CN115000227A - 近红外探测器单元器件及其制备方法 - Google Patents

近红外探测器单元器件及其制备方法 Download PDF

Info

Publication number
CN115000227A
CN115000227A CN202210540087.6A CN202210540087A CN115000227A CN 115000227 A CN115000227 A CN 115000227A CN 202210540087 A CN202210540087 A CN 202210540087A CN 115000227 A CN115000227 A CN 115000227A
Authority
CN
China
Prior art keywords
glc
silicon wafer
silicon
film
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210540087.6A
Other languages
English (en)
Inventor
于乐泳
汤林龙
魏兴战
史浩飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing University
Priority to CN202210540087.6A priority Critical patent/CN115000227A/zh
Publication of CN115000227A publication Critical patent/CN115000227A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明属于材料与元器件技术领域,具体涉及一种近红外探测器单元器件及其制备方法。该器件由硅片、SiO2氧化层、GLC薄膜、铝电极和Au电极组成。制备方法为:硅片开窗,制得含裸硅区域和SiO2氧化层的硅片;在硅片的裸硅区域溅射金颗粒;在硅片上制备GLC薄膜;采用lift Off工艺,刻蚀掉硅片非有源区边缘部分GLC薄膜;在硅片背面溅射一层铝电极,并进行退火;采用lift Off工艺,在硅片有源区外的GLC薄膜周围镀金电极。本专利制备的基于GLC‑硅红外敏感薄膜的单元探测器件,与超大规模集成电路工艺兼容,成功实现2nA/cm2低暗电流,含有该器件的短波红外探测器具备低成本、高稳定性、高均一性的特点。

Description

近红外探测器单元器件及其制备方法
技术领域
本发明属于半导体光电子器件领域,具体涉及的是一种近红外探测器单元器件及其制备方法。
背景技术
短波红外探测器件可昼夜全天候工作,且穿透雨、雾、霾、尘能力强,在无人驾驶、安防监控、国防军事等领域具有广阔应用前景。
目前,短波红外敏感薄膜以铟镓砷等化合物半导体材料为主,已广泛应用于军事侦查、空间通信等领域。铟镓砷短波红外探测器发展近30年,该探测器一般采用倒装互连工艺制备,虽然铟镓砷材料性能好,但是铟镓砷红外敏感薄膜工艺与硅基大规模集成电路工艺不兼容,且成本较高,高达5~10万元/颗,导致其功耗和成本面临巨大挑战,难以在民用领域推广应用。
因此,开发兼具低成本和高性能的短波红外探测器一直以来是产业界关注的重点。近年来,国内外相继发展出了胶体量子点、金属-硅肖特为代表的短波红外探测器路线。量子点短波红外探测器发展已近20年,研究活跃,其中以PbS量子点探测器为代表,但是该探测器具备以下至少四点缺陷:(1)稳定性欠佳,典型T95时间为5000小时;(2)均一性较差;(3)Pb与S等材料污染半导体线;(4)缺陷导致暗电流较高。因此,量子点红外探测器在稳定性、均一性、材料兼容性等方面还面临很大挑战。
比利时欧洲微电子中心研发了一款量子点短波红外探测器,实现了高分辨率成像,该探测器具有良好的硅基读出电路工艺兼容性,为低成本制备短波红外探测器奠定了基础。然而,其量子点红外敏感薄膜的均一性和稳定性仍然面临重大挑战。以色列TriEye公司采用镀膜工艺研制了一款金属-硅肖特基结构的短波红外探测器,其制程与硅基读出工艺具有良好的兼容性,制备成本与铟镓砷探测器相比得到大幅降低,然而金属-硅肖特基结探测器的效率还较低,其应用场景受到诸多限制。
针对铟镓砷探测器与硅基工艺不兼容导致成本高,量子点探测器稳定性、均一性差以及金属-硅探测器效率低的问题。本发明提出GLC-硅红外敏感薄膜,与超大规模集成电路工艺兼容,成功实现2nA/cm2低暗电流,可实现低成本、高稳定性、高均一性、探测性能好的短波红外探测器。
本发明提出室温红外敏感膜是通过建立热电子的产生和输运模型,利用电子层间跃迁来提高光电转化效率。本专利结合变温探针台和噪声频谱分析仪研究噪声起源,通过引入阻挡层进一步抑制热噪声,利用低功耗ADC与低噪声读出电路设计技术读出电路,进而实现低成本、低功耗的室温短波红外探测,成功攻克了GLC-硅热电子短波红外探测器的设计方法和器件加工工艺。
公开号为CN111129198A的发明专利公开了一种石墨烯/硫化铅红外探测器及其制备方法,虽然该红外探测器同样采用硅片作为衬底,但该专利解决的是石墨烯对光的吸收小,导致石墨烯光电探测器的响应率低的问题,并未涉及GLC。
发明内容
本发明的目的之一在于提供一种近红外探测器单元器件,该器件包含GLC-硅红外敏感薄膜,与超大规模集成电路工艺兼容,成功实现2nA/cm2低暗电流。
为实现上述目的,本发明采用以下技术方案:
一种近红外探测器单元器件,所述器件包括硅片、SiO2氧化层、GLC薄膜、铝电极和Au电极;所述SiO2氧化层位于所述硅片的正面,所述GLC薄膜位于所述SiO2氧化层和裸硅上,所述金电极位于所述SiO2氧化层和GLC薄膜上,所述铝电极位于所述硅片的背面。
ADC是读出电路功耗的最重要来源,降低读出电路噪声可抑制探测器暗电流,所述SiO2氧化层作为阻挡层,可进一步抑制热噪声,进而抑制暗电流。
类石墨碳膜(Graphite-Like Carbon,GLC)指的是依靠溅射石墨靶,通过离子镀等方法制备得到的以sp2结构为主的非晶碳膜,其光学、电学和摩擦学等性质与石墨相似。
类金刚石碳膜(Diamond-Like Carbon,DLC)为利用碳氢化合物分解的化学气相沉积法(CVD)制备出的非晶碳膜,往往含有较高的sp3C-C键,其性质更加接近于金刚石。
进一步,所述硅片正面部位含有裸硅区域,所述SiO2氧化层位于裸硅区域的四周。
进一步,所述裸硅区域含有金颗粒。
本发明的目的之二在于提供一种近红外探测器单元器件的制备方法。
为实现上述目的,本发明采用以下技术方案:
近红外探测器单元器件的制备方法,具体包括以下步骤:
S1:制备含裸硅区域和SiO2氧化层的硅片;
S2:在S1所得硅片的裸硅区域溅射金颗粒;
S3:制备所述GLC薄膜;
S4:采用lift Off工艺,刻蚀掉硅片非有源区边缘部分GLC薄膜;
S5:在S4得到的硅片背面溅射一层铝电极,退火得含铝电极的硅片;
S6:采用lift Off工艺,在S5所得硅片有源区外的SiO2氧化层和GLC薄膜上镀金电极,使金电极与GLC薄膜接触,得所述近红外探测器单元器件。
进一步,S1具体为:选用双面抛光,单面氧化,氧化层为100nm的硅片,电阻率1-10Ω/cm,通过缓冲氧化物刻蚀液(BOE),浓度为BOE:H20=1:1刻蚀正面的氧化硅区域,作为光电探测器的有源区域,同时泡掉硅片背面因热氧化自然产生的氧化层。
进一步,S2之前,S1制得的硅片需放入去离子水中浸泡,经丙酮、无水乙醇、去离子水各超生清洗10分钟,然后氮气吹干。
进一步,S2利用磁控溅射设备在裸硅区域溅射几纳米的金颗粒,条件为:直流功率50W,溅射时间4s,溅射压强0.5Pa,溅射气体为Ar气。
进一步,所述裸硅区域为10μm-2mm。
进一步,所述GLC薄膜厚度为100-200nm;所述铝电极厚度为100-200nm;所述金电极厚度为50-100nm。
进一步,S3具体为:采用磁控溅射法向硅片表面溅射GLC制得GLC碳膜,沉积GLC制得GLC薄膜;
或采用微波CVD法低温在硅片表面制备碳墙,在碳墙表面沉积DLC进行填充制得GLC薄膜。
进一步,制备所述GLC薄膜时,镀膜前需先用Ar离子对溅射靶材进行预溅射,预溅射的目的在于消除靶材表面的吸附物以及氧化物等,防止影响薄膜沉积的质量。
预溅射结束后,清洗离子,再将腔体抽真空至2x10-4Pa,进行沉积GLC薄膜。
进一步,制备所述GLC薄膜时,采用高纯石墨靶为靶材,在射频功率为300W的条件下进行沉积(方法Ⅰ);或采用高纯石墨靶和/或高纯钛靶为靶材,在射频功率为300W,直流为0.1A的条件下进行共溅射沉积(方法Ⅱ)。
进一步,方法Ⅰ中,GLC薄膜的沉积工艺为:溅射气体为氩气,氩气流量为75sccm~150sccm,腔体压强为0.5-1pa,沉积时间60-120分钟。
进一步,方法Ⅱ中,GLC薄膜的制备条件为:微波功率800W,甲烷和氢气6:4sccm;射频功率700W,时间60min,溅射压强1pa。
进一步,S4具体为:
1)旋涂光刻胶,转速500rpm-5s,4000rpm-40s;
2)170℃下热烘10min;
3)旋涂光刻胶,转速500rpm-5s,2000rpm-25s,3000rpm-3s;
4)100℃下热烘10min;
5)曝光,曝光时长8.5s;
6)在显影液中显影25s,清水冲洗后用气枪吹干;
7)将硅片放入反应离子刻蚀机中用氧等离子体刻蚀掉非有源区边缘部分GLC薄膜。
进一步,S5所述铝电极制备条件为:直流功率50W,溅射时间6-10min,溅射压强0.5Pa;背电极退火:将镀有背电极铝的硅片置于高温炉中,在460℃下退火40-60min,H2:Ar=50:50sccm,使铝电极与背面的硅形成欧姆接触。
进一步,S6具体为:
1)旋涂光刻胶,转速500rpm-5s,4000rpm-40s;
2)2.170℃下热烘10min;
3)旋涂光刻胶,转速500rpm-5s,2000rpm-25s,3000rpm-3s;
4)100℃下热烘10min;
5)曝光,曝光时长8.5s;
6)在显影液AZ300中显影25s,清水冲洗后用气枪吹干;
7)磁控溅射2nmTi,200nmAu。
本发明的目的之三在于提供一种近红外探测器,该探测器具备低成本、高稳定性、高均一性等特点。
为实现上述目的,本发明采用以下技术方案:
一种近红外探测器,所述近红外探测器含有所述近红外探测器单元器件。
本发明的有益之处在于:
(1)本发明提出了硅基工艺兼容的低暗电流GLC-硅红外敏感薄膜结构,结合变温探针台研究噪声起源,引入阻挡层进一步抑制热噪声,通过降低读出电路噪声成功抑制探测器暗电流,实现2nA/cm2低暗电流。
(2)攻克了GLC-硅热电子短波红外探测器的设计方法和器件加工工艺,实现超大规模集成电路工艺加工,解决均匀性、稳定性的难题。
附图说明
图1为实施例1制备的单元探测器件的截面图;
图2为实施例1制备的GLC薄膜表面图;
图3为实施例1制备的GLC薄膜截面图;
图4为不同成分GLC拉曼光谱;
图5为实施例1制备的器件在光照下的光响应曲线。
图6为实施例1制备的器件在光照下的光响应曲线。
具体实施方式
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整所获得的技术方案,仍属于本发明的保护范围。
实施例1.近红外探测器单元器件的制备
(1)硅片开窗:选用双面抛光,单面氧化,氧化层为100nm的硅片,电阻率1-10Ω/cm,通过缓冲氧化物刻蚀液(BOE),浓度为BOE:H20=1:1刻蚀正面的氧化硅区域,裸硅区域为10μm-2mm,作为光电探测器的有源区域,同时泡掉硅片背面因热氧化自然产生的氧化层。
(2)硅片放入去离子水中浸泡,经丙酮、无水乙醇、去离子水各超生清洗10分钟,然后氮气吹干。
(3)利用磁控溅射设备在裸硅区域溅射几纳米的金颗粒,条件为:直流功率:50W,溅射时间4s,溅射压强:0.5Pa,溅射气体Ar气。
(4)将溅射金颗粒的硅片放入磁控溅射镀膜机中溅射类石墨碳膜(GLC),厚度为100-200nm,靶材为高纯石墨靶。
条件:溅射气体为高纯度Ar气,在镀膜前首先用Ar离子对溅射靶材进行预溅射。离子清洗完后,腔体抽真空至2x10-4Pa,进行沉积GLC薄膜。
沉积工艺:通入Ar气体作为溅射气体,氩气流量为75sccm-150sccm,腔体压强为0.5-1pa,打开射频电源,功率为300W,沉积时间60-120分钟。
(5)刻蚀掉非有源区边缘部分GLC薄膜:选用lift Off工艺,刻蚀掉非有源区边缘部分GLC薄膜,具体为:
8)旋涂光刻胶,转速500rpm-5s,4000rpm-40s;
9)170℃下热烘10min;
10)旋涂光刻胶,转速500rpm-5s,2000rpm-25s,3000rpm-3s;
11)100℃下热烘10min;
12)曝光,曝光时长8.5s;
13)在显影液中显影25s,清水冲洗后用气枪吹干;
14)将硅片放入反应离子刻蚀机中用氧等离子体刻蚀掉非有源区边缘部分GLC薄膜。
(6)在生长有GLC薄膜的硅片背面溅射一层铝电极,电极厚度为100-200nm(条件:直流功率:50W,溅射时间6-10min,溅射压强:0.5Pa)。
(7)背电极退火:将镀有背电极铝的硅片置于高温炉中,在460℃下退火40-60min,H2:Ar=50:50sccm,使铝电极与背面的硅形成欧姆接触。
(8)在有源区外的GLC薄膜周围镀金电极,选用lift Off工艺,如下:
1)旋涂光刻胶,转速500rpm-5s,4000rpm-40s;
2)2.170℃下热烘10min;
3)旋涂光刻胶,转速500rpm-5s,2000rpm-25s,3000rpm-3s;
4)100℃下热烘10min;
5)曝光,曝光时长8.5s;
6)在显影液AZ300中显影25s,清水冲洗后用气枪吹干;
7)磁控溅射2nmTi,200nmAu。
(9)分别从正电极-背电极引出银线进行测试。
如图1所示的单元探测器件,其包括硅片1,SiO2氧化层2、GLC薄膜5、铝电极4和Au电极3,其中6为硅片上溅射的金颗粒。
图2为GLC薄膜表面图,图3为GLC薄膜截面图,图4为不同成分GLC拉曼光谱。
实施例1制备的器件在光照下的光响应曲线如图5~6所示。
实施例2.近红外探测器单元器件的制备
除步骤(4)以外,其余步骤均与实施例1一致。
步骤(4)为:将溅射金颗粒的硅片放入微波CVD中,微波功率800W,通入甲烷跟氢气6:4sccm,低温快速制备100-200nm的碳墙。
将生长好碳墙的硅片放入磁控溅射镀膜机中,在碳墙表面沉积类金刚石薄膜,对碳墙缝隙进行完全填充,形成致密的薄膜,条件:射频功率700W,时间60min,溅射压强1pa。
实施例3.近红外探测器单元器件的制备
除步骤(4)以外,其余步骤均与实施例1一致。
步骤(4)为:将溅射金颗粒的硅片放入磁控溅射镀膜机中溅射类石墨碳膜(GLC),厚度为100-200nm,靶材为高纯石墨靶、高纯钛靶。
制备GLC薄膜:溅射气体为高纯度Ar气,在镀膜前首先用Ar离子对溅射靶材进行预溅射。离子清洗完后,腔体抽真空至2x10-4Pa,进行沉积GLC薄膜。
沉积工艺:通入Ar气体作为溅射气体,氩气流量为75sccm-150sccm,腔体压强为0.5-1pa,同时打开射频电源、直流电源进行共溅射,射频功率为300W,直流为0.1A,沉积时间60-120分钟。

Claims (10)

1.一种近红外探测器单元器件,其特征在于,所述器件由硅片、SiO2氧化层、GLC薄膜、铝电极和Au电极组成;所述SiO2氧化层位于所述硅片的正面,所述GLC薄膜位于所述SiO2氧化层和裸硅上,所述金电极位于所述SiO2氧化层和GLC薄膜上,所述铝电极位于所述硅片的背面。
2.根据权利要求1所述的器件,其特征在于,所述硅片正面部位含有裸硅区域,所述SiO2氧化层位于裸硅区域的四周。
3.根据权利要求2所述的器件,其特征在于,所述裸硅区域含有金颗粒。
4.权利要求1所述近红外探测器单元器件的制备方法,其特征在于,具体包括以下步骤:
S1:制备含裸硅区域和SiO2氧化层的硅片;
S2:在S1所得硅片的裸硅区域溅射金颗粒;
S3:制备所述GLC薄膜;
S4:采用lift Off工艺,刻蚀掉硅片非有源区边缘部分GLC薄膜;
S5:在S4得到的硅片背面溅射一层铝电极,退火得含铝电极的硅片;
S6:采用lift Off工艺,在S5所得硅片有源区外的SiO2氧化层和GLC薄膜上镀金电极,使金电极与GLC薄膜接触,得所述近红外探测器单元器件。
5.根据权利要求4所述的制备方法,其特征在于,所述裸硅区域为10μm-2mm。
6.根据权利要求4所述的制备方法,其特征在于,所述GLC薄膜厚度为100-200nm;所述铝电极厚度为100-200nm;所述金电极厚度为50-100nm。
7.根据权利要求4所述的制备方法,其特征在于,S3具体为:采用磁控溅射法向硅片表面溅射GLC制得GLC碳膜,沉积GLC制得GLC薄膜;
或采用微波CVD法低温在硅片表面制备碳墙,在碳墙表面沉积DLC进行填充制得GLC薄膜。
8.根据权利要求7所述的制备方法,其特征在于,制备所述GLC薄膜时,镀膜前需先用Ar离子对溅射靶材进行预溅射。
9.根据权利要求7所述的制备方法,其特征在于,制备所述GLC薄膜时,采用高纯石墨靶为靶材,在射频功率为300W的条件下进行沉积;或采用高纯石墨靶和/或高纯钛靶为靶材,在射频功率为300W,直流为0.1A的条件下进行共溅射沉积。
10.一种近红外探测器,其特征在于,所述近红外探测器含有权利要求1所述的近红外探测器单元器件。
CN202210540087.6A 2022-05-17 2022-05-17 近红外探测器单元器件及其制备方法 Pending CN115000227A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210540087.6A CN115000227A (zh) 2022-05-17 2022-05-17 近红外探测器单元器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210540087.6A CN115000227A (zh) 2022-05-17 2022-05-17 近红外探测器单元器件及其制备方法

Publications (1)

Publication Number Publication Date
CN115000227A true CN115000227A (zh) 2022-09-02

Family

ID=83028059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210540087.6A Pending CN115000227A (zh) 2022-05-17 2022-05-17 近红外探测器单元器件及其制备方法

Country Status (1)

Country Link
CN (1) CN115000227A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109535A (ja) * 1992-09-24 1994-04-19 Matsushita Electric Works Ltd 赤外線検出素子
US20060102940A1 (en) * 2004-11-16 2006-05-18 Samsung Electronics Co., Ltd. Semiconductor device having a photodetector and method for fabricating the same
CN108075009A (zh) * 2016-11-09 2018-05-25 香港生产力促进局 基于光子晶体光响应增强技术的石墨烯红外传感器及其制备方法
CN108630782A (zh) * 2018-05-14 2018-10-09 合肥工业大学 一种宽探测波段双重等离子工作光电探测器及其制备方法
CN110643943A (zh) * 2019-10-15 2020-01-03 河南科技大学 一种掺杂类石墨碳膜及其制备方法、工件
CN114300551A (zh) * 2021-12-03 2022-04-08 中国电子科技集团公司第四十八研究所 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109535A (ja) * 1992-09-24 1994-04-19 Matsushita Electric Works Ltd 赤外線検出素子
US20060102940A1 (en) * 2004-11-16 2006-05-18 Samsung Electronics Co., Ltd. Semiconductor device having a photodetector and method for fabricating the same
CN108075009A (zh) * 2016-11-09 2018-05-25 香港生产力促进局 基于光子晶体光响应增强技术的石墨烯红外传感器及其制备方法
CN108630782A (zh) * 2018-05-14 2018-10-09 合肥工业大学 一种宽探测波段双重等离子工作光电探测器及其制备方法
CN110643943A (zh) * 2019-10-15 2020-01-03 河南科技大学 一种掺杂类石墨碳膜及其制备方法、工件
CN114300551A (zh) * 2021-12-03 2022-04-08 中国电子科技集团公司第四十八研究所 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法

Similar Documents

Publication Publication Date Title
US8728918B2 (en) Method and apparatus for fabricating silicon heterojunction solar cells
US20110041917A1 (en) Doped Transparent Conductive Oxide
US20220230813A1 (en) Method for preparing perovskite solar cell absorbing layer by means of chemical vapor deposition
CN105355794A (zh) 一种使用化学气相沉积法制备钙钛矿薄膜太阳能电池的方法
CN112993075B (zh) 一种含有插层的石墨烯/硅肖特基结光电探测器及制备工艺
JP2008235794A (ja) 光電変換材およびその製造方法、半導体素子、並びに太陽電池
CN112701173B (zh) 一种石墨烯高灵敏度光电探测器及其制备方法
CN107742661A (zh) 用物理气相沉积法制备无机锡基钙钛矿太阳能电池的方法
Jeong et al. Preparation of born-doped a-SiC: H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells
CN114242897A (zh) 一种钙钛矿光电器件的封装的方法
JP3402637B2 (ja) 太陽電池の製造方法、その製造装置及び長尺シート基板の製造方法
CN112909187A (zh) 钙钛矿晶体硅两端叠层太阳电池结构及其制备方法
JP2002329878A (ja) 薄膜太陽電池および薄膜太陽電池の作製方法
CN115000227A (zh) 近红外探测器单元器件及其制备方法
CN115287632A (zh) 一种石墨舟的预处理方法及改性石墨舟
JP2006344883A (ja) 太陽電池の製造方法
CN109037390B (zh) 一种锡酸镉基透明导电膜、其生产工艺及太阳能电池
CN116314439A (zh) 太阳电池中的NiOx空穴传输层及其制备方法、应用
CN109888097A (zh) 一种钙钛矿薄膜的制备方法及以此为基础制备的太阳能电池
CN114583064A (zh) 一种基于磁控溅射钙钛矿光吸收层的光伏器件的制备方法
WO2019085458A1 (zh) 太阳能电池及其制备方法
KR101540035B1 (ko) 스퍼터링 증착을 이용한 황화카드뮴 박막의 제조방법
TWI820777B (zh) 光電化學裝置
CN114597281B (zh) 掺β-Ga2O3和P型金刚石的紫外探测器的制备方法
JP2013222794A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220902