CN114967597A - 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 - Google Patents

一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 Download PDF

Info

Publication number
CN114967597A
CN114967597A CN202210538510.9A CN202210538510A CN114967597A CN 114967597 A CN114967597 A CN 114967597A CN 202210538510 A CN202210538510 A CN 202210538510A CN 114967597 A CN114967597 A CN 114967597A
Authority
CN
China
Prior art keywords
curve
numerical control
arc length
taylor
continuity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210538510.9A
Other languages
English (en)
Inventor
吴继春
张平
周灭旨
杨永达
张斋武
胡柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202210538510.9A priority Critical patent/CN114967597A/zh
Publication of CN114967597A publication Critical patent/CN114967597A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35336Display locus and corresponding actual block
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

本发明属于数控加工轨迹优化领域,具体涉及一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,首先根据离散数据点分成若干小加工区域建立弧长参数化信息,其次对每个加工区域前后两个数据点分别建立空间Frenet坐标系,在局部坐标系上对弧长进行双向泰勒展开,单位切矢T、法矢N、副法矢B方向分别投影得到基于曲率、挠率及其导数表达的拟合曲线,最后对每个加工区域上拟合曲线进行桥接处理,通过数据点处泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹。通过本发明生成的数控加工刀具轨迹满足G2连续性和精度要求,计算量小,适合加工,能够有效地提高加工效率。

Description

一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合 方法
技术领域
本发明属于数控加工轨迹优化领域,具体涉及一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法。
背景技术
在数控加工轨迹优化领域中,对于复杂的工件,一般会通过CAD和CAM系统,将复杂的轨迹转变成由众多小线段组成的数控加工轨迹,经过后置处理,复杂轨迹转变为可识别的程序代码,将其代码传输给CNC系统。如果数控系统按照生成的加工轨迹直接运行,会存在如下缺点:(1)由于系统频繁的加减速,容易造成机床振动,降低加工效率;(2)生成的轨迹光顺性较差,无法满足加工精度要求。为了避免频繁的加减速,降低加工过程中的震荡与冲击,使得加工轨迹具有良好的光顺性,采用G2连续,使两段曲线在连接处点点连续且曲率矢量相同。Akima样条在数据点处只有G1连续,即两段曲线在连接处点点连续且切线方向相同,经Frenet-Taylor桥接处理后,可以达到G2连续。
随着社会的不断发展,市场的竞争也越来越激烈,因此各个生产企业都迫切地需要改进生产技术,提高生产效率,尤其在数控加工轨迹优化领域。对于上述的缺陷和不足,本发明专利提出一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,双向泰勒展开得到的刀具轨迹计算量小,适合机床加工,在保证桥接曲线满足光顺性要求的同时,也满足加工误差。通过本发明生成的数控加工刀具轨迹满足G2连续性和精度要求,计算量较小,适合机床加工,实时性好,能够有效地提高加工效率。
发明内容
本发明所要解决的技术问题是提供一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,首先根据离散数据点分成若干小加工区域建立弧长参数化信息,其次对每个加工区域前后两个数据点分别建立空间Frenet坐标系,在局部坐标系上对弧长进行双向泰勒展开,单位切矢T、单位法矢N、单位副法矢B方向分别投影得到基于曲率、挠率及其导数表达的拟合曲线,最后对每个加工区域上拟合曲线进行桥接处理,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,基于双向泰勒展开,保证建立满足加工误差和G2连续的数控加工刀具轨迹。
本发明所要解决上述技术问题的技术方案如下:
本发明提供的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于,具体包括如下步骤:
(1)分段建立Akima样条基函数,计算离散数据点处对应的参数u、一阶切矢q、离散导数ds/du、离散积分∫s du,每两个相邻的数据点之间形成若干个小加工区域,参数化后的离散数据点对应加工区域上的弧长s作为即将拟合曲线的一般参数u;
(2)以步骤1计算的一阶切矢q,计算双弦高误差和切线误差,识别数据点,划分连续加工区域,数据点小于3的加工区域用Hermite三次函数拼接,数据点大于3小于5的加工区域用Hermite五次函数拼接,满足误差要求的加工区域按步骤3处理,利用Akima参数化过程中得到的几何信息,计算离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数;
(3)同一加工区域内,将微分几何数对合并成对应离散数据点的Frenet坐标系,将离散数据点处将要拟合的曲线在Frenet坐标系下展开成弧长的双向泰勒展开式,拟合成单样条曲线;
(4)对每个加工区域的1和2位置形成的拟合样条曲线,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹。
进一步地,所述的步骤(1)具体为:所述的Akima弧长参数化,是一种离散数据点参数化计算方法,设存在一个有序点列Si=(ux,i,uy,i,uz,i)i=0,1,2,…,n。区别于向心参数化,通过Akima插值确定数据点处的弧长参数s,以弧长参数s作为拟合曲线的一般参数:
Figure BDA0003647393510000021
基于弧长参数的Akima插值公式,用矩阵形式表示弧长参数化插值形式g(s),则g(s) 可表示成(s-si)的三次多项式,其系数构成一个系数矩阵,系数矩阵的元素:
ai=Si,bi=σi
Figure BDA0003647393510000022
li为数据点的弦长,是弧长参数化形式g(s)的弧长参数si,将第i个剖分单元[li,li+1] 数据点处的切线矢量σi用近邻加工区域的斜率矢量
Figure BDA0003647393510000023
的加权求和表示:
Figure BDA0003647393510000024
其中:
Figure BDA0003647393510000025
u是S(si)的分量,
Figure BDA0003647393510000031
即直线段的加工区域上式将成为不定式,为避免计算发散,取
Figure BDA0003647393510000032
要求拟合的曲线S(si)的数据点的斜率矢量依靠邻近五个点两个加工区域提供,当
Figure BDA0003647393510000033
Figure BDA0003647393510000034
时,
Figure BDA0003647393510000035
从笛卡尔坐标系看,离散数据点处通过Akima弧长参数化可以确定参数的几何信息有:
x′(si)=Bf,i+2Cf,i(si)+3Df,i(si)2
y′(si)=Bg,i+2Cg,i(si)+3Dg,i(si)2
z′(si)=Bw,i+2Cw,i(si)+3Dw,i(si)2
x″(si)=2Cf,i+6Df,i(si)
y″(si)=2Cg,i+6Dg,i(si)
z″(si)=2Cw,i+6Dw,i(si)
x″′(si)=6Df,i
y″′(si)=6Dg,i
z″′(si)=6Dw,i
s′(si)=1
进一步地,所述的步骤(2)具体为:所述的离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数微分在二维空间的公式为:
k=|x′y″-x″y′|
Figure BDA0003647393510000036
Figure BDA0003647393510000037
在三维空间的公式为:
Figure BDA0003647393510000038
Figure BDA0003647393510000039
Figure 2
Figure BDA00036473935100000311
Figure BDA00036473935100000312
Figure 7
Figure 8
Figure 9
进一步地,所述的步骤(3)具体为:所述的Frenet坐标系下展开成弧长的双向泰勒展开式,二维空间曲线参数方程如下:
Figure BDA0003647393510000042
以此得到的数控加工刀具轨迹Frenet形式的泰勒展开C(s):
Figure BDA0003647393510000043
Figure BDA0003647393510000044
Figure BDA0003647393510000045
T(Δs)=(x′,y′)
Figure BDA0003647393510000046
三维空间曲线参数方程如下:
x=x(s),y=y(s),z=z(s)
Figure BDA0003647393510000047
Figure BDA0003647393510000048
Figure BDA0003647393510000049
Figure BDA00036473935100000410
T(Δs)=(x′,y′,z)
Figure BDA00036473935100000411
Figure BDA00036473935100000412
进一步地,所述的步骤(4)具体为:所述的桥接处理包括二维平面曲线和三维空间曲线的桥接,数控刀具轨迹的参数方程需要对每个插值加工区域进行分段低次的Frenet形式泰勒展开的前后桥接,μ和v表示拟合点到前后离散数据点之间和弧长的距离,桥接公式如下:
Figure BDA00036473935100000413
本发明涉及一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,保证了桥接曲线满足光顺性要求,避免频繁的加减速,降低加工过程中的震荡与冲击,通过本发明生成的数控加工刀具轨迹满足G2连续性和精度要求,计算量较小,适合机床加工,实时性好,能够有效地提高加工效率。
附图说明
图1为双向泰勒拟合效果示意图;
图2为非连续区域的桥接过程示意图;
具体实施方式
为了使本发明的目的、拟合方法及优点更加清晰,以下结合附图及实施例,对本发明专利进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
首先根据离散数据点分成若干小加工区域建立弧长参数化信息,其次对每个加工区域前后两个数据点分别建立空间Frenet坐标系,在局部坐标系上对弧长进行双向泰勒展开,单位切矢T、单位法矢N、单位副法矢B方向分别投影得到基于曲率、挠率及其导数表达的拟合曲线,最后对每个加工区域上拟合曲线进行桥接处理,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,基于双向泰勒展开,保证建立满足加工误差和G2连续的数控加工刀具轨迹,得到双向泰勒拟合效果示意图如图1所示。
为了更好的解释本发明专利,给出如下一个具体的实施例:
本发明提供了一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,具体包括如下步骤:
(1)分段建立Akima样条基函数
计算离散数据点处对应的参数u、一阶切矢q、离散导数ds/du、离散积分∫s du,每两个相邻的数据点之间形成若干个小加工区域,通过Akima插值确定数据点处的弧长参数s,以弧长参数s作为拟合曲线的一般参数:
Figure BDA0003647393510000051
基于弧长参数的Akima插值公式,用矩阵形式表示弧长参数化插值形式g(s),则g(s) 可表示成(s-si)的三次多项式,其系数构成一个系数矩阵,系数矩阵的元素:
ai=Si,bi=σi
Figure BDA0003647393510000052
li为数据点的弦长,是弧长参数化形式g(s)的弧长参数si,将第i个剖分单元[li,li+1] 数据点处的切线矢量σi用近邻加工区域的斜率矢量
Figure BDA0003647393510000061
的加权求和表示:
Figure BDA0003647393510000062
其中:
Figure BDA0003647393510000063
u是S(si)的分量,
Figure BDA0003647393510000064
即直线段的加工区域上式将成为不定式,为避免计算发散,取
Figure BDA0003647393510000065
要求拟合的曲线S(si)的数据点的斜率矢量依靠邻近五个点两个加工区域提供。当
Figure BDA0003647393510000066
时,
Figure BDA0003647393510000067
Figure BDA0003647393510000068
从笛卡尔坐标系看,离散数据点处通过Akima弧长参数化确定的参数信息有:
x′(si)=Bf,i+2Cf,i(si)+3Df,i(si)2
y′(si)=Bg,i+2Cg,i(si)+3Dg,i(si)2
z′(si)=Bw,i+2Cw,i(si)+3Dw,i(si)2
x″(si)=2Cf,i+6Df,i(si)
y″(si)=2Cg,i+6Dg,i(si)
z″(si)=2Cw,i+6Dw,i(si)
x″′(si)=6Df,i
y″′(si)=6Dg,i
z″′(si)=6Dw,i
s′(si)=1
(2)计算离散点处的微分几何不变量
以步骤1计算的一阶切矢q,计算双弦高误差和切线误差,识别数据点,划分连续加工区域,数据点小于3的加工区域用Hermite三次函数拼接,数据点大于3小于5的加工区域用Hermite五次函数拼接,满足误差要求的加工区域按步骤3处理,利用Akima参数化过程中得到的几何信息,计算离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量 (N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数微分在二维空间的公式为:
k=|x′y″-x″y′|
Figure BDA0003647393510000069
Figure BDA00036473935100000610
在三维空间的公式为:
Figure BDA00036473935100000611
Figure BDA0003647393510000071
Figure 3
Figure BDA0003647393510000073
Figure BDA0003647393510000074
Figure 4
Figure 5
Figure 6
(3)拟合曲线的双向泰勒展开式
同一加工区域内,将微分几何数对合并成对应离散数据点的Frenet坐标系,将离散数据点处将要拟合的曲线在Frenet坐标系下展开成弧长的双向泰勒展开式,拟合成单样条曲线,其在二维空间曲线参数方程如下:
Figure BDA0003647393510000078
以此得到的数控加工刀具轨迹Frenet形式的泰勒展开C(s)
Figure BDA0003647393510000079
Figure BDA00036473935100000710
Figure BDA00036473935100000711
T(Δs)=(x′,y′)
Figure BDA00036473935100000712
三维空间曲线参数方程如下:
x=x(s),y=y(s),z=z(s)
Figure BDA00036473935100000713
Figure BDA00036473935100000714
Figure BDA00036473935100000715
Figure BDA00036473935100000716
T(Δs)=(x′,y′,z)
Figure BDA0003647393510000081
Figure BDA0003647393510000082
(4)拟合样条曲线的桥接处理
对每个加工区域的1和2位置形成的拟合样条曲线,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线图2,图2中C1以前为前一个加工区域,C2以后为后一个加工区域,中间为非连续加工区域,C(t)为桥接曲线,当存在3点或5点离散数据点,图中表示3次或5次Hermite拼接,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹。
桥接公式如下:
Figure BDA0003647393510000083
μ和v表示拟合点到前后离散数据点之间和弧长的距离。
综上所述,本发明一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,保证了桥接曲线满足光顺性要求,避免机床频繁的加减速,降低加工过程中的震荡与冲击,通过本发明生成的数控加工轨迹满足G2连续性和精度要求,实时性好,能够有效地提高加工效率。
以上对本发明及其实施例进行了描述,这种描述没有限制性,如果本领域的技术人员受其启示,在本发明的精神和范围的前提下,可进行各种变更与修改,但这些变更与修改均将落入本发明的保护范围。

Claims (6)

1.一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于,具体包括如下步骤:
(1)分段建立Akima样条基函数,计算离散数据点处对应的参数u、一阶切矢q、离散导数ds/du、离散积分∫s du,每两个相邻的数据点之间形成若干个小加工区域,弧长参数化后的离散数据点对应加工区域上的弧长s作为即将拟合曲线的一般参数u;
(2)以步骤1计算的一阶切矢q,计算双弦高误差和切线误差,识别数据点,划分连续加工区域,数据点小于3的加工区域用Hermite三次函数拼接,数据点大于3小于5的加工区域用Hermite五次函数拼接,满足误差要求的加工区域按步骤3处理,利用Akima参数化过程中得到的几何信息,计算离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数;
(3)同一加工区域内,将微分几何数对合并成对应离散数据点的Frenet坐标系,将离散数据点处将要拟合的曲线在Frenet坐标系下展开成弧长的双向泰勒展开式,拟合成单样条曲线;
(4)对每个加工区域的1和2位置形成的拟合样条曲线,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹。
2.根据权利要求1所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:所述的Akima弧长参数化,是一种离散数据点参数化计算方法,存在一个有序点列Si=(ux,i,uy,i,uz,i)i=0,1,2,…,n。区别于向心参数化,通过Akima插值确定数据点处的弧长参数s,以弧长参数s作为拟合曲线的一般参数:
Figure FDA0003647393500000011
基于弧长参数的Akima插值公式,用矩阵形式表示弧长参数化插值形式g(s),则g(s)可表示成(s-si)的三次多项式,其系数构成一个系数矩阵,系数矩阵的元素:
ai=Si,bi=σi
Figure FDA0003647393500000012
li为数据点的弦长,是弧长参数化形式g(s)的弧长参数si,将第i个剖分单元[li,li+1]数据点处的切线矢量σi用近邻加工区域的斜率矢量
Figure FDA0003647393500000013
Figure FDA0003647393500000014
的加权求和表示:
Figure FDA0003647393500000015
其中:
Figure FDA0003647393500000016
u是S(si)的分量,
Figure FDA0003647393500000021
即直线段的加工区域上式将成为不定式,为避免计算发散,取
Figure FDA0003647393500000022
要求拟合的曲线S(si)的数据点的斜率矢量依靠邻近五个点两个加工区域提供,当
Figure FDA0003647393500000023
时,
Figure 1
3.根据权利要求1所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:所述的离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数微分在二维空间的公式为:
k=|x′y″-x″y′|
Figure FDA0003647393500000025
Figure FDA0003647393500000026
4.根据权利要求1所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:所述的Frenet坐标系下展开成弧长的双向泰勒展开式,二维空间曲线参数方程如下:
Figure FDA0003647393500000027
以此得到的数控加工刀具轨迹Frenet形式的泰勒展开C(s)
Figure FDA0003647393500000028
Figure FDA0003647393500000029
Figure FDA00036473935000000210
T(Δs)=(x′,y′)
Figure FDA00036473935000000211
5.根据权利要求1所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:所述的桥接处理包括二维平面曲线和三维空间曲线的桥接,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线,数控刀具轨迹的参数方程需要对每个插值加工区域进行分段低次的Frenet形式泰勒展开的前后桥接,桥接公式如下:
Figure FDA00036473935000000212
μ和ν表示拟合点到前后离散数据点之间和弧长的距离。
6.根据权利要求1所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:通过本发明生成的数控加工刀具轨迹满足G2连续性和精度要求,计算量较小,适合机床加工,实时性好,能够有效地提高加工效率。
CN202210538510.9A 2022-05-17 2022-05-17 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 Pending CN114967597A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210538510.9A CN114967597A (zh) 2022-05-17 2022-05-17 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210538510.9A CN114967597A (zh) 2022-05-17 2022-05-17 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法

Publications (1)

Publication Number Publication Date
CN114967597A true CN114967597A (zh) 2022-08-30

Family

ID=82983883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210538510.9A Pending CN114967597A (zh) 2022-05-17 2022-05-17 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法

Country Status (1)

Country Link
CN (1) CN114967597A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116304564A (zh) * 2023-02-23 2023-06-23 南京理工大学 一种基于改进eemd算法和自相关降噪的信号降噪方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116304564A (zh) * 2023-02-23 2023-06-23 南京理工大学 一种基于改进eemd算法和自相关降噪的信号降噪方法
CN116304564B (zh) * 2023-02-23 2023-10-31 南京理工大学 一种基于改进eemd算法和自相关降噪的信号降噪方法

Similar Documents

Publication Publication Date Title
Pateloup et al. Bspline approximation of circle arc and straight line for pocket machining
JP2824424B2 (ja) 三次元加工方法
CN111061213B (zh) 一种基于Bezier曲线转角平滑过渡算法的加工方法
Zhang et al. Curve fitting and optimal interpolation on CNC machines based on quadratic B-splines
Hsieh et al. Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms
CN101907876B (zh) 适用于数控装置的指令点整形压缩插补方法
CN109976262B (zh) 一种针对微线段加工的全局曲率连续光顺方法
Du et al. An error-bounded B-spline curve approximation scheme using dominant points for CNC interpolation of micro-line toolpath
CN109683552B (zh) 一种基面曲线导向的复杂点云模型上的数控加工路径生成方法
Wang et al. Global smoothing for five-axis linear paths based on an adaptive NURBS interpolation algorithm
Chu et al. Continuity-preserving tool path generation for minimizing machining errors in five-axis CNC flank milling of ruled surfaces
CN107908914B (zh) 离心压缩机闭式叶轮可加工性判断及中间截面的计算方法
CN114967597A (zh) 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法
Xu et al. An interpolation method based on adaptive smooth feedrate scheduling and parameter increment compensation for NURBS curve
CN111610751B (zh) 过点集nurbs插值曲线的插值误差多次细分迭代计算方法
JPH07311858A (ja) 自由曲面作成方法及び自由曲面作成装置
CN113504764A (zh) 基于位置矢量加权积分的连续线段数控加工路径平滑方法
Tsai et al. On acceleration/deceleration before interpolation for CNC motion control
Jin et al. An optimal feed interpolator based on G 2 continuous Bézier curves for high-speed machining of linear tool path
CN114019910A (zh) 一种小线段刀具轨迹实时全局光顺方法
CN109991921B (zh) 一种平顺b样条轨迹直接生成方法
CN114019911B (zh) 一种基于速度规划的曲线拟合方法
CN113835397B (zh) 基于b样条曲线和路径积分的线性数控加工路径平滑方法
Feiyan et al. A high-efficiency generation method of integral impeller channel tool path based on parametric domain template trajectory mapping
Lauwers et al. Five-axis rough milling strategies for complex shaped cavities based on morphing technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination