CN114965812A - 一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法 - Google Patents

一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法 Download PDF

Info

Publication number
CN114965812A
CN114965812A CN202210576530.5A CN202210576530A CN114965812A CN 114965812 A CN114965812 A CN 114965812A CN 202210576530 A CN202210576530 A CN 202210576530A CN 114965812 A CN114965812 A CN 114965812A
Authority
CN
China
Prior art keywords
quaternary ammonium
ammonium salt
livestock
sample
disinfectants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210576530.5A
Other languages
English (en)
Other versions
CN114965812B (zh
Inventor
郑红
刘艳明
李姗
卢兰香
程志
于文江
薛霞
宿书芳
孙立臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Institute for Food and Drug Control
Original Assignee
Shandong Institute for Food and Drug Control
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Institute for Food and Drug Control filed Critical Shandong Institute for Food and Drug Control
Priority to CN202210576530.5A priority Critical patent/CN114965812B/zh
Publication of CN114965812A publication Critical patent/CN114965812A/zh
Application granted granted Critical
Publication of CN114965812B publication Critical patent/CN114965812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/047Standards external
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/065Preparation using different phases to separate parts of sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/126Preparation by evaporation evaporating sample
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法,包括以下步骤:样品前处理,样品采用水分散,加入甲酸化的乙腈乙酸乙酯萃取剂超声提取,加入无水硫酸钠后离心,取上清液浓缩后加入甲醇溶解后离心备用;配置15种季铵盐类消毒剂的标准溶液;将样品采用液相色谱‑质谱进行测定。该方法前处理简单廉价、回收率好、精密度高、基质效应低,适用于畜禽肉中15种季铵盐类消毒剂残留的测定。

Description

一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法
技术领域
本发明属于食品检测领域,具体涉及一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法。
背景技术
季铵盐类消毒剂是一种阳离子表面活性剂,阳离子部分由四个有机基团通过共价键与氮原子结合而成,为杀菌的有效部分。一般有一个基团是碳链长达 8~18 的烷基,具有无刺激性、无腐蚀性、稳定且低毒等优点。近年来常被用于畜禽及其周围环境的消毒及病原体的杀灭,切断传染途径,成为预防和控制畜禽传染病流行的一种重要措施。但有报道指出残留的季铵盐类消毒剂通过接触迁移,导致后续畜禽肉产品中蓄积,最终通过食物链进入人体。随着对季铵盐类化合物研究的逐步深入,人们发现季铵类化合物可以引起人类哮喘、皮肤过敏性反应和视力减退等病症,带来潜在的食品安全风险,因此建立畜禽肉中季铵盐类消毒剂的检测方法尤为重要。
在样品分析过程中,良好的样品前处理方法不仅可以缩短检测时间、提高检测的灵敏度,而且可以降低基质效应。目前季铵盐类消毒剂测定的前处理方法主要为直接提取法、弱阳离子交换(weak cation exchane, WCX)柱净化法和QuEChERS净化方法。其中直接提取基质效应影响大;WCX柱净化法去除杂质能力强,但成本较高;经典的QuEChERS净化方法常被用于多农残检测,近年也被用于消毒剂检测,但由于本文季铵盐类化合物性质差异较大,其填料种类及用量的摸索需要耗费较多的时间及人力。盐析辅助均相液液萃取(salting-out assisted homogeneous liquid -liquid extraction, SHLLE) 是一类相转变分离技术,首先在样品水溶液中加入水溶性有机溶剂(萃取剂),使其呈均相混合溶液,然后加入盐析剂(无机盐)使萃取剂与样品水溶液分层,进而把目标物富集至有机相的一种分离方法。SHLLE技术不仅快速、操作简单,而且可以将目标物富集到有机层,为进一步氮吹浓缩提供条件。此外还可以除去水溶性杂质,Feng-Juan Zhao 等采用柱后输入法对SHLLE与固相萃取两种前处理基质效应进行考察,发现人血浆中恩替卡韦有相似的基质效应。目前国内外关于季铵盐类消毒剂的检测方法主要有毛细管电泳法、离子色谱法、液相色谱法、气相色谱-质谱法和液相色谱-质谱/质谱法。其中离子色谱法平衡时间长,且定性不准确;液相色谱法不能检测没有生色基团的双烷基季铵盐;气相色谱-质谱法采用选择离子扫描,定性效果不如采用母离子-子离子进行定性的液相色谱-质谱/质谱法更准确。由于消毒剂常用于环境消毒,在实际实验分析过程中,发现有严重本底干扰,但现有文献只发现标准BJS202007《婴幼儿配方食品中消毒剂残留检测》中为了去除本底,采用重蒸甲醇和乙腈的方式,但耗时较长,而且不能消除管路和缓冲盐中的本底。
发明内容
本发明建立的方法检出限低、回收率佳、精密度好、通量大、操作简单、有效去除本底干扰,为我国畜禽肉中消毒剂的安全风险预警提供有力的技术支持。
本发明的目的在于提供一种测定畜禽肉中的15种季铵盐类消毒剂残留的方法。该方法能够准确测定了15种季铵盐类消毒剂的含量。
本发明是通过以下技术方案实现的:
一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法,包括以下步骤:
(1)样品前处理:样品采用水分散,加入甲酸化的乙酸乙酯超声提取,加入无水硫酸钠后离心,取上清液浓缩加入甲醇溶解后离心备用;
(2)配置15种季铵盐类消毒剂的标准溶液;15种季铵盐类消毒剂为辛基二甲基苄基氯化铵、十二烷基二甲基苄基氯化铵、十四烷基二甲基苄基氯化铵、十六烷基二甲基苄基氯化铵、十八烷基二甲基苄基氯化铵、双十烷基二甲基溴化铵、双十二烷基二甲基溴化铵、双十四烷基二甲基溴化铵、双十六烷基二甲基溴化铵、双十八烷基二甲基溴化铵、苄索氯铵、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基三甲基溴化铵、四丁基硫酸氢铵;
(3)将样品采用液相色谱-质谱进行测定。
进一步地,液相色谱的条件为:色谱柱:资生堂 CAPCELL PAK C18 MGⅢ-H 色谱柱,尺寸为100 mm×2.0 mm,3 μm;捕集柱:Waters isolator column,尺寸为75 mm×2.1mm,安装位置见图3;流动相A:0.1%甲酸水(含浓度10 mmol/L乙酸铵);流动相B:0.1%甲酸甲醇(含浓度10 mmol/L乙酸铵);流速0.3 mL/min,进样体积为2 μL;柱温40℃;洗脱方式:梯度洗脱;
Figure 100002_DEST_PATH_IMAGE001
进一步地,质谱的条件为:
离子源:电喷雾离子源;采集模式:正离子模式;监测方式:多反应监测;雾化气温度为450℃;雾化气压力为55 psi;辅助气压力为55psi,喷嘴电压为5500v;碰撞气压力为8psi;气帘气压力为20 psi;分段采集模式,隔离时间窗口为0.5min;质谱参数:
Figure 926342DEST_PATH_IMAGE002
进一步地,步骤(1)的具体步骤为:称取0.5 g粉碎后样品于50 mL离心管中,加入1mL水溶液,加入10 μL甲酸涡旋混匀1 min,超声15 min,加入5 mL体积比为1:1的乙腈:乙酸乙酯,涡旋混匀1 min,超声15 min,加入1 g无水硫酸钠,涡旋混匀1 min,转速为8000 r/min离心5 min,取上清液至15 mL离心管中,45℃氮吹浓缩至近干,准确加入1 mL甲醇溶解残渣,10000 r/min离心5 min后进样测定。
有益效果
基于盐析辅助均相液液萃取和超高效液相色谱-串联质谱建立了一种同时测定畜禽肉中15种季铵盐类消毒剂残留的方法。样品经水溶解、乙腈-乙酸乙酯(v:v=1:1)提取后,加入无水硫酸钠将目标化合物萃取至有机层,氮吹浓缩、溶剂转移,经在线捕集本底干扰后,采用C18 色谱柱分离,电喷雾(Electrospray Ionization, ESI)正离子模式下测定,基质外标法定量。该方法在0.5~50 ng/mL范围内线性关系(the linear correlationcoefficient, r2)大于0.998,方法检出限(Limits of detection, LODs)为0.5 μg/kg,定量限(limits of quantification, LOQs)为1.0 μg/kg;在低、中、高三个添加水平下回收率为84.33%~102.77%,相对标准偏差(the relative standard deviation, RSD)为1.23%~7.09%。该方法前处理简单廉价、回收率好、精密度高、基质效应低,适用于畜禽肉中15种季铵盐类消毒剂残留的测定。
附图说明
图1 为三类季铵盐类消毒剂的代表性裂解图及二级质谱;(A)烷基二甲基苄基铵盐;(B)双链烷基二甲基铵盐;(C)烷基三甲基铵盐;
图2 为15种消毒剂的总离子流;1为四丁基硫酸氢铵;2为辛基二甲基苄基氯化铵;3十二烷基三甲基溴化铵;4为十二烷基二甲基苄基氯化铵;5为苄索氯铵;6为十四烷基三甲基溴化铵;7为十四烷基二甲基苄基氯化铵;8为双十烷基二甲基溴化铵;9为十六烷基三甲基溴化铵;10为十六烷基二甲基苄基氯化铵;11为双十二烷基二甲基溴化铵;12为十八烷基二甲基苄基氯化铵;13为双十四烷基二甲基溴化铵;14为双十六烷基二甲基溴化铵;15为双十八烷基二甲基溴化铵;
图3为捕集柱安装图;
图4为试剂空白和标准品在添加捕集柱前后比较(双十八烷基二甲基溴化铵);
图5为十四烷基三甲基溴化铵、十二烷基二甲基苄基氯化铵、双十六烷基二甲基溴化铵、双十八烷基二甲基溴化铵在传统采集模式(A1-A4)和分段采集模式(B1-B4)下的提取离子谱图;
图6为15种消毒剂在三种萃取剂下的盐析萃取回收率。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
1 实 验
1.1 材料与试剂
辛基二甲基苄基氯化铵、十二烷基二甲基苄基氯化铵、十四烷基二甲基苄基氯化铵、十六烷基二甲基苄基氯化铵、十八烷基二甲基苄基氯化铵、双十烷基二甲基溴化铵、双十二烷基二甲基溴化铵、双十四烷基二甲基溴化铵、双十六烷基二甲基溴化铵、双十八烷基二甲基溴化铵、苄索氯铵 、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基三甲基溴化铵、四丁基硫酸氢铵(纯度均不小于 98%)购于日本 TCI公司。
甲醇(色谱纯)、乙腈(色谱纯)、乙酸乙酯、甲酸(色谱纯)和乙酸铵(色谱纯)购自德国Merck公司;无水硫酸镁(分析纯)购自国药集团化学试剂有限公司。
仪器与设备
超高效液相色谱-串联四极杆质谱联用仪,配AB SCIEX LC-20A高效液相色谱仪、AB SCIEX 6500串联四极杆质谱仪(美国AB SCIEX 公司); BT 125D电子天平(德国Sartorius公司);MS3型涡旋混合器(德国IKA公司);SB-800DTD超声清洗仪(宁波新芝生物科技股份有限公司);Mili-Q超纯水机(美国Millipore公司)。
方法
1.3.1 标准溶液配制
标准储备溶液:分别准确称取15种季铵盐类标准物质各10.0 mg(精确至0.01 mg)于10 mL容量瓶中,用甲醇溶解并定容至刻度,摇匀,分别配制成浓度为1.0 mg/mL的标准储备溶液,4℃避光冷藏保存。
混合标准中间溶液:准确移取100 μL的15种标准储备溶液于10 mL容量瓶中,用甲醇定容,配成质量浓度为10 μg/mL混合标准溶液,4 ℃冷藏保存。
基质标准溶液制备:用1.3.3处理后的空白样品提取液将混合标准中间溶液配制成适当浓度的基质混合标准工作溶液。
1.3.2 仪器条件
1.3.2.1 质谱条件
离子源:电喷雾离子源(ESI源);采集模式:正离子模式;监测方式:多反应监测(MRM);雾化气温度为450℃;雾化气压力为55 psi;辅助气压力为55psi,喷嘴电压为5500v;碰撞气压力为8 psi;气帘气压力为20 psi。分段采集模式,隔离时间窗口为0.5min;质谱/质谱测定参考条件如表1所示。
表 1 15种消毒剂的质谱参数
Figure 678398DEST_PATH_IMAGE003
注:* 定量离子。
1.3.2.2 色谱条件
色谱柱:资生堂 CAPCELL PAK C18 MGⅢ-H 色谱柱(100 mm×2.0 mm,3 μm);捕集柱:Waters isolator column (75 mm×2.1mm);流动相A:0.1%甲酸水(含浓度10 mmol/L乙酸铵);流动相B:0.1%甲酸甲醇(含浓度10 mmol/L乙酸铵);流速0.3 mL/min,进样体积为2μL;柱温40℃;洗脱方式:梯度洗脱如表2所示。
表2超高效液相色谱串联质谱的流动相及梯度洗脱条件
Figure DEST_PATH_IMAGE004
1.3.3 样品前处理
称取0.5 g(精确至0.01 g)粉碎后样品于50 mL离心管中,加入1mL水溶液,加入10μL甲酸涡旋混匀1 min,超声15 min,加入5 mL乙腈:乙酸乙酯(v:v=1:1),涡旋混匀1 min,超声15 min,加入1 g无水硫酸钠,涡旋混匀1 min,转速为8000 r/min离心5 min,取上清液至15 mL离心管中,45℃氮吹浓缩至近干,准确加入1 mL甲醇溶解残渣,10000 r/min离心5min后进样测定。
结果与分析
2.1 质谱条件优化
季铵盐类消毒剂是通过带正电的氮原子链接四个官能团的(R4N+)化合物,常与Cl,Br等卤族阴离子以盐的形式存在。首先采用全扫描的模式,对化合物进行全扫描,发现母离子都是失去卤离子的R4N+离子;然后通过调节碰撞能对子离子进行扫描,发现相同结构的季铵盐具有类似的碎片离子,三种典型季铵盐类消毒剂裂解图及二级质谱图见图1。如烷基二甲基苄基铵盐都有苄基碎片(C6H5-CH2 +,m/z= 91)、双链烷基二甲基铵盐和烷基三甲基铵盐两类盐先是氮原子与长链烷基ϭ键断裂,形成 [M-R+H] +离子和烷基自由基,然后烷基自由基经过半异裂形成CnH2n+1系列峰簇,其中以C4H9 +,m/z=57,响应最高,其中烷基三甲基铵盐的[M-R+H] +离子为(CH33NH+, m/z= 60)特征碎片。
液相色谱条件优化
选用实验室常用的C18色谱柱分析,由于季铵盐类消毒剂多为长链烷基化合物,在C18色谱柱上保留较强,对于保留较强的双十八烷基二甲基溴化铵,需要100%有机相至少洗脱3 min才可完全洗脱。为了洗脱掉更多杂质而不影响后续的分析测定,最终采用100%有机相洗脱8 min。
本文首先尝试以甲醇-水溶液、甲醇-10 mmol/L乙酸铵溶液、甲醇-0.1%甲酸水溶液、甲醇-0.1%甲酸10 mmol/L乙酸铵水溶液实验,结果发现甲醇-0.1%甲酸水(含10 mmol/L乙酸铵)溶液作为流动相时,峰形最好、响应值较高。但保留较强的双十四烷基二甲基溴化铵、双十六烷基二甲基溴化铵、双十八烷基二甲基溴化铵采在有机相中添加0.1%甲酸(含10mmol/L乙酸铵)时,峰形及响应值才大幅提高,最终洗脱条件见表2,总离子流图见图2。
本底的消除
2.3.1 流动相及管路中本底的消除
标准BJS202007《婴幼儿配方食品中消毒剂残留检测》中为了去除本底,采用重蒸甲醇和乙腈的方式,耗时长,而且不能去除来自流动相中缓冲盐的干扰。本文创新在进样六通阀前增加捕集柱,延迟流动相中本底的出峰时间,达到本底干扰与样品中目标峰分离的目的。捕集柱安装位置见图3。
本文对添加捕集柱前后的试样做了详细比较,以双十八烷基二甲基溴化铵为例说明,如图4。在添加捕集柱前试剂空白(图4A)在标准品出峰位置(图4C)有严重流路本底,导致无法准确定量。当添加捕集柱后试剂空白(图4B)和标准品(图4D)中的流路本底延迟出峰,与标准品中目标峰达到基线分离,去除了本底对目标物的干扰,大大提高了目标物的检出限。
采用捕集柱将本底与目标物达到完美分离,但会导致每个目标物后都跟随着一个流路本底峰,当含量较低时,易被忽略。为了改善谱图的洁净度,以目标物保留时间为中心,设置0.5 min采集窗口,以分段采集模式代替传统采集模式,不仅使每个色谱峰有足够的采集点数,保证峰形的真实性,提高质谱的检测效率,而且可有效减少杂峰对主成分定性定量造成的干扰,见图5。图5A1-5A4是采用传统采集模式的谱图,5B1-5B4是对应的分段采集模式的谱图,流路本底峰被“完美错过”。
前处理条件的优化
2.1.1 水量的优化
畜禽肉含水较少,需要先用水将其分散后提取目标化合物。对此我们考察了试样质量和水体积的比例(1:1,1:2,1:5),发现1:1时有些样品不能完全溶解,而当比例为1:5时,在后续的净化过程中,双十八烷基二甲基溴化铵回收率低至3%,而采用1:2的比例时,样品不仅能完全溶解,而且回收率提高至80%以上。故最终选择1:2的比例。
2.1.2 盐析辅助均相液液萃取(SHLLE)的优化
2.1.2.1 萃取剂的选择
SHLLE在 QuEChERS前处理技术中应用广泛,其关键因素是在盐析条件下,目标物在水相和有机相(萃取剂)中的分配效率。本研究考察了不同的萃取剂对15种消毒剂的提取效率及基质效应的影响。如图6,结果表明,不同酸碱度的乙腈萃取剂对碳链相对短的化合物的提取效率几乎无差别,但对于长链双烷基季铵盐差异较大。在碱性萃取剂下,当双烷基季铵盐碳链增加时回收率明显降低,如双十二烷基二甲基溴化铵、双十四烷基二甲基溴化铵、双十六烷基二甲基溴化铵、双十八烷基二甲基溴化铵的回收率分别90%,75%,58%,而酸性乙腈萃取剂下回收率相对最好,但双十八烷基二甲基溴化铵仍达不到60%,推测原因是目标化合物极性太弱,故采用不同比例的酸化乙腈乙酸乙酯作为萃取剂再次考察,当体积比为1:1时最佳,15种消毒剂的回收率都在85%以上。
2.1.2.2 盐析剂的选择
考察两种常用的吸水性强的无机盐(无水硫酸镁和无水硫酸钠),发现当,采用盐析剂无水硫酸镁时,所有化合物的回收率约为50%,推测原因是无水硫酸镁在吸水过程中放热,导致目标物不稳定,故最终选择无水硫酸钠。
方法的线性范围、检出限与定量限
将1.3.1基质标准溶液按浓度从低到高依次经液相色谱-串联质谱测定,以目标物定量离子的峰面积对浓度作标准曲线,15种季铵盐类消毒剂在0.5-50 ng /mL 浓度范围内,各化合物相关系数均大于 0.99,线性关系良好,见表3。
采用在空白样品中添加目标化合物的方法确定方法定量限,以对应色谱峰响应值3倍信噪比的质量浓度作为方法检出限,为0.5 μg/kg;以对应色谱峰响应值10倍信噪比的质量浓度作为方法定量限,为1.0 μg/kg。
表3 15种季铵盐类消毒剂的线性回归方程方程和相关系数
Figure 126959DEST_PATH_IMAGE005
2.6 方法回收率和精密度
称取空白鸡肉分别加入低、中、高三水平浓度为1 μg/kg、5 μg/kg和50 μg/kg的加标样品,每一浓度平行测定6次,按照本方法处理测定得到回收率及精密度,测定结果均具有良好的回收率及重现性,测定结果见表4。
表 4 鸡肉中15种季铵盐类消毒剂的回收率与精密度(n=6)
Figure DEST_PATH_IMAGE006
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (4)

1.一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法,其特征在于,包括以下步骤:
(1)样品前处理:样品采用水分散,加入甲酸化的乙腈乙酸乙酯超声提取,加入无水硫酸钠后离心,取上清液浓缩后加入甲醇溶解后离心备用;
(2)配置15种季铵盐类消毒剂的标准溶液;15种季铵盐类消毒剂为辛基二甲基苄基氯化铵、十二烷基二甲基苄基氯化铵、十四烷基二甲基苄基氯化铵、十六烷基二甲基苄基氯化铵、十八烷基二甲基苄基氯化铵、双十烷基二甲基溴化铵、双十二烷基二甲基溴化铵、双十四烷基二甲基溴化铵、双十六烷基二甲基溴化铵、双十八烷基二甲基溴化铵、苄索氯铵、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基三甲基溴化铵、四丁基硫酸氢铵;
(3)将样品采用液相色谱-质谱进行测定。
2.根据权利要求1所述的一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法,其特征在于,液相色谱的条件为:色谱柱:资生堂 CAPCELL PAK C18 MGⅢ-H 色谱柱,尺寸为100 mm×2.0 mm,3 μm;捕集柱:Waters isolator column,尺寸为75 mm×2.1mm;流动相A:0.1%甲酸水(含浓度10 mmol/L乙酸铵);流动相B:0.1%甲酸甲醇(含浓度10 mmol/L乙酸铵);流速0.3 mL/min,进样体积为2 μL;柱温40℃;洗脱方式:梯度洗脱;
Figure DEST_PATH_IMAGE001
3.根据权利要求1所述的一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法,其特征在于,质谱的条件为:
离子源:电喷雾离子源;采集模式:正离子模式;监测方式:多反应监测;雾化气温度为450℃;雾化气压力为55 psi;辅助气压力为55psi,喷嘴电压为5500v;碰撞气压力为8 psi;气帘气压力为20 psi;分段采集模式,隔离时间窗口为0.5min;质谱参数:
Figure DEST_PATH_IMAGE003
4.根据权利要求1所述的一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法,其特征在于,步骤(1)的具体步骤为:称取0.5 g粉碎后样品于50 mL离心管中,加入1mL水溶液,加入10 μL甲酸涡旋混匀1 min,超声15 min,加入5 mL体积比为1:1的乙腈:乙酸乙酯,涡旋混匀1 min,超声15 min,加入1 g无水硫酸钠,涡旋混匀1 min,转速为8000 r/min离心5 min,取上清液至15 mL离心管中,45℃氮吹浓缩,准确加入1 mL甲醇溶解残渣,10000 r/min离心5 min后进样测定。
CN202210576530.5A 2022-05-25 2022-05-25 一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法 Active CN114965812B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210576530.5A CN114965812B (zh) 2022-05-25 2022-05-25 一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210576530.5A CN114965812B (zh) 2022-05-25 2022-05-25 一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法

Publications (2)

Publication Number Publication Date
CN114965812A true CN114965812A (zh) 2022-08-30
CN114965812B CN114965812B (zh) 2024-04-05

Family

ID=82956362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210576530.5A Active CN114965812B (zh) 2022-05-25 2022-05-25 一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法

Country Status (1)

Country Link
CN (1) CN114965812B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990839A (zh) * 2024-02-07 2024-05-07 华南农业大学 一种同时测定植物中十二烷基二甲基苄基氯化铵及其羟基化代谢产物的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146956A (ja) * 2001-11-14 2003-05-21 Toagosei Co Ltd 新規な第四アンモニウム塩及びその製造する方法
JP2007155657A (ja) * 2005-12-08 2007-06-21 Nippon Flour Mills Co Ltd 液体クロマトグラフィータンデム質量分析法(lc―ms/ms)を使用した農薬の分析方法
JP2013032969A (ja) * 2011-08-02 2013-02-14 Meiji Co Ltd [モノ、ビス(塩化トリメチルアンモニウムメチレン)]アルキルトルエンの定量方法
CN105259288A (zh) * 2015-10-30 2016-01-20 四川新希望畜牧科技有限公司 一种同时检测禽肉组织中多种药物残留量的方法
CN106124646A (zh) * 2016-06-12 2016-11-16 南京大学 一种检测水中极性苯酚类氯代/溴代消毒副产物的方法
KR20180005074A (ko) * 2016-07-05 2018-01-15 한국과학기술연구원 양이온성 4가 암모늄화합물의 정량분석 방법
CN111157645A (zh) * 2020-01-03 2020-05-15 浙江方圆检测集团股份有限公司 基于分散固相萃取的测定食品包装用纸中季铵盐的高效液相色谱串联质谱法
CN112305104A (zh) * 2020-10-22 2021-02-02 普研(上海)标准技术服务股份有限公司 一种禽畜肉中36种兽药残留量的测定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146956A (ja) * 2001-11-14 2003-05-21 Toagosei Co Ltd 新規な第四アンモニウム塩及びその製造する方法
JP2007155657A (ja) * 2005-12-08 2007-06-21 Nippon Flour Mills Co Ltd 液体クロマトグラフィータンデム質量分析法(lc―ms/ms)を使用した農薬の分析方法
JP2013032969A (ja) * 2011-08-02 2013-02-14 Meiji Co Ltd [モノ、ビス(塩化トリメチルアンモニウムメチレン)]アルキルトルエンの定量方法
CN105259288A (zh) * 2015-10-30 2016-01-20 四川新希望畜牧科技有限公司 一种同时检测禽肉组织中多种药物残留量的方法
CN106124646A (zh) * 2016-06-12 2016-11-16 南京大学 一种检测水中极性苯酚类氯代/溴代消毒副产物的方法
KR20180005074A (ko) * 2016-07-05 2018-01-15 한국과학기술연구원 양이온성 4가 암모늄화합물의 정량분석 방법
CN111157645A (zh) * 2020-01-03 2020-05-15 浙江方圆检测集团股份有限公司 基于分散固相萃取的测定食品包装用纸中季铵盐的高效液相色谱串联质谱法
CN112305104A (zh) * 2020-10-22 2021-02-02 普研(上海)标准技术服务股份有限公司 一种禽畜肉中36种兽药残留量的测定方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAHINA SLIMANI,等: "Liquid chromatography-tandem mass spectrometry multiresidue method for the analysis of quaternary ammonium compounds in cheese and milk products: Development and validation using the total error approach", JOURNAL OF CHROMATOGRAPHY A, vol. 1517, pages 87 - 90 *
姚瑞雄;: "QuEChERS净化结合超高效液相色谱串联质谱法测定奶粉中的季铵盐", 现代食品科技, no. 10 *
张庆庆;王燕燕;孟品佳;: "季铵盐类农药残留检测前处理研究", 湖北大学学报(自然科学版), no. 02 *
李惠华等: "液相色谱串联质谱(LC-MS/MS)法 同时检测食品中 18 种增塑剂", 现代食品工程与营养健康学术研讨会暨2020年广东省食品学会年会论文集, pages 2 *
王浩;陈江龙;张杉;赵丽;张旭: "液相色谱-串联质谱法测定婴幼儿配方乳粉中六种消毒剂残留", 中国乳品工业, no. 001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990839A (zh) * 2024-02-07 2024-05-07 华南农业大学 一种同时测定植物中十二烷基二甲基苄基氯化铵及其羟基化代谢产物的方法

Also Published As

Publication number Publication date
CN114965812B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
Chu et al. Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry
Guetens et al. Oxidative DNA damage: biological significance and methods of analysis
Li et al. Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-L-alanine (BMAA) and 2, 4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria
TAN et al. Analysis of 13 kinds of steroid hormones in raw milk using modified QuEChERS method combined with UPLC-QTOF-MS
JP2017519228A (ja) 分析種の抽出、誘導体化および定量
CN113552229B (zh) 血清中维生素k1的高效液相色谱串联质谱检测方法
CN111060616A (zh) 一种用于缬沙坦制剂中亚硝胺类杂质的检测方法
Boroduleva et al. Development of fluorescence polarization immunoassays for parallel detection of pesticides carbaryl and triazophos in wheat grains
CN106153801A (zh) 一种同时检测白酒原辅料中七种真菌毒素的方法
US20100148055A1 (en) Methods for detecting catecholamines by mass spectrometry
CN109596740A (zh) 一种牛奶中氨基糖苷类药物的检测方法
CN114965812A (zh) 一种同时测定畜禽肉中的15种季铵盐类消毒剂残留的方法
Moats et al. Rapid HPLC determination of tetracycline antibiotics in milk
McKinney et al. Detection of stanozolol and its metabolites in equine urine by liquid chromatography–electrospray ionization ion trap mass spectrometry
Shen et al. Rapid determination of antiviral drugs in yellow catfish (Pelteobagrus fulvidraco) using graphene/silica nanospheres (G/KCC-1) based pipette tip solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry
CN108414643B (zh) 一种冷鲜鸡中生物胺的液相色谱-三重四级杆质谱检测方法
Nitschke et al. Trace analysis of cationic surfactants in water using HPLC with conductometric detection
Wang et al. Quantification of piperazine in chicken and pig tissues by gas chromatography–electron ionization tandem mass spectrometry employing pre-column derivatization with acetic anhydride
Cheng et al. On-line solid-phase extraction coupled liquid chromatography-ESI-ion trap-mass spectrometry for analysis of abamectin and ivermectin residues in milk
Barroso et al. Gas chromatographic-mass spectrometric analysis of the loop diuretic torasemide in human urine
Ma et al. Simultaneous determination of nitroimidazoles and amphenicol antibiotics in water samples using ultrasound-assisted dispersive liquid–liquid microextraction coupled with ultra-high-performance liquid chromatography with tandem mass spectrometry
Guiñez et al. Solvent-based de-emulsification dispersive liquid–liquid microextraction coupled with UPLC-MS/MS for the fast determination of ultratrace levels of nitrated and oxygenated polycyclic aromatic hydrocarbons in environmental samples
WO2007054735A1 (en) Quantification method for toxic and teratologic compounds in zebrafish embryos
Fang et al. Detection and identification of zeranol in chicken or rabbit liver by liquid chromatography-electrospray tandem mass spectrometry
Francesconi Applications of liquid chromatography–electrospray ionization‐single quadrupole mass spectrometry for determining arsenic compounds in biological samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant