CN114956086B - 一种硼掺杂二维过渡金属碳化物材料 - Google Patents

一种硼掺杂二维过渡金属碳化物材料 Download PDF

Info

Publication number
CN114956086B
CN114956086B CN202210590238.9A CN202210590238A CN114956086B CN 114956086 B CN114956086 B CN 114956086B CN 202210590238 A CN202210590238 A CN 202210590238A CN 114956086 B CN114956086 B CN 114956086B
Authority
CN
China
Prior art keywords
boron
transition metal
doped
metal carbide
max phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210590238.9A
Other languages
English (en)
Other versions
CN114956086A (zh
Inventor
王利魁
苗红艳
程广鸿
焦亚青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Maixin Nano Technology Co ltd
Original Assignee
Wuxi Maixin Nano Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Maixin Nano Technology Co ltd filed Critical Wuxi Maixin Nano Technology Co ltd
Priority to CN202210590238.9A priority Critical patent/CN114956086B/zh
Publication of CN114956086A publication Critical patent/CN114956086A/zh
Application granted granted Critical
Publication of CN114956086B publication Critical patent/CN114956086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种制备硼掺杂二维过渡金属碳化物的方法,属于二维材料技术领域。本发明在制备三元层状过渡金属碳化物的原料中加入硼粉,制备硼掺杂的MAX相材料,再经过刻蚀去除MAX相中的A原子层,获得硼掺杂的二维过渡金属碳化物材料。该材料具有较高的比电容和倍率性能,在超级电容器、锂离子电池、电磁屏蔽及电催化领域中有较好的应用。

Description

一种硼掺杂二维过渡金属碳化物材料
技术领域
本发明属于二维材料技术领域,具体涉及一种硼掺杂二维过渡金属碳化物材料及其制备方法和应用。
背景技术
二维材料由于具有较高的比表面积、较大的纵横比及独特的物理化学性质,受到广泛的关注。
MXene是一类具有二维(2D)结构的过渡金属碳化物、碳氮化物和氮化物,从元素组成来看,MXene的化学式是MnXn-1Tx(n=2、3或4),其中M表示过渡金属原子,如Ti、Nb、Mo等;X表示碳原子或氮原子;Tx表示表面活性基团,如-O、-OH或-F基团,是通过从MAX相选择性蚀刻A层(主要是IIIA族或IVA族元素)制备而来的。与石墨烯等二维材料相比,MXene具有良好的亲水性,可以稳定地分散在水中形成胶体悬浮液;具有多样的层结构,即单层和多层手风琴结构,其中,多层结构的层间距约为1~2nm,有利于吸附大量的电解质离子;具有丰富的结构和化学成分,迄今为止,MXene的前驱体中有70多种MAX相,通过调整M元素或改变化学式Mn+1AXn中n的值,可以获得含有不同过渡金属或不同厚度和稳定性的MXene。基于上述优势,MXene在储能、催化、传感器、吸附、储氢、电磁干扰屏蔽等领域都受到了广泛的研究和应用。
在石墨烯结构中掺入各种杂原子掺杂剂可用于调节带隙并调整石墨烯的电子、物理化学和光学性质,用于电化学、传感器、光伏和催化等许多应用。同样,通过对MXene的掺杂,可以有效地提高其电化学性能、电催化性能及传感性能等。
Lu等人(Journal of Energy Chemistry,2019,31:148-153)通过密度泛函理论(DFT)模拟的方法,研究了Ti3C2Tx-MXene的氮掺杂,认为表面含N基团(如-NH2、O-Ti-N和Ti-O-N)可以显著提高N-Ti3C2Tx基材料的电化学性能,由于在费米能级上的态密度较高,N-Ti3C2Tx基材料的电导率和催化活性优于原始Ti3C2Tx材料,此外,N-Ti3C2Tx一般比原始Ti3C2Tx具有更好的电容性能。因此,大多数N-Ti3C2Tx被用于可充电电池(包括锂离子和硫锂电池)和超级电容器电极,同时部分N-Ti3C2Tx也被用作HER催化剂、重金属离子探测器等。
Zhao等人(Nanoscale,2019,11(17):8442-8448)报道了在1650℃下将钛、铝、石墨和硫的混合物烧结2h制备Ti3AlC2Sx,经过选择性蚀刻和分层工艺,得到了多层S-Ti3C2Tx纳米片。相比之下,大多数S-Ti3C2Tx是通过非原位掺杂/取代硫而获得的,而大量研究已经证明硫元素是一种具有高电势的掺杂剂。
专利CN113697811A公开了通过碳化钛和硼酸的水热反应,制得了三维层状硼掺杂碳化钛材料,将其应用为三维多层金属锂负极,大幅地高了锂金属电池的循环性能、库伦效率及安全性。但是MXene,尤其是钛系MXene在水中容易受到水解和氧化的作用,水热法一般会导致材料电导率的下降并影响电化学性能。另外该方法中,硼掺杂的量是非常有限的。
发明内容
本发明提出一种制备硼掺杂二维过渡金属碳化物的方法,其特征在于,在制备三元层状过渡金属碳化物的原料中加入硼粉,制备硼掺杂的MAX相材料,再经过刻蚀去除MAX相中的A原子层,获得硼掺杂的二维过渡金属碳化物材料;
所述硼掺杂的MAX相材料为Mn+1AXn,其中,M为过渡金属,A为铝或硅,X为碳和硼,n为1、2、3或4。
在本发明的一种实施方式中,在制备硼掺杂MAX相材料的原料中,硼元素摩尔量与碳和硼元素总摩尔量之比为大于零且小于50%。
在本发明的一种实施方式中,MAX相中硼元素的引入是通过在其制备原料中添加单质硼、钛的硼化物、铝的硼化物、碳的硼化物或以上物质的混合物。
在本发明的一种实施方式中,所述过渡金属包括Ti、V、Cr、Sc、Zr、Nb、Mo、Hf或Ta中的至少一种。
在本发明的一种实施方式中,MAX相中M元素采用金属单质M或金属碳化物MC、金属硼化物MB或其混合物为原料;X元素中的碳采用碳粉、石墨粉、金属碳化物MC为原料或其混合物为原料。
所述方法制备得到的硼掺杂的二维过渡金属碳化物,所述二维过渡金属碳氮化物的分子式为Mn+1XnTs;其中,M为过渡金属,X为碳和硼,Ts为表面端基。
所述方法中,对MAX相的刻蚀采用氢氟酸、氢氟酸和其它酸的混合物、氟盐和其它酸的混合物、氟化氢铵溶液、氟硼酸、强碱、熔融盐作为刻蚀剂。
所述的硼掺杂的二维过渡金属碳氮化物在制备超级电容器、锂离子电池、电磁屏蔽和电催化领域中的应用。
本发明的有益效果:
本发明方法有效制得了硼掺杂的二维过渡金属碳化物材料,其分散液经过干燥可得二维过渡金属碳化物粉体、薄膜等材料;所得硼掺杂二维过渡金属碳化物材料比未掺杂的过渡金属碳化物材料可以拥有更高的比电容和倍率性能,能够应用于制备超级电容器、锂离子电池、电磁屏蔽和电催化等领域中,应用型较强。该方法可避免采用二维过渡金属碳化物和含硼试剂反应来进行硼掺杂过程中氧化作用对材料的破坏及性能的影响,也可更好地控制硼元素的添加量。
附图说明
图1为实施例1中所得到的MAX相Ti3AlC2-B-10(1a)和刻蚀后得到的硼掺杂MXeneTi3C2Tx-10薄膜(1b)的XRD图谱。
图2为实施例2中得到的MAX相Ti3AlC2-B-20的XRD图谱。
图3为实施例2中得到的硼掺杂MXene Ti3C2Tx-20膜的扫描电镜图。
图4为实施例2中得到的硼掺杂MXene Ti3C2Tx-20膜的循环伏安曲线(图4a)和恒流充放电曲线(图4b)。
图5为实施例3得到的硼掺杂MXene Ti3C2Tx-30的XRD图谱。
图6为实施例3得到的硼掺杂MXene Ti3C2Tx-30的扫描电镜图。
图7为对比例2得到的无硼掺杂的MAX相Ti3AlC2的XRD图谱。
图8为对比例2得到的无硼掺杂的MXene Ti3C2Tx的循环伏安曲线(图8a)和恒流充放电曲线(图8b)。
具体实施方式
下面通过具体实施例对本发明的技术方案进行详细说明。
实施例1
将钛粉、铝粉、碳粉及硼粉以3:1.2:1.8:0.2的摩尔比混合。将原料放入球磨机中以80RPM的转速球磨30h,使其混合均匀后置于刚玉坩埚之中,将刚玉坩埚放入管式炉内,先通30min氩气,后在氩气氛围下以5℃min-1的升温速率升温至1400℃并在1400℃下保温2h,以10℃min-1的降温速率降至室温后取出研磨。将研磨处理后的产物以缓慢的速率加入到9mol L-1的浓盐酸中,每1g产物加入20ml浓盐酸,在室温下磁力搅拌酸洗4h后,加入去离子水并进行离心,直到上层清液被洗涤至pH为6-7,将沉淀放入真空烘箱中隔夜干燥,得到硼掺杂的Ti3AlC2粉末,将其命名为Ti3AlC2-B-10,其XRD图谱见图1a,符合Ti3AlC2的特征图谱。
缓慢地将1g Ti3AlC2-B-10粉末加入到2ml HF、12ml HCl与6ml水的混合溶液中,在磁力搅拌器中35℃下反应24h。反应结束后待产物彻底冷却,酸性混合物用去离子水通过离心洗涤,在每个循环之后将酸性上清液作为废物倒掉,在另一个循环之前加入新鲜的去离子水,直到上清液的pH值为6-7,最后收集沉淀。将沉淀加入50ml去离子水及1g LiCl,室温下磁力搅拌4h。将获得的胶体悬浮液继续离心洗涤3-5次,每次加水后剧烈手摇10min以加大插层效果,离心至观察到以下现象:首先,黑色上层清液即使增加离心时间仍能保持稳定;其次,收集上清液后,离心管底部的沉淀物体积大幅膨胀。最后将离心产物加水分散后,3500RPM离心5min,获得上清液,即为硼掺杂MXene分散液。将上清液进行真空过滤,得到柔韧的硼掺杂MXene Ti3C2Tx-10薄膜,其XRD图谱见图1b,从其尖锐的002峰可以看出,形成了二维材料。
实施例2
同实施例1,但是钛粉、铝粉、碳粉及硼粉以3:1.2:1.6:0.4的摩尔比进行混合配料,制得的MAX相命名为Ti3AlC2-B-20,其XRD图谱见图2,符合Ti3AlC2的特征图谱。刻蚀得到的MXene膜命名为Ti3C2Tx-20,其扫描电镜图见图3,从中可以看到其典型的二维片层状结构。通过EDS分析,可得到钛、碳、硼元素的摩尔百分含量分别35.3%,26.3%和6.6%。说明成功地制备了硼掺杂的二维过渡金属碳化物。
先把20mg PTFE乳液摇匀稀释,再将425mg YP-50活性炭粉末,50mg乙炔黑加进去,搅拌四个小时,然后在烘箱干燥。干燥之后,将块状物取出三分之一放在玻璃板上,加适量乙醇,用玻璃棒擀成片状然后折叠,反复折叠擀薄,直到片层厚度达到200微米左右,并且柔韧不易撕裂,干燥后得到作为对电极的碳膜。
首先用3M H2SO4电解液将电极表面润湿,取6mm直径的碳膜覆盖在作为对电极的玻碳电极中心,取直径6mm的MXene薄膜用电解液润湿后贴在另一玻碳电极中央作为工作电极,将电解液润湿后的Celgard膜置于两电极之间作为隔膜。将工作电极和对电极分别插入聚四氟乙烯三通管两端,Hg/Hg2SO4参比电极置入三通顶端,旋紧螺母固定三个电极。最后在三通管中加入适量3M硫酸作为电解液并轻轻震动10min,静置两个小时让电解液充分润湿电极后,进行电化学测试。采用辰华电化学工作站604E对其进行循环伏安和恒流充放电(CP)测试,测试结果分别见图4a和图4b.通过其CP图可计算得知,在1A·g-1电流密度下其比电容为387.8F g-1,而在1 0A·g-1时,其比电容为346.1F g-1,说明该材料具有较高的比电容和优异的倍率性能,有作为超级电容器电极材料进行应用的巨大潜力。
实施例3
同实施例1,但是钛粉、铝粉、碳粉及硼粉以3:1.2:1.4:0.6的摩尔比进行混合配料。制得的MAX相之后经过刻蚀,得到硼掺杂MXene Ti3C2Tx-30,其XRD图见图5,其尖锐的002主峰是典型的二维材料的特征。其扫描电镜图见图6,从中可以看到其典型的二维片层状结构。通过EDS分析,可得到钛、碳、硼元素的摩尔百分含量分别为31.3%,24.8%和8.6%。说明成功地制备了硼掺杂的二维过渡金属碳化物。
对比例1
同实施例1,但是钛粉、铝粉、碳粉及硼粉以3:1.2:1:1的摩尔比进行混合配料。经过煅烧之后,对产物进行XRD测试,出峰杂乱,不符合Ti3AlC2的特征峰。对其按照实施例1的方法进行刻蚀,得不到稳定分散的分散液。
对比例2
同实施例1,但是钛粉、铝粉、碳粉及硼粉以3:1.2:2:0的摩尔比进行混合配料。经过煅烧之后,对产物进行XRD测试,得到图7的XRD图谱,符合Ti3AlC2的特征峰。采用实施例1的刻蚀方法进行刻蚀,可得到未经硼掺杂的MXene Ti3C2Tx。采用实施例2的方法对其电化学性能进行测试,得到如图8的循环伏安曲线和恒流充放电曲线。通过其恒流充放电曲线,可以计算出其在1A·g-1电流密度下,比电容为297.6F g-1,在10A·g-1的电流密度下,具有236.4F g-1比电容。相同电流密度下,其比电容低于实施例二中20%硼掺杂的MXeneTi3C2Tx-B20。另外,当电流密度从0.5A g-1增大至10A g-1时,它保留了70.8%的比电容,而相同条件下,Ti3C2Tx-B20的电容保持率为86.1%。说明经过硼掺杂,可以提升MXene材料的比电容和倍率性能。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种制备硼掺杂二维过渡金属碳化物的方法,其特征在于,在制备三元层状过渡金属碳化物的原料中加入含硼原料,制备硼掺杂的MAX相材料,再经过刻蚀去除MAX相中的A原子层,获得硼掺杂的二维过渡金属碳化物材料;所述硼掺杂的MAX相材料为Mn+1AXn,其中,M为过渡金属,A为铝或硅,X为碳和硼,n为1、2、3或4;在制备硼掺杂MAX相材料的原料中,硼元素摩尔量与碳和硼元素总摩尔量之比为大于零且小于50%。
2.根据权利要求1所述的方法,其特征在于,MAX相中硼元素的引入是通过在其制备原料中添加单质硼、钛的硼化物、铝的硼化物、碳的硼化物中的一种或以上物质的混合物。
3.根据权利要求1所述的方法,其特征在于,所述过渡金属包括Ti、V、Cr、Sc、Zr、Nb、Mo、Hf或Ta中的至少一种。
4.根据权利要求1所述的方法,其特征在于,MAX相中M元素采用金属单质M、金属碳化物MC、金属硼化物MB中的一种或多种混合物为原料;X元素中的碳采用碳粉、石墨粉、金属碳化物MC中的一种或多种混合物为原料。
5.根据权利要求1所述的方法,其特征在于,对MAX相的刻蚀采用氢氟酸、氢氟酸和盐酸的混合物、氟化氢铵、氟硼酸、强碱、熔融盐作为刻蚀剂。
6.权利要求1所述方法制备得到的硼掺杂的二维过渡金属碳化物,所述二维过渡金属碳氮化物的分子式为Mn+1XnTs;其中,M为过渡金属,X为碳和硼,Ts为表面端基。
7.权利要求6所述的硼掺杂二维过渡金属碳化物在制备超级电容器、锂离子电池、电磁屏蔽和电催化领域中的应用。
CN202210590238.9A 2022-05-26 2022-05-26 一种硼掺杂二维过渡金属碳化物材料 Active CN114956086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210590238.9A CN114956086B (zh) 2022-05-26 2022-05-26 一种硼掺杂二维过渡金属碳化物材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210590238.9A CN114956086B (zh) 2022-05-26 2022-05-26 一种硼掺杂二维过渡金属碳化物材料

Publications (2)

Publication Number Publication Date
CN114956086A CN114956086A (zh) 2022-08-30
CN114956086B true CN114956086B (zh) 2023-09-19

Family

ID=82957889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210590238.9A Active CN114956086B (zh) 2022-05-26 2022-05-26 一种硼掺杂二维过渡金属碳化物材料

Country Status (1)

Country Link
CN (1) CN114956086B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045517B (zh) * 2021-11-01 2023-05-05 无锡驭烯科技有限公司 一种三元层状过渡金属硼化物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368635A (zh) * 2018-11-02 2019-02-22 吉林大学 一种金刚石表面镀硼掺杂金属碳化物的方法
KR102082221B1 (ko) * 2018-09-12 2020-02-27 한국화학연구원 질소가 도핑된 타이타늄 탄화물의 제조방법
CN111498850A (zh) * 2020-04-26 2020-08-07 江南大学 一种二维过渡金属碳氮化物及其制备方法和应用
CN112072101A (zh) * 2020-08-14 2020-12-11 五邑大学 一种硼掺杂MXene材料及其制备方法
CN113401904A (zh) * 2021-05-25 2021-09-17 西安交通大学 氧原子原位掺杂MAX相和原位掺杂MXene柔性膜电极材料及其制备方法和应用
CN113697811A (zh) * 2021-08-26 2021-11-26 河北师范大学 一种三维层状硼掺杂碳化钛及其制备方法和应用
CN114068899A (zh) * 2021-11-15 2022-02-18 天津巴莫科技有限责任公司 一种自组装核壳结构单晶正极材料的制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082221B1 (ko) * 2018-09-12 2020-02-27 한국화학연구원 질소가 도핑된 타이타늄 탄화물의 제조방법
CN109368635A (zh) * 2018-11-02 2019-02-22 吉林大学 一种金刚石表面镀硼掺杂金属碳化物的方法
CN111498850A (zh) * 2020-04-26 2020-08-07 江南大学 一种二维过渡金属碳氮化物及其制备方法和应用
CN112072101A (zh) * 2020-08-14 2020-12-11 五邑大学 一种硼掺杂MXene材料及其制备方法
WO2022032748A1 (zh) * 2020-08-14 2022-02-17 五邑大学 一种硼掺杂MXene材料及其制备方法
CN113401904A (zh) * 2021-05-25 2021-09-17 西安交通大学 氧原子原位掺杂MAX相和原位掺杂MXene柔性膜电极材料及其制备方法和应用
CN113697811A (zh) * 2021-08-26 2021-11-26 河北师范大学 一种三维层状硼掺杂碳化钛及其制备方法和应用
CN114068899A (zh) * 2021-11-15 2022-02-18 天津巴莫科技有限责任公司 一种自组装核壳结构单晶正极材料的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Highly Dispersed Ru Nanoparticles on Boron-Doped Ti3C2Tx (MXene) Nanosheets for Synergistic Enhancement of Electrocatalytic Hydrogen Evolution";Munkhjargal Bat-Erdene et al.;《small》;第17卷(第38期);2102218 *

Also Published As

Publication number Publication date
CN114956086A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Wu et al. Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials
CN109637839B (zh) 碳纳米管/二氧化锰复合材料电极的制备方法
Liu et al. 3D self-supported hierarchical core/shell structured MnCo 2 O 4@ CoS arrays for high-energy supercapacitors
Guo et al. Facile synthesis and excellent electrochemical properties of CoMoO 4 nanoplate arrays as supercapacitors
Akhter et al. MXenes: Acomprehensive review of synthesis, properties, and progress in supercapacitor applications
Zhu et al. Synthesis of a MoO 3/Ti 3 C 2 T x composite with enhanced capacitive performance for supercapacitors
Jiang et al. In situ growth of (NH 4) 2 V 10 O 25· 8H 2 O urchin-like hierarchical arrays as superior electrodes for all-solid-state supercapacitors
CN109243832B (zh) 一种α型Fe2O3纳米颗粒/多层石墨烯复合材料的制备方法
Wang et al. Deft dipping combined with electrochemical reduction to obtain 3D electrochemical reduction graphene oxide and its applications in supercapacitors
CN112011094A (zh) 一种纳米纤维素MXene凝胶及其制备方法和应用
CN113401904B (zh) 氧原子原位掺杂MAX相和原位掺杂MXene柔性膜电极材料及其制备方法和应用
Jain et al. Synthesis of B doped graphene/polyaniline hybrids for high-performance supercapacitor application
CN114956086B (zh) 一种硼掺杂二维过渡金属碳化物材料
Dong et al. Oxygen vacancy-Fe2O3@ polyaniline composites directly grown on carbon cloth as a high stable electrode for symmetric supercapacitors
Zhu et al. Vanadium pentoxide nanosheets with rich oxygen vacancies as a high-performance electrode for supercapacitors
Zhang et al. Microwave-assisted synthesis of 3D flowerlike α-Ni (OH) 2 nanostructures for supercapacitor application
Guo et al. Mixed-valence manganese oxide/reduced graphene oxide composites with enhanced pseudocapacitive performance
CN109390163B (zh) 二维Cu-MOF衍生的多孔碳纳米片的制备方法
Wu et al. One-step synthesis of the nickel foam supported network-like ZnO nanoarchitectures assembled with ultrathin mesoporous nanosheets with improved lithium storage performance
Sun et al. Laser irradiation of graphite foils as robust current collectors for high-mass loaded electrodes of supercapacitors
Zheng et al. Ti3C2T x-Based Electrodes with Enhanced Pseudocapacitance for High-Performance Lithium-ion Batteries
Ganesh et al. Sweet potato-derived carbon nanosheets incorporate Co3O4 nanocomposite films as electrode materials for asymmetric supercapacitors and its electro chemical performance
Zhao et al. α-MnO2 composite with gold nanoparticles on carbon cloth modified with MOFs-derived porous carbon for flexible and activity-enhanced sodium-ion supercapacitors
CN114804107B (zh) 一种氮硼共掺杂二维过渡金属碳化物材料
CN113764195B (zh) 一种锂离子电容器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant