CN114950541B - 一种用于重劣质油制备btx的催化剂及制备方法 - Google Patents

一种用于重劣质油制备btx的催化剂及制备方法 Download PDF

Info

Publication number
CN114950541B
CN114950541B CN202210669435.XA CN202210669435A CN114950541B CN 114950541 B CN114950541 B CN 114950541B CN 202210669435 A CN202210669435 A CN 202210669435A CN 114950541 B CN114950541 B CN 114950541B
Authority
CN
China
Prior art keywords
catalyst
preparing
btx
inferior oil
heavy inferior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210669435.XA
Other languages
English (en)
Other versions
CN114950541A (zh
Inventor
何磊
孙鸣
么秋香
曹锐
王林洋
杨嘉锋
郑雪
张伊
陈晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORTHWEST UNIVERSITY
Original Assignee
NORTHWEST UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORTHWEST UNIVERSITY filed Critical NORTHWEST UNIVERSITY
Priority to CN202210669435.XA priority Critical patent/CN114950541B/zh
Publication of CN114950541A publication Critical patent/CN114950541A/zh
Application granted granted Critical
Publication of CN114950541B publication Critical patent/CN114950541B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/40Particle morphology extending in three dimensions prism-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种用于重劣质油制备BTX的催化剂及制备方法,包括以下步骤:将硅源、铝源、碱源、模板剂与水混合,形成均相凝胶,然后将均相凝胶进行预结晶、结晶与一次焙烧,得到初始催化剂;将初始催化剂与离子交换溶液进行铵离子交换后干燥,二次焙烧即可。本发明的制备过程不涉及酸类物质(硫酸和草酸等)以及金属(贵金属、稀土金属和过渡金属等)的使用,一定程度上降低了生产成本,同时降低酸性废水带来的环境问题。该催化剂具有多维度孔结构,降低了重劣质油中大分子的传质阻力,并且层间介孔利于沸石催化剂中微孔的保护以防止积碳和焦吸附其中造成催化剂失活。

Description

一种用于重劣质油制备BTX的催化剂及制备方法
技术领域
本发明属于BTX的制备技术领域,具体涉及一种用于重劣质油制备BTX的催化剂及制备方法。
背景技术
石油资源紧缺、原油重质化严重、油品升级加快的环境要求迫使如何高效、清洁转化重劣质油品成为重要课题。沥青质、煤焦油、煤油共炼产物等均可归为重劣质油,其中煤焦油成分复杂多样,含有上万种有机化合物,鉴定出来的物质仅有10/500的组分的含量超过1%,因此对重劣质油进行催化富集和高值化具有重大意义。
BTX(苯、甲苯、二甲苯混合物)作为合成树脂、橡胶、纤维和增塑剂的重要有机基础原料,其较大的需求量使之成为行业的热点。尽管目前针对BTX的获得途径由煤转化(炼焦副产物焦炉煤气、煤焦油等)扩展到石脑油催化重整以及生物质热解中,但是仍然存在诸多问题,如低焦油产率、低基础原料富集程度和高重质油占比等,同时伴有高温高压等非经济性苛刻条件。随着催化剂的快速发展,其显现的优势被诸多行业认可,尤其是具有多维度孔洞的沸石基催化剂(ZSM-5)被广泛应用于催化转化过程。丰富的孔结构有效地降低了重劣质油在传质过程中的阻碍,降低积炭率的同时提高了轻质芳香烃(BTX)的富集程度。另外,温和的反应温度、高活性和寿命可以带来良好的经济性。
中国发明CN110088244A提供将C5-C12烃类原料的料流转化成包含BTX的产物料流的方法及该种加氢裂化催化剂的制备方法。中国发明CN106244185B公布了一种以木质纤维素生物质为原料催化热解制备BTX的方法,负载金属氮化物的沸石催化剂(HZSM-5、Hβ和HY)与生物质原料共混后氮气气氛热解,提高了BTX的产率,不同种生物质原料获得的BTX产率维持在6.5~7.5wt%。
国际专利EP2445634A2公布了一系列季铵盐(以C22H15-N+(CH3)2-C6H12-N+(CH3)-C6H13, C22-6-6为例)为模板剂来指导沸石纳米片的合成方法,该沸石材料具有大量介孔和高比表面积,表现出显著增加的分子扩散速率和显著改善的催化活性。
上述现有技术在针对产品高值化上均具有一定的可行性,同时也提高了BTX的产率,实现对不同原料的深加工。但是仍然存在一些不足:(1)中国发明CN110088244A和CN106244185B结合金属或非金属活性位,增加成本的同时,降低了对活性位和载体间协同作用的可控性,需要考虑活性位的失活程度,甚至是会给环境造成一定压力的含氮类活性物质;(2)国际专利EP2445634A2通过改变模板剂的结构来控制沸石催化剂形貌相对来说较为繁琐且成本较高,并且在合成多种模板剂的过程会产生大量有机废液和含硫废液,显然是工业中不希望看到的结果。
发明内容
本发明的目的在于提供一种用于重劣质油制备BTX的催化剂及制备方法,以解决重劣质油转化和催化剂在性能上的短板,避免因负载金属活性位的失活问题,该方法制备的催化剂能够实现对重劣质油的催化,提高BTX产率。
为实现上述目的,本发明采用如下技术方案:
一种用于重劣质油制备BTX的催化剂的制备方法,包括以下步骤:
将硅源、铝源、碱源、模板剂与水混合,形成均相凝胶,然后将均相凝胶进行预结晶、结晶与一次焙烧,得到初始催化剂;将初始催化剂与离子交换溶液进行铵离子交换后干燥,二次焙烧,得到用于重劣质油制备BTX的催化剂。
本发明进一步的改进在于,硅源为正硅酸乙酯、硅溶胶、气相二氧化硅或固体硅胶;
铝源为十八水合硫酸铝、偏铝酸钠或异丙醇铝;
碱源为氢氧化钠;
模板剂为C22-6-6表面活性剂。
本发明进一步的改进在于,氢氧化钠、硅源、铝源、模板剂与水按照Na2O、SiO2、Al2O3与C22-6-6表面活性剂的摩尔比为x:100:1:10:4000进行混合,其中,x为12~30。
本发明进一步的改进在于,预结晶的温度为50~70℃,时间为3~5h。
本发明进一步的改进在于,结晶的温度为125~180℃,时间为5~6天。
本发明进一步的改进在于,一次焙烧与二次焙烧的温度为500~600℃,时间为4~6h。
本发明进一步的改进在于,自室温以1~3℃/min的升温速率升温至一次焙烧,自室温以 5~10℃/min的升温速率升温至与二次焙烧温度。
本发明进一步的改进在于,离子交换溶液为1mol/L的硝酸铵溶液。
本发明进一步的改进在于,初始催化剂质量和离子交换溶液体积比为1g:20mL。
一种根据如上所述方法制备待测用于重劣质油制备BTX的催化剂,该催化剂属于MFI 沸石分子筛,Si/Al比的范围为(39~65):1,比表面积为323~587m2/g,具有微孔结构、介孔结构以及大孔结构,其中,介孔结构的平均介孔孔径区间为3.4~5.4nm。
与现有技术相比,本发明具有的有益效果:
对标传统沸石催化剂,本发明以硅源、铝源、碱源、模板剂为原料,制备转化重劣质油制备BTX的催化剂。首先,制备过程不涉及酸类物质(硫酸和草酸等)以及金属(贵金属、稀土金属和过渡金属等)的使用,一定程度上降低了生产成本,同时降低酸性废水带来的环境问题。其次,催化剂具有不同的形貌特征,如“蜂房状”、“卡房状”、“层状”和“六棱柱状”,仅通过调变简单的原料配比而非调整模板剂,即可实现对沸石催化剂形貌的可控,契合工业适应性宽的特性。最后,该方法制备的催化剂具有多维度孔结构,降低了重劣质油中大分子的传质阻力,并且层间介孔利于沸石催化剂中微孔的保护以防止积碳和焦吸附其中造成催化剂失活。
进一步的,催化剂制备过程中,其结构与合成条件有具有重要关联。以正硅酸乙酯(TEOS) 为硅源,十八水合硫酸铝(Al2(SO4)3·18H2O)为铝源,该两种原料用量极大的影响着催化剂的Si/Al比,从而影响催化剂的酸性性质。
进一步的,以氢氧化钠为碱源,通过调节碱的用量可以调节正硅酸乙酯的水解速率以及催化剂晶体的形貌和粒径,提高碱的用量可以加速正硅酸乙酯的水解速度,促使其提供更多的晶核,进一步地生成小粒径的催化剂晶体。
进一步的,温度和结晶时间影响着催化剂的结晶度和颗粒粒径大小,合适的结晶时间和温度有利于催化剂的结晶度的提高,因此采用的晶化温度为125~180℃,时间为5~6天。
该催化剂具有不同的形貌、孔道结构和酸性特征。多维度孔结构(微孔、介孔和大孔) 具有良好的传质能力,深化对重劣质油的催化裂解,提高了BTX的选择性。
附图说明
图1为实施例1-6的MFI沸石催化剂的粉末X-衍射(XRD)示意图;
图2为实施例1-6的MFI沸石催化剂的扫描电镜(SEM)示意图;其中,(a)为实施例1,(b)为图(a)的局部放大图,(c)为实施例2,(d)为图(c)的局部放大图,(e)为实施例3,(f)为图(e)的局部放大图,(g)为实施例4,(h)为图(g)的局部放大图,(i) 为实施例5,(j)为图(i)的局部放大图,(k)为实施例6,(l)为图(k)的局部放大图。
图3为实施例1-6的MFI沸石催化剂的N2吸脱附示意图;
图4为实施例1-6的MFI沸石催化剂对BTX选择性的影响示意图。
具体实施方式
下面结合附图通过具体实施例对本发明进行详细说明,本申请包含但不局限于这些实施例。
本发明能够填补纳米片沸石催化剂在重劣质油制备轻质芳烃领域的空白。
本发明的一种用于重劣质油制备BTX的催化剂的制备方法,包括以下步骤:
以正硅酸乙酯(TEOS)、硅溶胶、气相二氧化硅或固体硅胶为硅源,十八水合硫酸铝(Al2(SO4)3·18H2O)、偏铝酸钠或异丙醇铝为铝源,氢氧化钠为碱源(氢氧化钾由于引入钾原子,并且起不到模板剂的作用,所以不采用氢氧化钾作为碱源),季铵盐 (C22H15-N+(CH3)2-C6H12-N+(CH3)2-C6H13,C22-6-6表面活性剂)为模板剂,按照原料氢氧化钠、硅源、铝源、模板剂与水按照Na2O、SiO2、Al2O3与C22-6-6的摩尔比为x:100:1:10:4000(即摩尔比:x Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O),然后混合置于含特氟龙内衬的水热釜中,形成均相凝胶(溶液),在转速为240r/min下均匀搅拌后,在50~70℃下密封进行预结晶3~5h,进一步在125~180℃下晶化(即静置)5~6天,再水冷(3~5℃/min)冷却至室温后进行过滤洗涤,在100~135℃条件下干燥8~16h,然后在马弗炉中以1~3℃/min的升温速率升温至 500~600℃(优选为550℃)焙烧4~6h后,得到初始催化剂。最后将初始催化剂在80~90℃下与离子交换溶液进行铵离子交换2~3h,并重复铵离子交换2~4次,再以2~4℃/min冷却至室温后进行过滤洗涤,在100~135℃条件下干燥8~16h,再以5~10℃/min的升温速率升温至500~600℃(优选为550℃)焙烧4~6h,获得用于重劣质油制备BTX的催化剂。
其中,x为12~30。
离子交换溶液为1mol/L的硝酸铵溶液。
初始催化剂质量和离子交换溶液体积比为1g:20mL。
本发明的用于重劣质油制备BTX的催化剂属于MFI沸石分子筛,Si/Al比的范围为(39~65):1。
所述的用于重劣质油制备BTX的催化剂具有微孔结构、介孔结构以及大孔结构,即具有微孔(孔径小于2nm)、介孔和大孔三种混合孔径,此处的大孔指所制备的催化剂一部分孔径在50nm以上。
其中,介孔结构的平均介孔孔径区间为3.4~5.4nm。
所述的用于重劣质油制备BTX的催化剂具有高比表面积,范围为323~587m2/g。所制备的催化剂具有较高的比表面积,相比常规的分子筛催化剂的比表面积(~300m2/g)要高。
本发明中所选用的重劣质油为煤油共炼液体产物,由白鹭煤和高硫减压榨油以3:7的比例获得,陕西延长石油兴化化工有限公司提供。白鹭煤、轻质煤油共炼液体产物(LCOCR) 和重质煤油共炼液体产物(HCOCR)元素分析与工业分析见表1。
表1白鹭煤、轻质煤油共炼液体产物和重质煤油共炼液体产物元素分析与工业分析
Figure SMS_1
ad:空气干燥基;d:干燥基;daf:干燥无灰基;*:差减法得到
采用裂解气相色谱联用仪(Py-GC/MS)对样品进行分析,其中裂解仪(Py)的作用是对样品进行快速催化裂解,气相色谱仪(GC/MS)对产物进行在线分析。快速热解终温为700℃, 并保持20s。
实施例1
按照原料摩尔比:15Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,称取2.0g的模板剂C22-6-6,加入去离子水19.8g后磁力搅拌溶解,称量0.19g Al2(SO4)3·18H2O并溶于上述溶液,待完全溶解后加入0.34g的NaOH,室温下搅拌。最后称取5.9g的TEOS加入上述溶液,磁力搅拌形成初始凝胶。密封置于恒温式磁力搅拌装置中,60℃磁力搅拌4h进行预结晶。
预结晶后取出转子,将水热釜移至均相反应器中,150℃条件下静态结晶6天。结束后水冷(4℃/min)冷却,洗涤并过滤获得滤饼,将其置于真空干燥箱中于120℃下干燥12h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以2℃/min升温至550℃保持6h,获得初始催化剂。
将上述步骤中的初始催化剂与硝酸铵溶液进行离子交换。具体为称取1.6g硝酸铵溶于 18.4mL去离子水中配制1mol/L的离子交换溶液,以1g:20mL的比例将初始催化剂和硝酸铵溶液加入烧杯中,80℃冷凝回流2h,待冷却后抽滤洗涤。重复上述操作2次。最后,将滤饼置于真空干燥箱中在120℃下干燥12h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以5℃/min升温至550℃保持6h,获得用于重劣质油制备BTX的催化剂A,其 XRD、扫描电镜如图1和图2所示。
从图1可以看出,所有催化剂均在7~9°和23~25°间表现出MFI典型的特征衍射峰。值得注意的是,随着Na2O的增加,衍射峰宽化程度降低并且在2θ=26.7°处出现石英相(实施例4-6),说明晶体颗粒尺寸和结晶度降低。
所合成的催化剂中具有四种典型的形貌特征:蜂房状、卡房状、层状和六棱柱状。从图 2中(a)和(b)可以看出,所述的用于重劣质油制备BTX的催化剂具有“蜂房状”形貌,从图2中(e)和(f)可以看出,所述的用于重劣质油制备BTX的催化剂具有“卡房状”形貌。从图2中(g)和(h)可以看出,所述的用于重劣质油制备BTX的催化剂具有“层状”形貌。从图2中(k)和(l))可以看出,所述的用于重劣质油制备BTX的催化剂具有“六棱柱状”形貌。从图2中(c)和(d)可以看出,所述的用于重劣质油制备BTX的催化剂具有“蜂房状”形貌转向“卡房状”形貌的过渡形貌。从图2中(i)和(j)可以看出,所述的用于重劣质油制备BTX的催化剂具有“层状”形貌转向“六棱柱状”形貌的过渡形貌。
通过Py/GC-MS,将制备得到的催化剂A对轻质煤油共炼液体产物进行催化裂解,裂解温度设置为700℃,原料与催化剂的质量比为1:8,对BTX的相对含量进行评价,评价结果见图4。从图4可以看出,轻质煤油共炼产物在催化前的组分中不含有BTX,即BTX的选择性为0。在实施例1的催化剂的作用下,BTX选择性有了明显的增加,BTX的总选择性由0 提高至6.17%。
实施例2
按照原料摩尔比:18Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,即称取0.41g的NaOH,其他实验方法同实施例1。对BTX的相对含量进行评价,评价结果见图4。可以看出,在实施例2的催化剂的作用下,BTX总选择性增加,BTX的总选择性由0提高至4.53%。
实施例3
按照原料摩尔比:21Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,即称取0.48g的NaOH,其他实验方法同实施例1。对BTX的相对含量进行评价,评价结果见图4。可以看出,在实施例3的催化剂的作用下,BTX总选择性增加,BTX的总选择性由0提高至8.77%。
实施例4
按照原料摩尔比:22Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,即称取0.50g的NaOH,其他实验方法同实施例1。对BTX的相对含量进行评价,评价结果见图4。可以看出,在实施例4的催化剂的作用下,BTX总选择性增加,BTX的总选择性由0提高至15.06%。
实施例5
按照原料摩尔比:23Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,即称取0.53g的NaOH,其他实验方法同实施例1。对BTX的相对含量进行评价,评价结果见图4。可以看出,在实施例5的催化剂的作用下,BTX总选择性增加,BTX的总选择性由0提高至10.51%。
实施例6
按照原料摩尔比:30Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,即称取0.69g的NaOH,其他实验方法同实施例1。对BTX的相对含量进行评价,评价结果见图4。可以看出,在实施例6的催化剂的作用下,BTX总选择性增加,BTX的总选择性由0提高至14.47%。
参见图3,显示所有样品均属于Ⅳ型等温线,在低压区(P/P0:0~0.4)具有相似的等温线且吸附体积增加,说明它们拥有相似的微孔结构以及存在模板剂指导生成的介孔。而在中高压区(P/P0:0.4~1.0),吸附体积的变化说明产生了不同的介孔或大孔结构。
实施例7
按照原料摩尔比:12Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,称取2.0g的模板剂C22-6-6,加入去离子水后磁力搅拌溶解,称量偏铝酸钠并溶于上述溶液,待完全溶解后加入NaOH,室温下搅拌。最后加入硅溶胶,磁力搅拌形成初始凝胶。密封置于恒温式磁力搅拌装置中, 50℃磁力搅拌5h进行预结晶。
预结晶后取出转子,将水热釜移至均相反应器中,125℃条件下静态结晶6天。结束后快速冷却,洗涤并过滤获得滤饼,将其置于真空干燥箱中于100℃下干燥16h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以2℃/min升温至550℃保持6h,获得初始催化剂。
将上述步骤中的初始催化剂与硝酸铵溶液进行离子交换。具体为称取1.6g硝酸铵溶于 18.4mL去离子水中配制1mol/L的离子交换溶液,以1g:20mL的比例将初始催化剂和硝酸铵溶液加入烧杯中,85℃冷凝回流2h,待冷却后抽滤洗涤。重复上述操作2次。最后,将滤饼置于真空干燥箱中在100℃干燥16h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以10℃/min升温至600℃保持4h,获得用于重劣质油制备BTX的催化剂。
实施例8
按照原料摩尔比:30Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,称取2.0g的模板剂C22-6-6,加入去离子水后磁力搅拌溶解,称量偏铝酸钠并溶于上述溶液,待完全溶解后加入NaOH,室温下搅拌。最后加入气相二氧化硅,磁力搅拌形成初始凝胶。密封置于恒温式磁力搅拌装置中,60℃磁力搅拌4h进行预结晶。
预结晶后取出转子,将水热釜移至均相反应器中,180℃条件下静态结晶5天。结束后快速冷却,洗涤并过滤获得滤饼,将其置于真空干燥箱中于100℃下干燥16h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以1℃/min升温至500℃保持6h,获得初始催化剂。
将上述步骤中的初始催化剂与硝酸铵溶液进行离子交换。具体为称取1.6g硝酸铵溶于 18.4mL去离子水中配制1mol/L的离子交换溶液,以1g:20mL的比例将初始催化剂和硝酸铵溶液加入烧杯中,80℃冷凝回流3h,待冷却后抽滤洗涤。重复上述操作2次。最后,将滤饼置于真空干燥箱中在135℃干燥8h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以5℃/min升温至500℃保持6h,获得用于重劣质油制备BTX的催化剂。
实施例9
按照原料摩尔比:20Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,称取2.0g的模板剂C22-6-6,加入去离子水后磁力搅拌溶解,称量偏铝酸钠并溶于上述溶液,待完全溶解后加入NaOH,室温下搅拌。最后加入固体硅胶,磁力搅拌形成初始凝胶。密封置于恒温式磁力搅拌装置中, 70℃磁力搅拌3h进行预结晶。
预结晶后取出转子,将水热釜移至均相反应器中,150℃条件下静态结晶5.8天。结束后快速冷却,洗涤并过滤获得滤饼,将其置于真空干燥箱中于120℃下干燥10h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以2℃/min升温至600℃保持4h,获得初始催化剂。
将上述步骤中的初始催化剂与硝酸铵溶液进行离子交换。具体为称取1.6g硝酸铵溶于 18.4mL去离子水中配制1mol/L的离子交换溶液,以1g:20mL的比例将初始催化剂和硝酸铵溶液加入烧杯中,90℃冷凝回流2h,待冷却后抽滤洗涤。重复上述操作3次。最后,将滤饼置于真空干燥箱中在110℃干燥14h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以6℃/min升温至520℃保持5.5h,获得用于重劣质油制备BTX的催化剂。
实施例10
按照原料摩尔比:25Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,称取2.0g的模板剂C22-6-6,加入去离子水后磁力搅拌溶解,称量十八水合硫酸铝并溶于上述溶液,待完全溶解后加入 NaOH,室温下搅拌。最后加入气相二氧化硅,磁力搅拌形成初始凝胶。密封置于恒温式磁力搅拌装置中,55℃磁力搅拌4h进行预结晶。
预结晶后取出转子,将水热釜移至均相反应器中,160℃条件下静态结晶5.5天。结束后快速冷却,洗涤并过滤获得滤饼,将其置于真空干燥箱中于110℃下干燥13h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以3℃/min升温至520℃保持5.5h,获得初始催化剂。
将上述步骤中的初始催化剂与硝酸铵溶液进行离子交换。具体为称取1.6g硝酸铵溶于 18.4mL去离子水中配制1mol/L的离子交换溶液,以1g:20mL的比例将初始催化剂和硝酸铵溶液加入烧杯中,82℃冷凝回流2.5h,待冷却后抽滤洗涤。重复上述操作4次。最后,将滤饼置于真空干燥箱中在120℃干燥12h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以7℃/min升温至550℃保持4.5h,获得用于重劣质油制备BTX的催化剂。
实施例11
按照原料摩尔比:17Na2O/100SiO2/1Al2O3/10C22-6-6/4000H2O,称取2.0g的模板剂C22-6-6,加入去离子水后磁力搅拌溶解,称量异丙醇铝并溶于上述溶液,待完全溶解后加入NaOH,室温下搅拌。最后加入硅溶胶,磁力搅拌形成初始凝胶。密封置于恒温式磁力搅拌装置中, 65℃磁力搅拌3h进行预结晶。
预结晶后取出转子,将水热釜移至均相反应器中,130℃条件下静态结晶6天。结束后快速冷却,洗涤并过滤获得滤饼,将其置于真空干燥箱中于135℃下干燥8h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以1℃/min升温至570℃保持5h,获得初始催化剂。
将上述步骤中的初始催化剂与硝酸铵溶液进行离子交换。具体为称取1.6g硝酸铵溶于 18.4mL去离子水中配制1mol/L的离子交换溶液,以1g:20mL的比例将初始催化剂和硝酸铵溶液加入烧杯中,87℃冷凝回流2.5h,待冷却后抽滤洗涤。重复上述操作2次。最后,将滤饼置于真空干燥箱中在130℃干燥7h,获得白色粉末。将上述粉末放入25mL坩埚中并置于马弗炉中以8℃/min升温至600℃保持4h,获得用于重劣质油制备BTX的催化剂。

Claims (7)

1.一种用于重劣质油制备BTX的催化剂的制备方法,其特征在于,包括以下步骤:
将硅源、铝源、碱源、模板剂与水混合,形成均相凝胶,然后将均相凝胶进行预结晶、结晶与一次焙烧,得到初始催化剂;将初始催化剂与离子交换溶液进行铵离子交换后干燥,二次焙烧,得到用于重劣质油制备BTX的催化剂;
硅源为正硅酸乙酯、硅溶胶、气相二氧化硅或固体硅胶;
铝源为十八水合硫酸铝、偏铝酸钠或异丙醇铝;
碱源为氢氧化钠;
模板剂为C22-6-6表面活性剂;
氢氧化钠、硅源、铝源、模板剂与水按照Na2O、SiO2、Al2O3与C22-6-6表面活性剂的摩尔比为x:100:1:10:4000进行混合,其中,x为12~30;
该催化剂属于MFI沸石分子筛,Si/Al比的范围为(39~65):1,比表面积为323~587m2/g,具有微孔结构、介孔结构以及大孔结构,其中,介孔结构的平均介孔孔径区间为3.4~5.4nm。
2.根据权利要求1所述的一种用于重劣质油制备BTX的催化剂的制备方法,其特征在于,预结晶的温度为50~70℃,时间为3~5h。
3.根据权利要求1所述的一种用于重劣质油制备BTX的催化剂的制备方法,其特征在于,结晶的温度为125~180℃,时间为5~6天。
4.根据权利要求1所述的一种用于重劣质油制备BTX的催化剂的制备方法,其特征在于,一次焙烧与二次焙烧的温度为500~600℃,时间为4~6h。
5.根据权利要求1所述的一种用于重劣质油制备BTX的催化剂的制备方法,其特征在于,自室温以1~3℃/min的升温速率升温至一次焙烧,自室温以5~10℃/min的升温速率升温至二次焙烧温度。
6.根据权利要求1所述的一种用于重劣质油制备BTX的催化剂的制备方法,其特征在于,离子交换溶液为1mol/L的硝酸铵溶液。
7.根据权利要求1所述的一种用于重劣质油制备BTX的催化剂的制备方法,其特征在于,初始催化剂质量和离子交换溶液体积比为1g:20mL。
CN202210669435.XA 2022-06-14 2022-06-14 一种用于重劣质油制备btx的催化剂及制备方法 Active CN114950541B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210669435.XA CN114950541B (zh) 2022-06-14 2022-06-14 一种用于重劣质油制备btx的催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210669435.XA CN114950541B (zh) 2022-06-14 2022-06-14 一种用于重劣质油制备btx的催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN114950541A CN114950541A (zh) 2022-08-30
CN114950541B true CN114950541B (zh) 2023-07-14

Family

ID=82962462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210669435.XA Active CN114950541B (zh) 2022-06-14 2022-06-14 一种用于重劣质油制备btx的催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN114950541B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238317A (ja) * 2003-02-05 2004-08-26 Toray Ind Inc 重質油からのキシレン類の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086362A1 (zh) * 2014-12-02 2016-06-09 中国科学院大连化学物理研究所 一种多级孔zsm-5分子筛的合成方法
WO2018073743A1 (en) * 2016-10-17 2018-04-26 Sabic Global Technologies B.V. Process for producing btx from a c5-c12 hydrocarbon mixture
US11097262B2 (en) * 2017-06-15 2021-08-24 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
CN108002402B (zh) * 2017-12-08 2019-11-19 西北大学 一种具有千层饼状形貌的中微双孔mfi型纳米分子筛及其制备方法和应用
KR20210066927A (ko) * 2018-10-18 2021-06-07 차이나 페트로리움 앤드 케미컬 코포레이션 메조포어가 풍부한 인-함유 희토류-함유 mfi 구조 분자체, 이의 제조 방법, 및 이를 함유하는 촉매 및 이의 용도
JP7429693B2 (ja) * 2018-10-18 2024-02-08 中国石油化工股▲ふん▼有限公司 メソポアを豊富に含むリン・レアアース含有mfi構造分子篩とその作製方法、および、該分子篩を含む触媒とその利用
CN109502607A (zh) * 2018-11-30 2019-03-22 中国科学院山西煤炭化学研究所 一种纳米zsm-22分子筛的合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238317A (ja) * 2003-02-05 2004-08-26 Toray Ind Inc 重質油からのキシレン類の製造方法

Also Published As

Publication number Publication date
CN114950541A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN108927207B (zh) 一种表面富铝的多孔催化材料及其制备方法
Zhao et al. Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size
TWI654138B (zh) 分子篩材料及其合成和用途
CN102464325B (zh) 一种介孔-微孔沸石分子筛的制备方法
CN102019196B (zh) 一种改善高岭土微球原位晶化产物孔结构的方法
CN104229824A (zh) 一种酸碱耦合制备等级孔zsm-5分子筛的方法
Salahudeen et al. Synthesis of hexagonal zeolite Y from Kankara kaolin using a split technique
US11213810B1 (en) Method of producing a cracking catalyst
CN114950541B (zh) 一种用于重劣质油制备btx的催化剂及制备方法
CN112661166B (zh) 多级孔y型分子筛及其制备方法与应用
CN111847473A (zh) 一种程序升温法合成大晶粒Beta分子筛的方法
CN112279268A (zh) 一种多级孔zsm-5纳米层片沸石的制备方法及应用
CN107151022B (zh) 一种介孔p-im-5分子筛及制备方法与应用
CN107020145B (zh) 一种介孔im-5分子筛及制备方法
US7635462B2 (en) Method of making porous crystalline materials
CN112110456A (zh) 一种原位晶化NaY分子筛的制备方法
CN114425419B (zh) 一种加氢lco多产烯烃和芳烃的催化裂解催化剂及其制备方法与应用
CN107345154B (zh) 一种劣质柴油的加氢裂化方法
CN101618877A (zh) 一种微孔-介孔分级结构材料及其制备方法
CN111377461B (zh) 多级孔hzsm-5沸石分子筛
CN108996517B (zh) 一种多级孔且宽硅铝比eu-1分子筛及其制备方法
CN107344120B (zh) 加氢裂化催化剂载体及其制法
JP2013047166A (ja) アルミナ含有メソポーラス多孔体の合成方法およびアルミナ含有メソポーラス多孔体
CN111689504A (zh) 一种介-微多级孔结构y型沸石分子筛的制备方法
CN107344117B (zh) 加氢裂化催化剂及其制法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant