CN114965645A - 一种基于光电化学和双链特异性核酸酶的体外piRNA检测方法 - Google Patents

一种基于光电化学和双链特异性核酸酶的体外piRNA检测方法 Download PDF

Info

Publication number
CN114965645A
CN114965645A CN202210650585.6A CN202210650585A CN114965645A CN 114965645 A CN114965645 A CN 114965645A CN 202210650585 A CN202210650585 A CN 202210650585A CN 114965645 A CN114965645 A CN 114965645A
Authority
CN
China
Prior art keywords
solution
mos
res
electrode
pir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210650585.6A
Other languages
English (en)
Other versions
CN114965645B (zh
Inventor
杜鲁涛
蒋妍彦
李娟�
王传新
童尧
孙志伟
王允山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210650585.6A priority Critical patent/CN114965645B/zh
Publication of CN114965645A publication Critical patent/CN114965645A/zh
Application granted granted Critical
Publication of CN114965645B publication Critical patent/CN114965645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于生物检测技术领域,涉及一种基于光电化学和双链特异性核酸酶的体外piRNA检测方法。该方法包括以下步骤:制备MoS2@ReS2/Ti3C2光活性复合材料以及SiO2复合探针系统,组装传感器。滴加待测样本,与DSN室温反应完成后,用超纯水将样本冲洗在抗坏血酸电解质溶液中进行PEC测量。MoS2@ReS2的Ⅰ型异质结构以及Ti3C2的高电导率有利于抑制电子‑空穴对的复合,提高靶响应;在piR‑31143存在时,piR‑31143会启动链置换反应将p2从复合探针系统中置换出来,随后DSN酶特异性识别DNA‑RNA复合体,裂解p1探针并释放piR‑31143继续参与下一轮置换及切割反应,形成恒温信号放大。本发明操作简便、灵敏度高、重复性和特异性好,是一种用于piRNA体外检测的可靠方法,基于此方法可以实现结直肠癌的精准诊断。

Description

一种基于光电化学和双链特异性核酸酶的体外piRNA检测 方法
技术领域
本发明属于生物检测技术领域,涉及一种基于光电化学和双链特异性核酸酶的体外piRNA检测方法。
背景技术
结直肠癌(CRC)是全球第三大最常见的癌症,也是癌症相关死亡的第四大原因。最近的报道显示,亚洲国家结直肠癌发病率在过去20年里急剧增长,尤其是中国结直肠癌患病人数在过去的30年间增长了700%,超过美国成为全球结直肠癌患病人数最多的国家。CRC的发展是多种遗传和表观遗传改变逐步累积的结果,肿瘤的异质性较强,易导致CRC患者漏诊。鉴于这一临床挑战,寻找更能代表疾病生物学特征的新分子靶点,将对改善CRC患者的诊断和治疗具有重要价值。
piRNAs是一类新近发现的长度为26-31个核苷酸的小型非编码RNA,与PIWI蛋白相互作用,可在转录后和表观遗传上沉默生殖干细胞的转座元件。此外,有报道称piRNAs在体液中的表达水平失调与多种癌症的发生发展有关,且由于其体积小,3’端存在2’-O-甲基化修饰,因此piRNA不易被核糖核酸酶降解,是一种理想的肿瘤标志物。piR-31143是最早被确认与恶性肿瘤相关的piRNAs之一,因其调控DNA甲基化的功能而备受学者关注,最近的一项研究表明,其血清表达水平在CRC诊断中具有良好的应用前景。
目前,研究循环RNA的金标准方法是实时荧光定量聚合酶链式反应(qRT-PCR),敏感度和精确度均较高,但是该技术耗时长、需要专门的设备以及严格的温度控制,无法满足临床中简单、快速的检测需求。光电化学(PEC)是指光活性材料在光的照射下发生电子激发和电荷转移的光电转换过程。该技术以光源为激发源,激发光敏材料,输出电信号作为检测信号,实现对目标分子的检测,因此PEC生物分析具有背景信号低、灵敏度高的特点。随着新材料和信号放大策略的开发,在过去的几年光电化学得到了快速发展,为piRNA分析检测技术的研发提供了新的思路。因此,建立灵敏度高、特异性好、操作简单的微小RNA光电化学生物传感器不仅具有必要性,而且具有可行性。
发明内容
本发明针对传统piR-31143检测中存在的问题提出一种新型的基于光电化学和双链特异性核酸酶的体外piRNA检测方法。
为了达到上述目的,本发明是采用下述的技术方案实现的:
(1)MoS2@ReS2/Ti3C2复合材料的制备:将(NH4)6Mo7O24·4H2O、NH4ReO4、CH4N2S和Ti3C2添加到超纯水中超声分散,转移至水热反应釜升温至220℃加热24h,自然冷却至室温后,用超纯水和乙醇洗涤黑色产物,真空干燥后得到复合材料。
(2)复合探针系统的制备:首先对SiO2羧基表面改性,随后将SiO2-COOH溶液、N-羟基琥珀酰亚胺和N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐加入MES缓冲液中搅拌,离心后将底物重悬在Tris-HCl缓冲液中,加入p1-p2溶液进行探针连接,用超纯水洗涤3次得到复合探针体系。
(3)PEC传感器的组装:将步骤(1)合成的MoS2@ReS2/Ti3C2复合物滴加到玻碳电极上,超纯水冲洗,干燥后以HAuCl4水溶液作为电解质,将Au NPs电沉积在MoS2@ReS2/Ti3C2表面。用超纯水冲洗干净后,加入步骤(2)所制备的探针溶液,探针可通过Au-S键连接至电极表面,随后用超纯水冲洗电极去除物理吸附探针,最后在电极表面加入MCH封闭电极表面非特异性吸附位点。
(4)PEC传感器检测流程:在工作电极表明滴加待测物、DSN和DSN buffer缓冲液,37℃反应3h后添加DSN终止溶液灭活DSN。使用超纯水将样本冲洗干净后,在电解质溶液中进行PEC测量。电解质溶液采用氮气脱氧的抗坏血酸溶液,PEC检测借助三电极系统进行,包含2*2 cm的铂对电极和Ag/AgCl参比电极。使用发射波长为420 nm,功率为170 W的LED灯作为激发光源,电极浸入电解液并稳定2 min后开始测量,电化学工作站施加0.15 V电压,激发光源在计时电流法开启第10 s时打开、第30 s时关闭,记录第30s时的光电流。
(5)PEC传感器的方法学评价:对PEC传感器的灵敏度、特异性、光辐射稳定性以及结果准确度进行方法学评价。
作为优选,所述步骤(1) 中(NH4)6Mo7O24·4H2O的添加浓度为0.13 mmol,NH4ReO4的添加浓度为0.73 mmol,CH4N2S的添加浓度为3.22 mmol,Ti3C2的添加质量为0.2 g。
作为优选,所述步骤(2)中的p1序列为:
SH-(CH2)6-GCAGCTATGCTCACCACTATACCACCAACGCT,
P2序列为:
TCCGGTGAGCAGTT-(CH2)6-NH2
piR-31143序列为:
AGCGUUGGUGGUAUAGUGGUGAGCAUAGCUGC。
作为优选,所述步骤(2)中SiO2-COOH溶液添加浓度为2mg/mL,体积为100 μL,N-羟基琥珀酰亚胺添加质量为5 mg,N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐添加质量为5 mg。MES缓冲液pH 5.5,体积1 mL,浓度为10 mM。Tris-HCl缓冲液pH7.4,体积1 mL,浓度为10 mM。复合探针水溶液的最终浓度为 0.1 μM。
作为优选,所述步骤(3)中MoS2@ReS2/Ti3C2复合物的滴加浓度为4 mg/mL,滴加体积为10 μL。复合探针溶液滴加体积为10 μL,连接温度为4 ℃,连接时间为12 h。MCH添加浓度为1 μM,封闭时间为1 h。
作为优选,所述步骤(4)中电解质溶液采用浓度为0.01 M的抗坏血酸溶液,使用Tris-HCl缓冲液(1 M, pH 9)将其调节至pH 7.5。
回归方程拟合如下:y=11.755*lgx+86.14(R2=0.998),计算最低检测限为0.023fM。对100fM的目的序列与错配序列检测,piR-31143的光电流拟合浓度为101.6 fM,三组错配序列的拟合值分别为3.4 fM、2.9 fM和1 fM,证实了该生物传感器对piR-31143的检测具有良好的特异性。利用交流电对PEC生物传感器连续周期性扫描15个周期,结果显示光电流的RSD为1.17%,表明构建的生物传感器具有优异的稳定性,原因可能在于光敏材料在光照下能不断发生电子跃迁。对系列血清样本同时利用RT-qPCR和PEC方法检测,结果显示两种方法检测结果无明显偏差,表明该方法与金标准检测方法拥有相匹配的检测能力。基于本发明提出的PEC检测方法对13例结直肠癌患者血清以及8例健康对照血清进行检测,结果显示基于该方法检测piR-31143区分结直肠癌病人的AUC值为0.942,0.7692是最高的约登指数,最佳截断值为78.54。在这种情况下,区分癌症患者和健康对照的敏感性和特异性分别为76.92%和100%,证实了传感器对piR-31143具有可靠的诊断能力。
与现有技术相比,本发明的优点和积极效果在于:
本发明所提出的传感器具有较宽的线性范围和较低的检测限,线性范围为在10- 1fM至106fM,对piR-31143的检测具有良好的特异性;且电极稳定性好,检测结果可靠。
附图说明
图1为实施例1制备的MoS2@ReS2/Ti3C2复合材料的扫描电镜图。
图2为MoS2和ReS2的UV-vis和Taucplot结果。
图3为实施例3制备的PEC生物传感器的灵敏度评价。
图4为实施例3制备的PEC生物传感器的特异性评价。
图5为实施例3制备的PEC生物传感器的稳定性评价。
图6为实施例3制备的PEC生物传感器与RT-qPCR结果的一致性评价。
图7为实施例3制备的PEC生物传感器测定临床血清样本的ROC曲线分析。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合具体实施例对本发明做进一步说明。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开说明书的具体实施例的限制。
实施例1
1. PEC传感器制备
(1)MoS2@ReS2/Ti3C2复合材料的制备
将0.13 mmol的(NH4)6Mo7O24·4H2O、0.73 mmol的NH4ReO4、3.22 mmol的CH4N2S和0.2 gTi3C2添加到30 mL超纯水中超声处理10 min。将溶液转移到水热反应釜中220 ℃保温24h,自然冷却至室温后,用超纯水和乙醇洗涤黑色产物3次,在60 ℃真空干燥12 h得到MoS2@ReS2/Ti3C2复合材料。图1为本实施例制备得到的MoS2@ReS2/Ti3C2复合材料的扫描电镜图,从图1中可以看出材料颗粒分布比较均匀。
(2)能带分析
如图2所示,MoS2和ReS2的UV-Vis吸收光谱和Tauc plot结果表明MoS2具有1.43 eV的Eg和红外区域的光吸收范围,ReS2的Eg为1.84 eV,具有覆盖可见光的波长吸收范围。根据E CB = χ– E 0 - 0.5EgE CB = E VB - Eg经验公式,计算得到MoS2的ECB和EVB分别为1.54 eV和0.11eV,ReS2的ECB和EVB分别为1.8 eV和0.04 eV。光生电子和空穴都从ReS2转移到MoS2,因此MoS2@ReS2异质结属于I型异质结,促进了电子和空穴的分离。由于两种材料分别属于1T和2H结构,导致了界面的错配,进一步抑制了电子-空穴的复合效率。
(3)复合探针系统的制备
3.1SiO2表面羧基改性:将0.1 g SiO2、0.5 mL (3-氨基丙基)三乙氧基硅烷和10 μL三乙胺添加在15 mL甲苯中,超声分散10min。在110 ℃下回流5 h,用丙酮洗涤产物,重悬在10 mL乙醇中。将含有0.5 g戊二酸酐的10 mL乙醇溶液滴加到上述溶液中,并在37 ℃搅拌6 h,经乙醇洗涤、风干后得到SiO2-COOH,将SiO2-COOH以2 mg/mL的浓度超声分散在超纯水中。
3.2探针序列
p1序列为SH-(CH2)6-GCAGCTATGCTCACCACTATACCACCAACGCT。
P2序列为TCCGGTGAGCAGTT-(CH2)6-NH2
3.3探针连接:将p1和p2等摩尔混合,在37 ℃下孵育90 min,获得浓度为10 μM的p1-p2溶液。将100 μL SiO2-COOH溶液、5 mg N-羟基琥珀酰亚胺和5 mg N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐加入1 mL浓度为10 mM的MES缓冲液(pH 5.5)中,30 ℃下搅拌混合15 min。将溶液离心,底物重新分散在1 mL浓度为10 mM的Tris-HCl缓冲液(pH 7.4)中,加入p1-p2溶液,20 ℃下搅拌混匀12 h,使SiO2通过表面羧基和探针的氨基作用连接到探针p2,用超纯水洗涤3次得到复合探针体系,复合探针水溶液的最终浓度为0.1 μM。
4.反应条件优化
通过检测MoS2:ReS2和Ti3C2:MoS2@ReS2质量比在0-1之间合成的光活性复合材料的光电流大小,优化原料比例,结果显示当MoS2:ReS2为0.6、Ti3C2:MoS2@ReS2质量比为0.35时光活性材料的光电流最强。在玻碳电极分别滴加1-6mg/mL的Ti3C2/MoS2@ReS2,结果显示Ti3C2/MoS2@ReS2浓度为4mg/mL时,光电流达到峰值。此外,在3.5-8.5的电解质溶液pH值范围内,当pH值为7.5时,光电流达到最大值。进一步实验发现,最佳探针浓度为0.1 μM,最佳连接时间为12 h。
5.PEC传感器的组装
首先,将10 μL浓度为4 mg/mL的MoS2@ReS2/Ti3C2复合物滴加到玻碳电极表面,在25 ℃下干燥4 h得到工作电极。随后以质量分数为1 %的HAuCl4水溶液作为电解质,在0.2V电压下作用30 s,使Au NPs电沉积在MoS2@ReS2/Ti3C2表面。用超纯水冲洗干净后,滴加10μL浓度为0.1 μM的复合探针溶液,4 ℃下孵育12 h。超纯水冲洗3次后,在电极表面加入10μL浓度为1 μM的MCH,孵育1 h封闭电极表面非特异性吸附位点。
6.PEC传感器检测
滴加10 μL待测样品,与0.2 μL DSN和1 μL 10× DSN buffer缓冲液,37 ℃下反应3 h,添加5 μL 2× DSN终止溶液灭活DSN。最后,将样本冲洗干净后,在电解质溶液中进行PEC测量。电解质溶液采用浓度为0.01 M的抗坏血酸溶液,利用Tris-HCl缓冲液(1 M, pH9)将其调节至pH 7.5,并充满氮气脱氧。PEC检测借助三电极系统在PEC工作站(DH7000,江苏东华)进行,包含2*2 cm的铂对电极和Ag/AgCl参比电极。使用波长为420nm,对应功率为170 W的LED灯作为激发光源,电极浸入电解液并稳定2 min后开始测量,在0.15 V电位下,辐射灯在10 s时打开,在30 s时关闭,记录第30s时的光电流。
7.PEC传感器检测效果验证
7.1灵敏度评价
利用不同浓度的piR-31143单链mimics对传感器进行灵敏度评价,结果如图3所示,从图3中可以看出在10-1fM至106fM范围内,随着piR-31143浓度对数的增加,传感器的光电流呈线性逐渐增加。回归方程拟合如下:y=11.755*lgx+86.14(R2=0.998),计算最低检测限为0.023 fM。
7.2特异性评价
进一步检测piR-31143及突变序列(包括单碱基错配目标SMT、双碱基错配目标TMT和非配对目标NCT),浓度均为100fM,评估生物传感器的特异性。结果如图4所示。SMT序列为AGCGUUGGUUGUAUAGUGGUGAGCAUAGCUGC;TMT序列为AGCGUUGGUGGUAUAGUGUUGGGCAUAGCUGC;NCT序列为CUGCAUCCACUGAUAGACCUUGAACAAU。从图4中可以看出,piR-31143的光电流拟合浓度为101.6 fM,其他三组的拟合值分别为3.4 fM、2.9 fM和1 fM,证实了该生物传感器对piR-31143的检测具有良好的特异性。
7.3稳定性评价
在无目的分子情况下,使用10mV交流电对PEC生物传感器连续周期性扫描15个周期,结果如图5所示,从图5中可以看出,显示光电流的RSD为1.17%,表明构建的生物传感器具有优异的稳定性。
7.4RT-qPCR结果一致性评价
使用RT-qPCR方法建立ct值与目的分子浓度间的标准曲线,对3组CRC患者血清样本和3组健康对照血清样本进行piR-31143检测,将RT-qPCR检测结果作为对照进一步评估生物传感器的准确性。结果如图6所示,从图6中可以看出所有测量结果在RT-qPCR和PEC传感器之间没有明显偏差,证明该生物传感器具有与金标准方法相匹配的检测能力,在临床研究中具有良好的潜在应用价值。
7.5临床血清验证
分别收取13例结直肠癌病人血清以及8例健康对照血清,对血清样本进行piR-31143检测,对结果进行ROC曲线分析。结果如图7所示,从图中可以看出结直肠癌病人piR-31143血清浓度显著高于健康对照,结果具有统计学意义。基于该方法检测piR-31143区分结直肠癌病人的AUC值为0.942,0.7692是最高的约登指数,最佳截断值为78.54。在这种情况下,区分癌症患者和健康对照的敏感性和特异性分别为76.92%和100%,证实了piR-31143具有可靠的诊断能力。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
SEQUENCE LISTING
<110> 山东大学
<120> 一种基于光电化学和双链特异性核酸酶的体外piRNA检测方法
<130> 1
<160> 6
<170> PatentIn version 3.5
<210> 1
<211> 32
<212> DNA
<213> 人工序列
<400> 1
agcguuggug guauaguggu gagcauagcu gc 32
<210> 2
<211> 32
<212> DNA
<213> 人工序列
<400> 2
gcagctatgc tcaccactat accaccaacg ct 32
<210> 3
<211> 14
<212> DNA
<213> 人工序列
<400> 3
tccggtgagc agtt 14
<210> 4
<211> 32
<212> DNA
<213> 人工序列
<400> 4
agcguugguu guauaguggu gagcauagcu gc 32
<210> 5
<211> 32
<212> DNA
<213> 人工序列
<400> 5
agcguuggug guauaguguu gggcauagcu gc 32
<210> 6
<211> 28
<212> DNA
<213> 人工序列
<400> 6
cugcauccac ugauagaccu ugaacaau 28

Claims (5)

1.一种MoS2@ReS2/Ti3C2光活性复合材料,其特征在于,MoS2的计算ECB和EVB分别为1.54eV和0.11eV,ReS2的计算ECB和EVB分别为1.8 eV和0.04 eV,MoS2@ReS2具有Ⅰ型异质结构。
2.权利要求1所述MoS2@ReS2/Ti3C2光活性复合材料制备方法,其特征在于,将0.13 mmol的(NH4)6Mo7O24·4H2O、0.73mmol的NH4ReO4、3.22 mmol的CH4N2S和0.2 g Ti3C2添加到30 mL超纯水中超声处理10 min,加入聚四氟乙烯内衬的不锈钢反应釜中升温至220℃保温24 h,反应釜自然冷却至室温后,分别用超纯水和乙醇洗涤产物3次,于60℃真空干燥12 h。
3.一种用于piR-31143检测的传感器制备方法,piR-31143序列为AGCGUUGGUGGUAUAGUGGUGAGCAUAGCUGC,其特征在于,以铂片电极为对电极,Ag/AgCl为参比电极;10 μL浓度为4mg/mL的MoS2@ReS2/Ti3C2复合物滴加到玻碳电极上,并在25 ℃下干燥4 h作为工作电极;
工作电极的具体制备过程为:质量分数为1 %的HAuCl4水溶液作为电解质,在0.2 V电压下作用30 s,使Au NPs电沉积在MoS2@ReS2/Ti3C2表面,超纯水冲洗后,加入10 μL复合探针溶液,4 ℃下反应12 h,超纯水冲洗后在工作电极表面加入10 μL浓度为1 μM的MCH,反应1h封闭电极表面非特异性吸附位点;所述复合探针溶液为p1和SiO2修饰的p2,p1与p2之间存在8个碱基互补配对,p1序列为SH-(CH2)6-GCAGCTATGCTCACCACTATACCACCAACGCT,p2序列为TCCGGTGAGCAGTT-(CH2)6-NH2
4.根据权利要求3所述用于piR-31143检测的传感器制备方法,其特征在于,复合探针溶液制备方法为:将p1和p2等摩尔混合,在37 ℃下孵育90 min获得浓度为10 μM的p1-p2溶液;将100 μL SiO2-COOH溶液、5 mg N-羟基琥珀酰亚胺和5 mg N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐加入1 mL浓度为10 mM的MES缓冲液中,30 ℃搅拌15 min;离心后将底物重悬在1 mL浓度为10 mM的Tris-HCl缓冲液中,加入p1-p2溶液,于20 ℃下搅拌12h,用超纯水洗涤3次得到复合探针溶液,复合探针溶液的最终浓度为0.1μM。
5.权利要求4制备得到的传感器的检测方法,其特征在于,在工作电极上滴加10 μL待测物、0.2 μL DSN和1 μL 10× DSN buffer缓冲液,在37℃下孵育3 h;然后滴加5 μL 2×DSN终止溶液以灭活DSN,将工作电极用超纯水冲洗3次,用三电极系统的计时电流法进行PEC测试;电解质溶液采用浓度为0.01 M的抗坏血酸溶液,使用1 M, pH 9的Tris-HCl缓冲液将抗坏血酸溶液调节至pH 7.5,并充满氮气脱氧;使用发射波长为420 nm,功率为170 W的LED灯作为激发光源,各电极浸入电解液并稳定2 min后开始测量,电化学工作站施加0.15 V电压,激发光源在计时电流法开启第10 s时打开、第30 s时关闭,记录第30s时的光电流。
CN202210650585.6A 2022-06-10 2022-06-10 基于光电化学和双链特异性核酸酶的体外piRNA检测方法 Active CN114965645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210650585.6A CN114965645B (zh) 2022-06-10 2022-06-10 基于光电化学和双链特异性核酸酶的体外piRNA检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210650585.6A CN114965645B (zh) 2022-06-10 2022-06-10 基于光电化学和双链特异性核酸酶的体外piRNA检测方法

Publications (2)

Publication Number Publication Date
CN114965645A true CN114965645A (zh) 2022-08-30
CN114965645B CN114965645B (zh) 2022-12-09

Family

ID=82961980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210650585.6A Active CN114965645B (zh) 2022-06-10 2022-06-10 基于光电化学和双链特异性核酸酶的体外piRNA检测方法

Country Status (1)

Country Link
CN (1) CN114965645B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993820A (zh) * 2009-08-21 2011-03-30 殷勤伟 快速、灵敏和特异地检测痕量小RNAs的旋转式传感器的制造方法
CN107604058A (zh) * 2017-09-22 2018-01-19 青岛大学 piRNA‑514核苷酸类似物及其反义核苷酸的应用和应用其的产品
CN107833940A (zh) * 2017-10-20 2018-03-23 浙江大学 一种基于二维二硫化钼‑二硫化铼异质结的光电子器件、制备方法及应用
CN111185201A (zh) * 2020-02-25 2020-05-22 辽宁大学 铼掺杂硫化钼纳米片/碳布复合材料及其制备方法和在电催化水制氢中的应用
CN114235926A (zh) * 2021-12-23 2022-03-25 山东大学 光电化学生物传感平台及构建方法与其在piRNA检测中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993820A (zh) * 2009-08-21 2011-03-30 殷勤伟 快速、灵敏和特异地检测痕量小RNAs的旋转式传感器的制造方法
CN107604058A (zh) * 2017-09-22 2018-01-19 青岛大学 piRNA‑514核苷酸类似物及其反义核苷酸的应用和应用其的产品
CN107833940A (zh) * 2017-10-20 2018-03-23 浙江大学 一种基于二维二硫化钼‑二硫化铼异质结的光电子器件、制备方法及应用
CN111185201A (zh) * 2020-02-25 2020-05-22 辽宁大学 铼掺杂硫化钼纳米片/碳布复合材料及其制备方法和在电催化水制氢中的应用
CN114235926A (zh) * 2021-12-23 2022-03-25 山东大学 光电化学生物传感平台及构建方法与其在piRNA检测中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEI LIU等: "MoS2‑ReS2 Heterojunctions from a Bimetallic Co-chamber Feeding Atomic Layer Deposition for Ultrasensitive MiRNA-21 Detection", 《ACS APPL. MATER. INTERFACES》 *
LEI LIU等: "Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2", 《SENSORS AND ACTUATORS: B. CHEMICAL》 *
MATTHEW Z. BELLUS等: "Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers", 《MATTHEW Z. BELLUS等》 *
ZHIWEI SUN等: "MoS2@Ti3C2 nanohybrid-based photoelectrochemical biosensor: A platform for ultrasensitive detection of cancer biomarker exosomal miRNA", 《TALANTA》 *

Also Published As

Publication number Publication date
CN114965645B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Zhang et al. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction
Fan et al. Rational engineering the DNA tetrahedrons of dual wavelength ratiometric electrochemiluminescence biosensor for high efficient detection of SARS-CoV-2 RdRp gene by using entropy-driven and bipedal DNA walker amplification strategy
CN109738500A (zh) 纳米复合物及其免标记适体电化学γ-干扰素传感器的制备方法
CN110146566B (zh) 修饰电极、组合产品及其电致化学发光生物传感器与应用
CN106568936B (zh) 基于多功能化二硫化钼的miRNA-21电化学发光免疫传感器的制备方法及其应用
Ravalli et al. A DNA aptasensor for electrochemical detection of vascular endothelial growth factor
CN114235907B (zh) 用于非小细胞肺癌cyfra21-1检测的电化学发光免疫传感器及检测方法
Yin et al. Dual-wavelength electrochemiluminescence biosensor based on a multifunctional Zr MOFs@ PEI@ AuAg nanocomposite with intramolecular self-enhancing effect for simultaneous detection of dual microRNAs
Zhao et al. A coreactant-free electrochemiluminescence (ECL) biosensor based on in situ generating quencher for the ultrasensitive detection of microRNA
CN110423798A (zh) 一种检测金黄色葡萄球菌的电化学方法
Moazampour et al. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on L-cysteine functionalized ZnS quantum dots
Xue et al. Antimony selenide/graphene oxide composite for sensitive photoelectrochemical detection of DNA methyltransferase activity
Jiang et al. An electrochemical sensor based on enzyme-free recycling amplification for sensitive and specific detection of miRNAs from cancer cells
Cheng et al. Hairpin probes based click polymerization for label-free electrochemical detection of human T-lymphotropic virus types II
CN113322305B (zh) 一种基于金纳米团簇/MnO2纳米花的电化学发光传感器的制备及应用
Yang et al. A stepwise recognition strategy for the detection of telomerase activity via direct electrochemical analysis of metal–organic frameworks
Jia et al. Ultrasensitive electrochemical detection of circulating tumor DNA by hollow polymeric nanospheres and dual enzyme assisted target amplification strategy
Hou et al. Label-free tri-luminophores electrochemiluminescence sensor for microRNAs detection based on three-way DNA junction structure
Shi et al. Superior performance of a graphdiyne self-powered biosensor with exonuclease III-assisted signal amplification for sensitive detection of microRNAs
CN114965645B (zh) 基于光电化学和双链特异性核酸酶的体外piRNA检测方法
CN115058489B (zh) 基于串联催化发夹组装技术的双靶标核酸序列响应的电化学传感器的构建及其应用
CN114235926B (zh) 光电化学生物传感平台及构建方法与其在piRNA检测中的应用
Yu et al. A signal-on electrochemical DNA biosensor based on exonuclease III-assisted recycling amplification
Qi et al. PER-CRISPR/Cas14a system-based electrochemical biosensor for the detection of ctDNA EGFR L858R
CN116083526A (zh) DNA步行器、纸基miRNA传感器及其制法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant