、波导层3、辅助键合层4、间隔层5、包层6、量子阱有源区7、顶包覆层8、欧姆接触层9、P型电极10、N型电极11;A high-power silicon-based semiconductor laser based on an apodized grating, as shown in Figure 1, includes: a
波导层3中沿谐振腔的腔长方向刻蚀有切趾光栅;包括:切趾光栅通过标准的硅光CMOS工艺加工而成,一般分三步刻蚀:首先,在波导层3表面沉积一层光刻掩膜,利用高精度光刻设备进行光刻形成图形化结构;接着,进行干法刻蚀,形成第一刻蚀深度光栅结构;其次,依次进行光刻和干法刻蚀,形成第二刻蚀深度光栅结构;最后,依次进行光刻和干法刻蚀,直至刻蚀至埋入氧化层2,形成条波导。In the
通过调制切趾光栅的横向宽度,使得谐振腔的有效折射率及光栅耦合系数沿谐振腔的腔长方向变化。By modulating the lateral width of the apodized grating, the effective refractive index of the resonant cavity and the coupling coefficient of the grating are changed along the cavity length direction of the resonant cavity.
实施例2Example 2
根据实施例1所述的一种基于切趾光栅的高功率硅基半导体激光器,其区别在于:A high-power silicon-based semiconductor laser based on an apodized grating according to
通过调制切趾光栅的横向宽度,使得谐振腔的有效折射率及光栅耦合系数沿谐振腔的腔长方向变化,波导模式的有效折射率与波导尺寸相关,通过有限差分法仿真,可以得到特定波导尺寸下波导模式的有效折射率,因此,通过调整、选择合适的光栅横向宽度,来选择光栅低折射率部分和高折射率部分的有效折射率从而选择光栅总体的有效折射率neff和光栅耦合系数k;D表示占空比,λ0为布拉格波长。By modulating the lateral width of the apodized grating, the effective refractive index of the resonator and the coupling coefficient of the grating change along the cavity length of the resonator. The effective refractive index of the waveguide mode is related to the size of the waveguide. Through the finite difference method simulation, a specific waveguide can be obtained. The effective refractive index of the waveguide mode under the size, therefore, the effective refractive index of the low-refractive index part and the high-refractive index part of the grating can be selected by adjusting and selecting the appropriate lateral width of the grating Thereby, the effective refractive index n eff of the grating and the coupling coefficient k of the grating are selected; D represents the duty cycle, and λ 0 is the Bragg wavelength.
本发明通过有效折射率的变化,引入了相对相移,可以改变阻带两边基模之间的阈值增益之差以及基模与高阶模的阈值增益之差,从而打破双模简并现象,得到首选的激射模式。采用上述切趾光栅实现激光器的单模工作,与λ/4相移激光器相比,腔内光场分布更加平滑,有效减小了空间烧孔效应。本发明还通过设计光栅耦合系数沿腔长方向的变化,可以改变腔内光子密度和载流子密度的分布,使其沿腔的纵向分布变得不对称,使输出端附近的光子密度更大,从而提高激光器输出光功率。The invention introduces the relative phase shift through the change of the effective refractive index, which can change the threshold gain difference between the fundamental modes on both sides of the stop band and the threshold gain difference between the fundamental mode and the high-order mode, thereby breaking the double-mode degeneracy phenomenon and obtaining the first choice. lasing mode. Using the above-mentioned apodized grating to realize the single-mode operation of the laser, compared with the λ/4 phase-shift laser, the optical field distribution in the cavity is smoother, and the spatial hole burning effect is effectively reduced. In the present invention, the distribution of photon density and carrier density in the cavity can be changed by designing the grating coupling coefficient along the cavity length direction, so that the longitudinal distribution of the cavity becomes asymmetric, so that the photon density near the output end is larger. , thereby increasing the laser output optical power.
本发明综合了III-V增益芯片高发光效率和SOI硅光芯片高集成度和高传输容量的优势。同时,通过切趾光栅的设计,激光器腔两端光子密度具有不对称性,输出光功率及利用效率明显提升,在保证稳定单模输出的同时,有效解决λ/4相移激光器出光功率/效率低的问题。其次,与λ/4相移激光器相比,本发明中基于切趾光栅的谐振腔具有更加平缓的腔内光场分布,从而解决λ/4相移激光器的空间烧孔的影响,得到更好的激光器性能。The invention combines the advantages of the high luminous efficiency of the III-V gain chip and the high integration and high transmission capacity of the SOI silicon optical chip. At the same time, through the design of the apodized grating, the photon density at both ends of the laser cavity has asymmetry, and the output optical power and utilization efficiency are significantly improved. While ensuring stable single-mode output, the output power/efficiency of the λ/4 phase-shifted laser can be effectively solved. low problem. Secondly, compared with the λ/4 phase-shift laser, the resonant cavity based on the apodized grating in the present invention has a smoother intra-cavity optical field distribution, so as to solve the influence of the spatial hole burning of the λ/4 phase-shift laser, and obtain better results. laser performance.
实施例3Example 3
根据实施例1所述的一种基于切趾光栅的高功率硅基半导体激光器,其区别在于:A high-power silicon-based semiconductor laser based on an apodized grating according to
如图2所示,谐振腔从左到右依次划分为第一均匀区域、切趾区域及第二均匀区域,第一均匀区域及第二均匀区域中,光栅耦合系数及有效折射率保持不变;通过控制该区域内光栅横向宽度,光栅横向宽度分别沿腔长方向保持一致,实现光栅耦合系数及有效折射率保持不变;切趾区域中,光栅耦合系数及有效折射率呈线性变化。通过控制该区域内光栅横向宽度,沿腔长方向变化实现光栅耦合系数及有效折射率呈线性变化,具体宽度如何变化通过仿真确定。As shown in Figure 2, the resonant cavity is divided into a first uniform area, an apodization area, and a second uniform area from left to right. In the first uniform area and the second uniform area, the grating coupling coefficient and effective refractive index remain unchanged. ; By controlling the lateral width of the grating in this region, the lateral width of the grating remains the same along the cavity length direction, so that the grating coupling coefficient and effective refractive index remain unchanged; in the apodized region, the grating coupling coefficient and effective refractive index change linearly. By controlling the lateral width of the grating in this region, the grating coupling coefficient and effective refractive index change linearly along the cavity length direction, and the specific width changes are determined by simulation.
设第一均匀区域有效折射率为neff1,光栅耦合系数k1;第二均匀区域有效折射率为neff2,光栅耦合系数k2;切趾区域光栅耦合系数从k1到k2线性变化,有效折射率从neff1到neff2线性变化;Let the effective refractive index of the first uniform region be n eff1 , the grating coupling coefficient k 1 ; the effective refractive index of the second uniform region be n eff2 , the grating coupling coefficient k 2 ; the grating coupling coefficient of the apodized region changes linearly from k 1 to k 2 , The effective refractive index varies linearly from n eff1 to n eff2 ;
假设第一均匀区域、切趾区域、第二均匀区域的长度分别为l1、l2、l3,设切趾区域某一位置距离谐振腔最左端的距离为z,0<z<l1+l2+l3,切趾区域光栅耦合系数分布k(z)和有效折射率分布neff(z)表示为式(I)和式(II):Assuming that the lengths of the first uniform region, the apodized region, and the second uniform region are l 1 , l 2 , and l 3 respectively, and the distance from a certain position of the apodized region to the leftmost end of the resonator is z, 0<z<l 1 +l 2 +l 3 , the apodized region grating coupling coefficient distribution k(z) and effective refractive index distribution n eff (z) are expressed as equations (I) and (II):
通过仿真确定最优的neff1、neff2、k1、k2,使输出光获得最高的SMSR和最高的输出光功率以及平滑的光场分布。仿真结果如图3、图4及图5所示。The optimal n eff1 , n eff2 , k 1 , and k 2 are determined through simulation, so that the output light can obtain the highest SMSR, the highest output optical power and a smooth light field distribution. The simulation results are shown in Figure 3, Figure 4 and Figure 5.
本实施例的切趾光栅会在腔内引入折射率变化会产生等效相移,从而打破DFB激光器存在的双模简并现象,达到激光器单模输出的目的。激光器输出光谱如图3所示。The apodized grating of this embodiment will introduce a refractive index change in the cavity to generate an equivalent phase shift, thereby breaking the double-mode degeneracy phenomenon existing in the DFB laser and achieving the purpose of single-mode output of the laser. The laser output spectrum is shown in Figure 3.
由于光栅耦合系数并非均匀分布,谐振腔中光场分布并不均匀。当切趾区域中的光栅耦合系数大于第一均匀区域时,腔内光子会更多得分布在谐振腔左端,如图4所示,使谐振腔输出端得到的光功率得到增加,提高了输出光利用效率。同时从图4可以看出,与传统的λ/4相移激光器相比,这种基于切趾光栅设计的谐振腔结构,腔内光场分布更加平缓,从而能够有效地抑制空间烧孔效应。Since the grating coupling coefficient is not uniformly distributed, the optical field distribution in the resonator is not uniform. When the coupling coefficient of the grating in the apodized region is greater than the first uniform region, more photons in the cavity will be distributed at the left end of the resonator, as shown in Figure 4, so that the optical power obtained at the output of the resonator is increased and the output is improved. light utilization efficiency. At the same time, it can be seen from Figure 4 that, compared with the traditional λ/4 phase-shifted laser, the resonator structure based on the apodized grating design has a smoother optical field distribution in the cavity, which can effectively suppress the spatial hole burning effect.
本实施例激光器的LI曲线如图5所示,与相同情况下等阈值的λ/4相移激光器相比,本实施例光输出功率明显提高。The LI curve of the laser of this embodiment is shown in FIG. 5 . Compared with the λ/4 phase-shifted laser with equal threshold in the same situation, the optical output power of this embodiment is obviously improved.
实施例4Example 4
根据实施例1所述的一种基于切趾光栅的高功率硅基半导体激光器,其区别在于:A high-power silicon-based semiconductor laser based on an apodized grating according to
切趾光栅沿谐振腔的腔长方向的总长度为300-1000μm,第一均匀区域沿谐振腔的腔长方向的长度为200-900μm,切趾区域沿谐振腔的腔长方向的长度为5-50μm,第二均匀区域沿谐振腔的腔长方向的长度为30-200μm。The total length of the apodized grating along the cavity length of the resonator is 300-1000 μm, the length of the first uniform region along the cavity length of the resonator is 200-900 μm, and the length of the apodized region along the cavity length of the resonator is 5 -50 μm, the length of the second uniform region along the cavity length direction of the resonant cavity is 30-200 μm.
根据以上腔长和各区域长度的设置可以得到最优的激光器性能,如较高的输出功率和良好的单模特性。According to the above settings of the cavity length and the length of each region, the optimal laser performance can be obtained, such as higher output power and good single-mode performance.
切趾光栅的光栅周期根据激光器激射波长设计,典型的光通信波长在1310nm附近,对应周期为201—207nm;激光器激射波长在1550nm附近,对应的周期为238-246nm,切趾光栅的占空比为0.4-0.6。The grating period of the apodized grating is designed according to the laser lasing wavelength. The typical optical communication wavelength is around 1310 nm, and the corresponding period is 201-207 nm; the laser lasing wavelength is around 1550 nm, and the corresponding period is 238-246 nm. The empty ratio is 0.4-0.6.
切趾光栅的光栅宽度W1为0-2μm,切趾光栅的光栅宽度W2为0.3-7μm;光栅宽度W1是指光栅低折射率部分的宽度;光栅宽度W2是指光栅高折射率部分的宽度。The grating width W1 of the apodized grating is 0-2 μm, and the grating width W2 of the apodized grating is 0.3-7 μm; the grating width W1 refers to the width of the low refractive index part of the grating ; the grating width W2 refers to the high refractive index of the grating section width.
光栅的每一周期由两部分组成,包括高折射率部分和低折射率部分,在本发明中,高、低折射率部分是通过光栅宽度的不同来区分的,其宽度分别为W2、W1。确定的光栅尺寸对应于确定的有效折射率,因此,通过控制光栅宽度可以控制有效折射率和光栅耦合系数。Each period of the grating consists of two parts, including a high refractive index part and a low refractive index part. In the present invention, the high and low refractive index parts are distinguished by the difference in the grating width, and the widths are W 2 , W respectively 1 . The determined grating size corresponds to the determined effective refractive index, thus, the effective refractive index and the grating coupling coefficient can be controlled by controlling the grating width.
衬底1的材质为Si;埋入氧化层2的材质为SiO2,厚度为0.5-3μm;波导层3的材质为Si,厚度为220-500nm;波导层3中,通过切趾光栅实现对激射模式的选取。辅助键合层4的材质为SiO2,厚度为0-300nm;通过二氧化硅介质层分子键合技术,将III-V半导体材料粘附至波导层3上。间隔层5的材质为InP,厚度为10-200nm;包层6的材质为SiO2,厚度为200-3000nm;量子阱有源区7的材质为InAlGaAs或InGaAsP,厚度为300-600nm,宽度为1.5-10μm;量子阱有源区7提供光增益;顶包覆层8的材质为InP,厚度为1.4-1.8μm,顶端宽度为1.5-10μm,底端宽度为1.5-9μm;欧姆接触层9的材质为InGaAs,厚度为150nm;P型电极10的材质为TiPtAu-Au或Ti/Al,厚度为200-4000nm;N型电极11的材质为TiPtAu-Au或Ti/Al,厚度为200-4000nm。The material of the
实施例5Example 5
根据实施例1所述的一种基于切趾光栅的高功率硅基半导体激光器,其区别在于:A high-power silicon-based semiconductor laser based on an apodized grating according to
切趾光栅沿谐振腔的腔长方向的总长度为500μm,第一均匀区域沿谐振腔的腔长方向的长度为410μm,切趾区域沿谐振腔的腔长方向的长度为20μm,第二均匀区域沿谐振腔的腔长方向的长度为70μm;切趾光栅的光栅周期为240.3nm,切趾光栅的占空比为0.5;切趾光栅的光栅宽度W1取0-2μm,切趾光栅的光栅宽度W2取0.3-7μm。The total length of the apodized grating along the cavity length direction of the resonant cavity is 500 μm, the length of the first uniform region along the cavity length direction of the resonant cavity is 410 μm, the length of the apodized grating along the cavity length direction of the resonant cavity is 20 μm, and the second uniform region is 20 μm long. The length of the region along the cavity length direction of the resonator is 70 μm; the grating period of the apodized grating is 240.3 nm, and the duty cycle of the apodized grating is 0.5; the grating width W1 of the apodized grating is 0-2 μm, and the The grating width W 2 is 0.3-7 μm.
衬底1的厚度为750μm;埋入氧化层2的厚度为1000nm;波导层3的厚度为400nm;辅助键合层4的厚度为70nm;间隔层5的厚度为150nm;包层6的厚度为2000nm;量子阱有源区7的厚度为400nm,宽度为7μm,量子阱有源区7包括三个阱层和四个垒层,交叉排列,每个阱层厚度为7nm,每个垒层厚度为9nm;顶包覆层8的厚度为1.6μm,顶端宽度为4μm,底端宽度为2.5μm;欧姆接触层9的厚度为150nm;P型电极10的厚度为2000nm;N型电极11的厚度为2000nm。The thickness of the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210486992.8A CN115021073B (en) | 2022-05-06 | 2022-05-06 | High-power silicon-based semiconductor laser based on apodized grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210486992.8A CN115021073B (en) | 2022-05-06 | 2022-05-06 | High-power silicon-based semiconductor laser based on apodized grating |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115021073A true CN115021073A (en) | 2022-09-06 |
CN115021073B CN115021073B (en) | 2024-05-28 |
Family
ID=83068551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210486992.8A Active CN115021073B (en) | 2022-05-06 | 2022-05-06 | High-power silicon-based semiconductor laser based on apodized grating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115021073B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110150024A1 (en) * | 2009-12-21 | 2011-06-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hybrid laser coupled to a waveguide |
US20110299561A1 (en) * | 2009-03-05 | 2011-12-08 | Fujitsu Limited | Semiconductor laser silicon waveguide substrate, and integrated device |
US20120320939A1 (en) * | 2010-02-24 | 2012-12-20 | Roeland Baets | Laser light coupling into soi cmos photonic integrated circuit |
JP2013021023A (en) * | 2011-07-07 | 2013-01-31 | Sumitomo Electric Ind Ltd | Semiconductor laser element |
CN103812001A (en) * | 2014-01-09 | 2014-05-21 | 北京大学 | Method for preparing multi-wavelength silicon-based hybrid laser array by secondary exposure technology |
CN104124611A (en) * | 2014-05-09 | 2014-10-29 | 南京大学 | Monolithic integration injection locking DFB laser based on reconstruction-equivalent chirp and array and manufacturing method thereof |
US20160211645A1 (en) * | 2015-01-20 | 2016-07-21 | Sae Magnetics (H.K.) Ltd. | Semiconductor laser apparatus and manufactruing method thereof |
CN108233171A (en) * | 2016-12-13 | 2018-06-29 | 苏州旭创科技有限公司 | Unsymmetric structure phase-shifted grating and DFB semiconductor laser |
US20180212399A1 (en) * | 2017-01-19 | 2018-07-26 | Commissariat à I'énergie atomique et aux énergies alternatives | Photonic device comprising a laser optically connected to a silicon wave guide and method of fabricating such a photonic device |
US20200185885A1 (en) * | 2017-05-19 | 2020-06-11 | The Regents Of The University Of California | Unipolar light devices integrated with foreign substrates and methods of fabrication |
CN111355127A (en) * | 2020-03-10 | 2020-06-30 | 中国科学院半导体研究所 | Silicon-based vertical coupling laser based on inclined grating and preparation method thereof |
US20210036488A1 (en) * | 2019-07-29 | 2021-02-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hybrid laser source comprising an integrated waveguide containing an intermediate bragg grating |
-
2022
- 2022-05-06 CN CN202210486992.8A patent/CN115021073B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110299561A1 (en) * | 2009-03-05 | 2011-12-08 | Fujitsu Limited | Semiconductor laser silicon waveguide substrate, and integrated device |
US20110150024A1 (en) * | 2009-12-21 | 2011-06-23 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hybrid laser coupled to a waveguide |
US20120320939A1 (en) * | 2010-02-24 | 2012-12-20 | Roeland Baets | Laser light coupling into soi cmos photonic integrated circuit |
JP2013021023A (en) * | 2011-07-07 | 2013-01-31 | Sumitomo Electric Ind Ltd | Semiconductor laser element |
CN103812001A (en) * | 2014-01-09 | 2014-05-21 | 北京大学 | Method for preparing multi-wavelength silicon-based hybrid laser array by secondary exposure technology |
CN104124611A (en) * | 2014-05-09 | 2014-10-29 | 南京大学 | Monolithic integration injection locking DFB laser based on reconstruction-equivalent chirp and array and manufacturing method thereof |
US20160211645A1 (en) * | 2015-01-20 | 2016-07-21 | Sae Magnetics (H.K.) Ltd. | Semiconductor laser apparatus and manufactruing method thereof |
CN108233171A (en) * | 2016-12-13 | 2018-06-29 | 苏州旭创科技有限公司 | Unsymmetric structure phase-shifted grating and DFB semiconductor laser |
US20180212399A1 (en) * | 2017-01-19 | 2018-07-26 | Commissariat à I'énergie atomique et aux énergies alternatives | Photonic device comprising a laser optically connected to a silicon wave guide and method of fabricating such a photonic device |
US20200185885A1 (en) * | 2017-05-19 | 2020-06-11 | The Regents Of The University Of California | Unipolar light devices integrated with foreign substrates and methods of fabrication |
US20210036488A1 (en) * | 2019-07-29 | 2021-02-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Hybrid laser source comprising an integrated waveguide containing an intermediate bragg grating |
CN111355127A (en) * | 2020-03-10 | 2020-06-30 | 中国科学院半导体研究所 | Silicon-based vertical coupling laser based on inclined grating and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
王霆等: "《硅基Ⅲ-Ⅴ族量子点激光器的发展现状和前景》", 《物理学报》, vol. 64, no. 20, 31 October 2015 (2015-10-31) * |
Also Published As
Publication number | Publication date |
---|---|
CN115021073B (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110247302B (en) | A surface emitting laser based on surface grating | |
WO2011027555A1 (en) | Photonic crystal device | |
CN109244828B (en) | A high-power semiconductor laser based on PT Bragg reflection waveguide and its preparation method | |
TW200844526A (en) | Optical device having diffraction gratings coupling guided wave, and its manufacture method | |
CN102388513A (en) | Hybrid vertical-cavity laser | |
CN1272885C (en) | Distributed feedback semiconductor laser and electric absorption modulator integrated light source and mfg. method | |
CN112038888B (en) | Semiconductor laser of integrated waveguide grating modulator | |
CN108767656A (en) | Coherent source component | |
CN112868149A (en) | Optical amplifier | |
CN111711074A (en) | Laser and method of making the same | |
CN115832868A (en) | Manufacturing method of double grating semiconductor laser | |
JPH08279650A (en) | Semiconductor laser and manufacture thereof | |
CN105914580A (en) | Semiconductor laser with lateral grating and longitudinal bragg reflector structure | |
CN113422295A (en) | Multi-junction distributed feedback semiconductor laser and preparation method thereof | |
CN115021073B (en) | High-power silicon-based semiconductor laser based on apodized grating | |
CN100399656C (en) | Photonic crystal waveguide distributed feedback laser and manufacturing method | |
CN106785907A (en) | Optical module | |
JP2004296560A (en) | Method for manufacturing semiconductor laser, and method for manufacturing integrated optical circuit | |
Zhu et al. | Design and optimization of unidirectional emitting multi-wavelength InAs/GaAs quantum dot microring lasers on silicon | |
CN112003125B (en) | Direct modulation semiconductor laser adopting surface high-order grating | |
Yang et al. | High-Q photonic crystal cavities for nanolasers on patterned silicon-on-insulator substrates | |
JPH0548214A (en) | Distributed reflection type semiconductor laser | |
CN112072470B (en) | Multiwavelength laser array and method of making the same | |
JP3788699B2 (en) | Integrated optical circuit element and manufacturing method thereof | |
JP2023525594A (en) | narrow linewidth laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |