CN114959344A - 一种高强度Ti3C2Tx/ZK61镁合金及其制备方法 - Google Patents
一种高强度Ti3C2Tx/ZK61镁合金及其制备方法 Download PDFInfo
- Publication number
- CN114959344A CN114959344A CN202210637573.XA CN202210637573A CN114959344A CN 114959344 A CN114959344 A CN 114959344A CN 202210637573 A CN202210637573 A CN 202210637573A CN 114959344 A CN114959344 A CN 114959344A
- Authority
- CN
- China
- Prior art keywords
- magnesium alloy
- magnesium
- alloy powder
- strength
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 80
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 30
- 230000009467 reduction Effects 0.000 claims abstract description 26
- 239000006185 dispersion Substances 0.000 claims abstract description 13
- 239000011259 mixed solution Substances 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 8
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 229910052573 porcelain Inorganic materials 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000006228 supernatant Substances 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 238000001291 vacuum drying Methods 0.000 claims abstract description 3
- 239000011777 magnesium Substances 0.000 abstract description 21
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 20
- 229910052749 magnesium Inorganic materials 0.000 abstract description 20
- 239000011159 matrix material Substances 0.000 abstract description 11
- 239000002131 composite material Substances 0.000 abstract description 7
- 125000000524 functional group Chemical group 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 description 79
- 239000002245 particle Substances 0.000 description 11
- 238000005728 strengthening Methods 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/04—Alloys based on magnesium with zinc or cadmium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种高强度Ti3C2Tx/ZK61镁合金及其制备方法,属于镁合金复合材料技术领域。该制备方法包括以下步骤:(1)、将Ti3C2Tx超声分散在去离子水中,得Ti3C2Tx分散液;(2)、室温搅拌下往Ti3C2Tx分散液中加入ZK61镁合金粉,得混合溶液;(3)、将混合溶液静置一段时间,然后移去上清液,真空干燥,得Ti3C2Tx/ZK61镁合金粉;(4)、将Ti3C2Tx/ZK61镁合金粉倒入瓷舟内,管式炉内热还原处理;(5)、将热还原处理的Ti3C2Tx/ZK61镁合金粉利用放电等离子烧结,轴向压力为60 MPa,520℃下保持6 min,得高强度Ti3C2Tx/ZK61镁合金。本发明通过热还原处理提高了Ti3C2Tx表面的官能团O=C‑O含量,热还原处理加剧了Ti3C2Tx与镁基体间的界面反应,导致部分Ti3C2Tx发生局部氧化,局部氧化的Ti3C2Tx与镁基体间产生了更强的界面结合。
Description
技术领域
本发明属于镁合金复合材料技术领域,具体涉及一种高强度Ti3C2Tx/ZK61镁合金及其制备方法。
背景技术
镁合金是目前实际应用中最轻的金属结构材料,具有高的比强度、高比刚度、阻尼性能和电磁屏蔽性能优异、生物兼容性良好,被称为“21世纪的绿色工程材料”。随着科学技术的进步,镁合金不仅在航空航天、汽车制造领域有着大量的应用,还在电子器件、家用电器和医疗手术等领域有着重要的潜在和应用价值。然而,镁合金材料由于其强度偏低,可塑性差,使其在工程领域内的应用受到了抑制。近些年,陶瓷颗粒、碳纳米管、石墨烯等作为增强体添加到镁合金中,其力学性能中的强度或者塑性得到了不同程度的提升,但是大都在提高强度的同时,都是在塑性方面牺牲较大,二者不能兼得。
Ti3C2Tx作为一种新兴的“类石墨烯”二维材料具有力学性能、导电性、光学和电化学性能,同时其良好的金属性和在水溶液中的分散性,与其他二维材料相比,单层Ti3C2Tx的具有高的杨氏模量为0.33±0.03TPa,表面存在的官能团为其在合金中的良好的分散性和优异的结合性提供了机会。
发明内容
本发明的目的是提供一种高强度Ti3C2Tx/ZK61镁合金及其制备方法,具体利用Ti3C2Tx表面存在的官能团与镁合金复合提高镁合金的强度和可塑性。为了进一步提高Ti3C2Tx在镁基复合材料中的强化效率,本发明通过热还原处理(10%H2/Ar2 400℃,2h)提高了Ti3C2Tx表面的官能团O=C-O含量,热还原处理加剧了Ti3C2Tx与镁基体间的界面反应,导致部分Ti3C2Tx发生局部氧化,局部氧化的Ti3C2Tx与镁基体间产生了更强的界面结合。
为实现上述目的,本发明采用的技术方案为:
一种高强度Ti3C2Tx/ZK61镁合金的制备方法,包括以下步骤:
(1)、将Ti3C2Tx超声分散在去离子水中,得Ti3C2Tx分散液;
(2)、室温搅拌下往Ti3C2Tx分散液中加入ZK61镁合金粉,得混合溶液;
(3)、将混合溶液静置一段时间,然后移去上清液,真空干燥,得Ti3C2Tx/ZK61镁合金粉;
(4)、将Ti3C2Tx/ZK61镁合金粉倒入瓷舟内,管式炉内热还原处理;
(5)、将热还原处理的Ti3C2Tx/ZK61镁合金粉利用放电等离子烧结,轴向压力为60MPa,520℃下保持6min,得高强度Ti3C2Tx/ZK61镁合金。
进一步,所述制备方法中Ti3C2Tx与ZK61镁合金粉的质量比为0.005-0.01:1。
进一步,所述(4)中热还原处理的条件为10%H2/Ar2混合气体,400℃,2h。
进一步,在步骤(1)中,采用去离子水作为极性分散剂的目的是使Ti3C2Tx在去离子水中进行预分散,使Ti3C2Tx在超声过程中更好的分散。
进一步,在步骤(2)中,采用搅拌方式的目的是将Ti3C2Tx和ZK61镁合金粉能充分混合均匀,为制备出混合均匀的Ti3C2Tx/ZK61镁合金粉末做准备。
进一步,在步骤(3)中,采用物理方式将水移除,既保证了维持片层状的Ti3C2Tx本身的稳定性的特点,又能使操作流程和成本简单,低廉,充分发挥Ti3C2Tx在镁合金中本身优异的力学性能。
进一步,在步骤(4)中,通过热还原处理(10%H2/Ar2,400℃,2h)提高了Ti3C2Tx表面官能团O=C-O的含量,这一表面变化加剧了Ti3C2Tx与镁基体ZK61镁合金间的界面反应,导致部分Ti3C2Tx发生局部氧化,局部氧化的Ti3C2Tx与镁基体ZK61镁合金间产生了更强的界面结合,在该温度处理下既能较为完整的保持Ti3C2Tx的二维片层结构,又能保证Ti3C2Tx在镁基体ZK61镁合金中充分发挥其本身优异的力学性能,在保持塑性的情况下进一步提高了复合材料的强度和硬度。
一种利用上述制备方法制备的Ti3C2Tx/ZK61镁合金的硬度、压缩屈服强度、抗压强度均有所提升。
与现有技术相比,本发明的有益效果为:
1、本发明方法制备出的对预烧结粉末热还原处理得到高强度的Ti3C2Tx/ZK61镁合金。通过在10%的H2/Ar2混合气体下400℃,2h进行热还原处理,进一步提高了Ti3C2Tx/ZK61镁合金的硬度,抗压强度和屈服强度,同时在塑性方面几乎没有降低。
2、本发明采用10%的H2/Ar2混合气体下400℃,2h进行热还原处理,在特点上,既维持了Ti3C2Tx的稳定性,同时充分发挥其在ZK61镁合金中的强化作用。添加了含量为0.5wt%Ti3C2Tx时,Ti3C2Tx分散良好,并与镁基体ZK61镁合金间形成了致密的界面。与未进行热还原处理的Ti3C2Tx/ZK61镁合金相比,经热还原处理的Ti3C2Tx/ZK61镁合金的硬度提升了27.8%,压缩屈服强度提升了24.5%,抗压强度提升19.4%,断裂应变下降了0.7%。本发明为高性能镁基复合材料的制备提供一定的实验方法和理论参考。
附图说明
图1为本发明实施例2的未热还原处理的Ti3C2Tx增强ZK61镁合金中Ti3C2Tx与镁基体ZK61镁合金界面的透射电子显微镜(TEM)分析图;其中,(a)Ti3C2Tx的TEM照片;(b)界面的TEM照片;(c)界面两侧的EDS分析;(d)界面的高分辨透射电子显微镜(HRTEM)照片;
图2为本发明实施例3的热还原处理的Ti3C2Tx增强ZK61镁合金中Ti3C2Tx与镁基体ZK61镁合金界面的TEM分析图;其中,(a)Ti3C2Tx的TEM照片;(b)界面处的MgO颗粒;(c)图(a)中下面方框的放大图;(d)局部氧化的Ti3C2Tx;(e)氧化Ti3C2Tx中分布的TiO2颗粒;(f)TiO2颗粒由无序的TiO2小颗粒组成;
图3为未强化的ZK61镁合金、未热还原处理Ti3C2Tx增强ZK61镁合金和热还原处理Ti3C2Tx增强ZK61镁合金的(a)硬度变化曲线和(b)压缩应力-应变曲线。
具体实施方式
下面结合附图和具体的实施例对本发明的技术方案及效果做进一步描述,但本发明的保护范围并不限于此。
本发明Ti3C2Tx采用片层状的Ti3C2Tx(由LiF和HCl混合液共同刻蚀400目的Ti3AlC2陶瓷颗粒制备)。ZK61是工业中常见的镁基体粉末。
实施例1
将0mg Ti3C2Tx分散在300mL去离子水中,Ti3C2Tx分散液加入磁子后置于磁力搅拌器上,室温搅拌下缓慢加入10g的ZK61镁合金粉,并搅拌1h。将混合溶液静置3h,用胶头滴管移去上清液,60℃下干燥12h,将干燥后的Ti3C2Tx/ZK61镁合金粉倒入瓷舟内,将瓷舟推入管式炉内,在10%的H2/Ar2混合气体下400℃,2h进行热还原处理。将制得的ZK61镁合金粉称量2.8g,利用放电等离子烧结,轴向压力为60MPa,520℃下保持6min。
实施例2
将50mg Ti3C2Tx分散在300mL去离子水中,Ti3C2Tx分散液加入磁子后置于磁力搅拌器上,室温搅拌下缓慢加入10g的ZK61镁合金粉,并搅拌1h。将混合溶液静置3h,用胶头滴管移去上清液,60℃下干燥12h。将制得的Ti3C2Tx/ZK61镁合金粉称量2.8g,利用放电等离子烧结,轴向压力为60MPa,520℃下保持6min。
本实施例的未热还原处理的经过烧结后做的Ti3C2Tx增强ZK61镁合金中Ti3C2Tx与镁基体ZK61镁合金界面的透射电子显微镜(TEM)分析图如图1所示;其中,(a)Ti3C2Tx的TEM照片;(b)界面的TEM照片;(c)界面两侧的EDS分析;(d)界面的高分辨透射电子显微镜(HRTEM)照片。
实施例3
将50mg Ti3C2Tx分散在300mL去离子水中,并超声2h,经超声处理后的Ti3C2Tx分散液加入磁子后置于磁力搅拌器上,室温搅拌下缓慢加入10g的ZK61镁合金粉,并搅拌1h。将混合溶液静置3h,用胶头滴管移去上清液,60℃下干燥12h,将干燥后的Ti3C2Tx/ZK61镁合金粉倒入瓷舟内,将瓷舟推入管式炉内,在10%的H2/Ar2混合气体下400℃,2h进行热还原处理。将制得的Ti3C2Tx/ZK61镁合金粉称量2.8g,利用放电等离子烧结,轴向压力为60MPa,520℃下保持6min。
本实施例的经热还原处理的Ti3C2Tx增强ZK61镁合金中Ti3C2Tx与镁基体ZK61镁合金界面的TEM分析图如图2所示;其中,(a)Ti3C2Tx的TEM照片;(b)界面处的MgO颗粒;(c)图(a)中下面方框的放大图;(d)局部氧化的Ti3C2Tx;(e)氧化Ti3C2Tx中分布的TiO2颗粒;(f)从图2中可知,TiO2颗粒由无序的TiO2小颗粒组成。这些在界面反应过程中原位合成的TiO2颗粒结晶度较差,在氧化后的碳化钛片层中呈无序分布。
实施例4
将上述的实施例1-3烧结样品,利用电火花线切割样品,切割样品为圆柱型,圆柱直径≈1.80mm,高≈3.20mm,将切割出的样品平放于拉伸机的下压缩的压头的中心位置,分别进行压缩测试,压缩速度为0.05mm/min。令圆柱型Ti3C2Tx/ZK61镁合金原始长度为l0,断裂前长度为l,根据ε=(l0-l)/l0*100%计算其应变值。令圆柱型Ti3C2Tx/ZK61镁合金的横截面积为S,断裂前载荷为F,根据σ=F/S计算其应力值。
进行室温下压缩实验,ZK61镁合金,经过热还原和未经热还原处理的Ti3C2Tx/ZK61镁合金至少做6个压缩测试。具体结果见表1。
表1 ZK61镁合金、未经热还原及热还原处理的Ti3C2Tx/ZK61镁合金的力学性能
由表1可知,本发明与未热还原处理的Ti3C2Tx/ZK61镁合金相比,经热还原处理的Ti3C2Tx/ZK61镁合金硬度提升了27.8%,压缩屈服强度提升了24.5%,抗压强度提升19.4%,抗压强度断裂应变下降了0.7%(如图3所示)。这一结果表明改变Ti3C2Tx的表面官能团能够调控其与镁基体间的界面反应,增强界面结合,在该温度处理下既能较为完整的保持Ti3C2Tx的二维片层结构,又能保证Ti3C2Tx在镁基体中充分发挥其本身优异的力学性能。在几乎不降低塑性的情况下进一步提高了复合材料的强度和硬度。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (3)
1.一种高强度Ti3C2Tx/ZK61镁合金的制备方法,其特征在于,该制备方法包括以下步骤:
(1)、将Ti3C2Tx超声分散在去离子水中,得Ti3C2Tx分散液;
(2)、室温搅拌下往Ti3C2Tx分散液中加入ZK61镁合金粉,得混合溶液;
(3)、将混合溶液静置一段时间,然后移去上清液,真空干燥,得Ti3C2Tx/ZK61镁合金粉;
(4)、将Ti3C2Tx/ZK61镁合金粉倒入瓷舟内,管式炉内热还原处理;
(5)、将热还原处理的Ti3C2Tx/ZK61镁合金粉利用放电等离子烧结,轴向压力为60 MPa,520℃下保持6 min,得高强度Ti3C2Tx/ZK61镁合金。
2.根据权利要求1所述的高强度Ti3C2Tx/ZK61镁合金的制备方法,其特征在于,所述制备方法中Ti3C2Tx与ZK61镁合金粉的质量比为0.005-0.01:1。
3.根据权利要求1所述的高强度Ti3C2Tx/ZK61镁合金的制备方法,其特征在于,所述(4)中热还原处理的条件为10% H2/Ar2混合气体,400℃,2h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210637573.XA CN114959344A (zh) | 2022-06-08 | 2022-06-08 | 一种高强度Ti3C2Tx/ZK61镁合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210637573.XA CN114959344A (zh) | 2022-06-08 | 2022-06-08 | 一种高强度Ti3C2Tx/ZK61镁合金及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114959344A true CN114959344A (zh) | 2022-08-30 |
Family
ID=82959222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210637573.XA Pending CN114959344A (zh) | 2022-06-08 | 2022-06-08 | 一种高强度Ti3C2Tx/ZK61镁合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114959344A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109207834A (zh) * | 2018-11-13 | 2019-01-15 | 中国科学院过程工程研究所 | 一种改性MXenes粉体及其制备方法和应用 |
CN112191259A (zh) * | 2020-10-22 | 2021-01-08 | 黄河科技学院 | 一种MXene/Au光催化固氮材料、其制备方法及应用 |
CN112553491A (zh) * | 2020-12-10 | 2021-03-26 | 郑州大学 | 一种高屈服强度的Ti3C2Tx/ZK61镁合金及其制备方法 |
CN113385206A (zh) * | 2021-06-11 | 2021-09-14 | 河南理工大学 | 一种金属载体强相互作用下的高效产氢催化剂及制备方法 |
-
2022
- 2022-06-08 CN CN202210637573.XA patent/CN114959344A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109207834A (zh) * | 2018-11-13 | 2019-01-15 | 中国科学院过程工程研究所 | 一种改性MXenes粉体及其制备方法和应用 |
CN112191259A (zh) * | 2020-10-22 | 2021-01-08 | 黄河科技学院 | 一种MXene/Au光催化固氮材料、其制备方法及应用 |
CN112553491A (zh) * | 2020-12-10 | 2021-03-26 | 郑州大学 | 一种高屈服强度的Ti3C2Tx/ZK61镁合金及其制备方法 |
CN113385206A (zh) * | 2021-06-11 | 2021-09-14 | 河南理工大学 | 一种金属载体强相互作用下的高效产氢催化剂及制备方法 |
Non-Patent Citations (1)
Title |
---|
LI YE: "Interface design of Ti3C2TX/ZK61 composites by thermal reduction", 《MATERIALS SCIENCE & ENGINEERING A》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Duan et al. | Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering | |
Cao et al. | Reinforcement with graphene nanoflakes in titanium matrix composites | |
CN108145169B (zh) | 一种高强高导石墨烯增强铜基复合材料及制备方法与应用 | |
Wu et al. | Graphene oxide/Al composites with enhanced mechanical properties fabricated by simple electrostatic interaction and powder metallurgy | |
CN110157931B (zh) | 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法 | |
CN108941547B (zh) | 一种铜掺杂石墨烯增强铝基复合材料的制备方法 | |
CN111408714B (zh) | 双尺度结构原位生长石墨烯增强铜基复合材料的制备方法 | |
CN111410517B (zh) | 一种碳纳米管和石墨烯协同增强氧化铝基复合材料及制备方法 | |
CN111549246B (zh) | 一种高韧性石墨烯/zk61镁合金复合材料的制备方法 | |
CN110079708B (zh) | 一种纳米石墨片/Al合金基复合材料的粉末冶金制备方法 | |
CN108559861A (zh) | 一种制备石墨烯增强铝基复合材料的方法 | |
Zhang et al. | Influence of acid-treated time of carbon nanotubes on mechanical property in carbon nanotubes reinforced copper matrix composites | |
CN112853142B (zh) | 石墨烯改性金属复合材料 | |
CN114807656B (zh) | 一种纳米级碳材料增强金属基复合材料的制备方法及其产品 | |
CN106566942B (zh) | 一种制备高性能石墨烯增强铝基复合材料的方法 | |
CN107099687A (zh) | 一种碳化硼颗粒增强纳米/超细晶铝基复合材料的制备方法 | |
CN107570698A (zh) | 一种石墨烯包覆钛复合粉体材料及其制备方法 | |
Xu et al. | In situ Al4C3 nanorods and carbon nanotubes hybrid-reinforced aluminum matrix composites prepared by a novel two-step ball milling | |
CN114318039B (zh) | 三峰晶粒结构金属基复合材料的元素合金化制备方法 | |
Darabi et al. | The effect of sintering temperature on Cu-CNTs nano composites properties Produced by PM Method | |
Zhao et al. | Achieving a better mechanical enhancing effect of carbonized polymer dots than carbon nanotubes and graphene in copper matrix | |
JP2011195864A (ja) | チタン基複合材料およびその製造方法 | |
CN113401890A (zh) | 一种石墨烯量子点增强铝基复合材料的制备方法 | |
CN107502771A (zh) | 一种纳米TiC颗粒增强铝基复合材料的制备方法 | |
Li et al. | Micron-sized SiC particles reinforced TC4 composites: Mechanical properties and strengthening mechanisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220830 |
|
RJ01 | Rejection of invention patent application after publication |