CN114959638A - 一种碳化锗薄膜的制备方法 - Google Patents

一种碳化锗薄膜的制备方法 Download PDF

Info

Publication number
CN114959638A
CN114959638A CN202210660218.4A CN202210660218A CN114959638A CN 114959638 A CN114959638 A CN 114959638A CN 202210660218 A CN202210660218 A CN 202210660218A CN 114959638 A CN114959638 A CN 114959638A
Authority
CN
China
Prior art keywords
deposition
carbide film
germanium carbide
radio frequency
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210660218.4A
Other languages
English (en)
Inventor
戴辉
尹士平
刘克武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Guangzhi Technology Co Ltd
Original Assignee
Anhui Guangzhi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Guangzhi Technology Co Ltd filed Critical Anhui Guangzhi Technology Co Ltd
Priority to CN202210660218.4A priority Critical patent/CN114959638A/zh
Publication of CN114959638A publication Critical patent/CN114959638A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于红外光学薄膜领域,公开了一种碳化锗薄膜的制备方法。该方法采用射频等离子体增强化学气相沉积的方法,在红外窗口材料表面沉积碳化锗薄膜,沉积过程中:控制真空氛围,通入甲烷、锗烷、氩气,射频功率为500~1000W。本发明的碳化锗薄膜的制备方法的工艺简单方便、无须加热,且设备成本较低,可调整工艺参数镀制出不同折射率的碳化锗薄膜。

Description

一种碳化锗薄膜的制备方法
技术领域
本发明属于红外光学薄膜领域,涉及一种碳化锗薄膜的制备方法,更具体的,涉及一种可变折射率碳化锗薄膜的制备方法。
背景技术
碳化锗薄膜是近年来广泛使用的红外光学窗口保护膜,它与大多数红外材料如硫化锌、锗、硒化锌、硫系玻璃等结合良好,在中远红外波段光吸收小,相比类金刚石膜的内应力小的多而且根据锗和碳的比例不同可以制作出不同折射率的碳化锗薄膜。
目前碳化锗薄膜制备的方法主要有磁控溅射法。磁控溅射碳化锗是利用氩离子轰击锗靶材溅射出锗原子同时通入反应气体CH4,在镀膜面反应生成碳化锗薄膜。但该方法存在:磁控溅射设备造价昂贵、加工过程复杂、需要镀前加热、且薄膜均匀性受磁场影响大等问题。
发明内容
针对现有技术中存在的上述问题,本发明的目的在于提供一种碳化锗薄膜的制备方法,该方法的工艺简单方便、无须加热,且设备成本较低。
为实现上述目的,本发明所采用的技术方案是:
一种碳化锗薄膜的制备方法,采用射频等离子体增强化学气相沉积的方法,在红外窗口材料表面沉积碳化锗薄膜,沉积过程中:控制真空氛围,通入甲烷、锗烷、氩气,射频功率为500~1000W。
优选地,所述红外窗口材料为锗、硫化锌、硒化锌、硫系玻璃中的一种。
优选地,甲烷的通入流量为10~100sccm,锗烷的通入流量为10~100sccm,氩气的通入流量为10~20sccm。
优选地,甲烷、锗烷、氩气气体的纯度均大于99.99%。
优选地,制备方法具体包括以下步骤:
(1)沉积前,对红外窗口材料的沉积面进行超声清洗;
(2)将清洗后的红外窗口材料置于射频等离子体增强化学气相沉积设备的沉积室中下极板托盘上,沉积面朝上;
(3)将射频等离子体增强化学气相沉积设备的上、下极板间距调整至6到10厘米区间;
(4)将反应室抽真空至4.0×10-3Pa~4.0×10-4Pa,然后通入甲烷、锗烷、氩气为反应气源,沉积过程控制:射频功率为500~1000W,沉积压力为0.1~10Pa,在红外窗口材料的沉积面沉积得到碳化锗薄膜。
优选地,步骤(4)中,超声清洗的频率为60~80khz,清洗时间为5~10分钟。
优选地,步骤(4)中,沉积温度采用常温即可,具体为15~35℃,无需加热器加热。
优选地,步骤(4)中,沉积时间为2000~5000s。
优选地,步骤(4)中,所得碳化锗薄膜厚度为1~1500nm。
与现有技术相比,本发明的有益效果为:
本发明的碳化锗薄膜的制备方法的工艺更加简单方便、无须加热,且设备成本较低,可调整工艺参数镀制出不同折射率的碳化锗薄膜。
具体实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1
本实施例提供了一种碳化锗薄膜的制备方法,包括以下步骤:
(1)沉积前,对ZnS镜片的沉积面进行超声清洗,超声清洗的频率为70kHZ,时间为10分钟;
(2)将清洗后的ZnS镜片放置于RF-PECVD设备的沉积室中下极板托盘上,沉积面朝上;
(3)将射频等离子体增强化学气相沉积设备的上、下极板间距调整至8厘米;
(4)将反应室抽真空至4.0×10-3Pa,通入纯度均为99.99%的甲烷、锗烷、氩气为反应气源。沉积过程控制:甲烷10sccm、锗烷80sccm、氩气10sccm,射频功率为800W,沉积压力为1Pa,沉积温度为常温20℃,在ZnS镜片的沉积面沉积1h,得到碳化锗薄膜。
通过膜厚测量和光谱分析可以得出该碳化锗薄膜的厚度为1μm,折射率为4,膜层均匀性良好。
实施例2
本实施例提供了一种碳化锗薄膜的制备方法,包括以下步骤:
(1)沉积前,对ZnS镜片沉积面进行超声清洗,超声清洗的频率为70kHZ,时间为10分钟;
(2)将清洗后的ZnS镜片放置于RF-PECVD设备的沉积室中下极板托盘上,沉积面朝上;
(3)将射频等离子体增强化学气相沉积设备的上、下极板间距调整至9厘米;
(4)将反应室抽真空至4.0×10-3Pa,通入纯度均为99.99%的甲烷、锗烷、氩气为反应气源。沉积过程中,控制:甲烷45sccm、锗烷45sccm、氩气10sccm,射频功率为800W,沉积压力为3Pa,沉积温度为常温20℃,在ZnS镜片的沉积面沉积1h,得到碳化锗薄膜。
通过膜厚测量和光谱分析可以得出该碳化锗薄膜的厚度为900nm,折射率为2.6,膜层均匀性良好。
实施例3
本实施例提供了一种碳化锗薄膜的制备方法,包括以下步骤:
(1)沉积前,对ZnS镜片沉积面进行超声清洗,超声清洗的频率为70kHZ,时间为10分钟;
(2)将清洗后的ZnS镜片放置于RF-PECVD设备的沉积室中下极板托盘上,沉积面朝上;
(3)将射频等离子体增强化学气相沉积设备的上、下极板间距调整至9厘米;
(4)将反应室抽真空至4.0×10-3Pa,通入纯度均为99.99%的甲烷、锗烷、氩气为反应气源。沉积过程中,控制:甲烷80sccm、锗烷10sccm、氩气10sccm,射频功率为800W,沉积压力为3Pa,沉积温度为常温20℃,在ZnS镜片表面沉积面沉积1h,得到碳化锗薄膜。
通过膜厚测量和光谱分析可以得出该碳化锗薄膜的厚度为1μm,折射率为2.2,膜层均匀性良好。
对比例1
本对比例提供一种碳化锗薄膜的制备方法,采用常规的磁控溅射法,制备靶材为高纯度单晶Ge,工艺气体为高纯CH4(纯度为99.99%)和Ar(纯度为99.99%),磁控溅射系统电源的射频频率为13.56MHz,真空室低压为6×10-4 Pa。
将ZnS镜片采用超声清洗或擦拭的方式清洁好表面,然后置于溅射镀膜腔室衬底温度加热至200℃,通入氩气和甲烷,氩气流量为40sccm,甲烷流量为60sccm,溅射功率6000W,溅射时间为40min,在ZnS镜片表面可以获得碳化锗薄膜。
通过膜厚测量和光谱分析可以得出该碳化锗薄膜的厚度为1μm,整体膜层均匀性较差。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的包含范围之内。

Claims (9)

1.一种碳化锗薄膜的制备方法,其特征在于,采用射频等离子体增强化学气相沉积的方法,在红外窗口材料表面沉积碳化锗薄膜,沉积过程中:控制真空氛围,通入甲烷、锗烷、氩气,射频功率为500~1000W。
2.如权利要求1所述的制备方法,其特征在于,红外窗口材料为锗、硫化锌、硒化锌、硫系玻璃中的一种。
3.如权利要求1所述的制备方法,其特征在于,甲烷的通入流量为10~100sccm,锗烷的通入流量为10~100sccm,氩气的通入流量为10~20sccm。
4.如权利要求1所述的制备方法,其特征在于,甲烷、锗烷、氩气气体的纯度均大于99.99%。
5.如权利要求1~4任一项所述的制备方法,其特征在于,制备方法具体包括以下步骤:
(1)沉积前,对红外窗口材料的沉积面进行超声清洗;
(2)将清洗后的红外窗口材料置于射频等离子体增强化学气相沉积设备的沉积室中下极板托盘上,沉积面朝上;
(3)将射频等离子体增强化学气相沉积设备的上、下极板间距调整至6到10cm;
(4)将反应室抽真空至4.0×10-3Pa~4.0×10-4Pa,然后通入甲烷、锗烷、氩气为反应气源,沉积过程控制:射频功率为500~1000W,沉积压力为0.1~10Pa,在红外窗口材料的沉积面沉积得到碳化锗薄膜。
6.如权利要求5所述的制备方法,其特征在于,步骤(4)中,超声清洗的频率为60~80khz,清洗时间为5~10min。
7.如权利要求5所述的制备方法,其特征在于,步骤(4)中,沉积温度为15~35℃。
8.如权利要求5所述的制备方法,其特征在于,步骤(4)中,沉积时间为2000~5000s。
9.如权利要求8所述的制备方法,其特征在于,步骤(4)中,所得碳化锗薄膜厚度为1~1500nm。
CN202210660218.4A 2022-06-13 2022-06-13 一种碳化锗薄膜的制备方法 Pending CN114959638A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210660218.4A CN114959638A (zh) 2022-06-13 2022-06-13 一种碳化锗薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210660218.4A CN114959638A (zh) 2022-06-13 2022-06-13 一种碳化锗薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN114959638A true CN114959638A (zh) 2022-08-30

Family

ID=82961175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210660218.4A Pending CN114959638A (zh) 2022-06-13 2022-06-13 一种碳化锗薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN114959638A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679270A (zh) * 2022-11-10 2023-02-03 安徽光智科技有限公司 碳化锗薄膜的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735699A (en) * 1985-06-05 1988-04-05 Plessey Overseas Limited Methods of depositing germanium carbide
US5879970A (en) * 1996-09-05 1999-03-09 Nec Corporation Process of growing polycrystalline silicon-germanium alloy having large silicon content
US20040043218A1 (en) * 2002-08-30 2004-03-04 Lockheed Martin Corporation Low-temperature plasma deposited hydrogenated amorphous germanium carbon abrasion-resistant coatings
CN1554801A (zh) * 2003-12-19 2004-12-15 中国科学院长春光学精密机械与物理研 离子/等离子体辅助蒸发方法制备碳锗合金膜
US20060292301A1 (en) * 2005-06-22 2006-12-28 Matrix Semiconductor, Inc. Method of depositing germanium films
CN101363118A (zh) * 2007-08-10 2009-02-11 北方工业大学 电容耦合等离子体装置及在硅衬底上生长碳化硅薄膜的方法
CN101705475A (zh) * 2009-11-16 2010-05-12 浙江大学 在硅片基板上沉积光致发光氢化非晶碳化硅薄膜的方法
CN101985743A (zh) * 2009-07-29 2011-03-16 中国科学院微电子研究所 采用pecvd制备碳化硅薄膜的方法
US20130233240A1 (en) * 2012-03-06 2013-09-12 Asm America, Inc. Methods and apparatuses for epitaxial films with high germanium content

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735699A (en) * 1985-06-05 1988-04-05 Plessey Overseas Limited Methods of depositing germanium carbide
US5879970A (en) * 1996-09-05 1999-03-09 Nec Corporation Process of growing polycrystalline silicon-germanium alloy having large silicon content
US20040043218A1 (en) * 2002-08-30 2004-03-04 Lockheed Martin Corporation Low-temperature plasma deposited hydrogenated amorphous germanium carbon abrasion-resistant coatings
CN1554801A (zh) * 2003-12-19 2004-12-15 中国科学院长春光学精密机械与物理研 离子/等离子体辅助蒸发方法制备碳锗合金膜
US20060292301A1 (en) * 2005-06-22 2006-12-28 Matrix Semiconductor, Inc. Method of depositing germanium films
CN101363118A (zh) * 2007-08-10 2009-02-11 北方工业大学 电容耦合等离子体装置及在硅衬底上生长碳化硅薄膜的方法
CN101985743A (zh) * 2009-07-29 2011-03-16 中国科学院微电子研究所 采用pecvd制备碳化硅薄膜的方法
CN101705475A (zh) * 2009-11-16 2010-05-12 浙江大学 在硅片基板上沉积光致发光氢化非晶碳化硅薄膜的方法
US20130233240A1 (en) * 2012-03-06 2013-09-12 Asm America, Inc. Methods and apparatuses for epitaxial films with high germanium content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679270A (zh) * 2022-11-10 2023-02-03 安徽光智科技有限公司 碳化锗薄膜的制备方法

Similar Documents

Publication Publication Date Title
CA2241678C (en) Silicon dioxide deposition by plasma activated evaporation process
EP0049032B1 (en) Coating insulating materials by glow discharge
JP3808917B2 (ja) 薄膜の製造方法及び薄膜
CN105800954B (zh) 一种硫系玻璃及其制备方法
CN111334794B (zh) 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法
KR20120079716A (ko) 내지문 코팅 방법 및 장치
CN105296926A (zh) 一种硬质增透复合膜光学窗口及其制备方法
CN114959638A (zh) 一种碳化锗薄膜的制备方法
CN105951051A (zh) 一种倾斜溅射工艺制备渐变折射率减反射膜的方法
GB2129833A (en) Method and apparatus for depositing coatings in a glow discharge
CN104513958A (zh) 一种磁控溅射制备氮化硅膜的方法
CN111621756B (zh) 一种室温溅射制备晶态透明氧化铝薄膜的方法
CN1056159A (zh) 太阳能选择性吸收膜及制备
KR20150114891A (ko) 고경도 박막형 투명 박판 글라스, 이의 제조 방법, 고경도 박막형 투명 박판 도전성 글라스 및 이를 포함하는 터치 패널
CN112626474B (zh) 一种电致变色膜系中的钽酸锂薄膜的制备方法
CN111286700A (zh) 基于混合物单层膜的光学镀膜元件面形补偿方法
CN113213774B (zh) 石墨烯玻璃及其制备方法
CN111908803A (zh) 一种超亲水、高耐磨膜层及其制备方法
JPS6146921B2 (zh)
US20060096852A1 (en) Process and apparatus for applying optical coatings
CN112831769B (zh) 一种红外光学产品复合增透膜及其制备方法
CN114561617A (zh) 一种金属氧化物薄膜的制备方法及金属氧化物薄膜
CN116103619B (zh) 一种氧化硅薄膜制备方法
Turner et al. Optical thin films obtained by plasma-induced chemical vapor deposition
CN117660890A (zh) 氧化锆光学镀膜及制备方法与应用和减反射膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220830

RJ01 Rejection of invention patent application after publication