CN114940618B - 亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法 - Google Patents

亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法 Download PDF

Info

Publication number
CN114940618B
CN114940618B CN202210607035.6A CN202210607035A CN114940618B CN 114940618 B CN114940618 B CN 114940618B CN 202210607035 A CN202210607035 A CN 202210607035A CN 114940618 B CN114940618 B CN 114940618B
Authority
CN
China
Prior art keywords
oleylamine
tin
preparation
temperature
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210607035.6A
Other languages
English (en)
Other versions
CN114940618A (zh
Inventor
娄悦
张皖佳
徐骉
吴凡石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210607035.6A priority Critical patent/CN114940618B/zh
Publication of CN114940618A publication Critical patent/CN114940618A/zh
Application granted granted Critical
Publication of CN114940618B publication Critical patent/CN114940618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法。所述的高熵热电材料通式为Cu2‑yAgy(InxSn1‑x)Se2S,x=0.05~0.25,y=0.07~0.13,采用胶体合成法获得Cu2‑yAgy(InxSn1‑x)Se2S纳米晶,利用放电等离子烧结技术以及配体抑制晶粒生长的作用得到具有多级纳米结构的块体Cu2‑yAgy(InxSn1‑x)Se2S纳米晶。本发明具有操作简单、能耗低、无毒等优点,通过掺杂点缺陷,纳米结构构筑增强声子散射,明显提高了铜锡基硫属化物材料的热电性能,其中Cu1.87Ag0.13(In0.06Sn0.94)Se2S在873K时具有0.44mW m‑1K‑2的高功率因数和0.25W m‑1K‑1的超低导热系数,ZT高达1.52。

Description

亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法
技术领域
本发明属于热电材料领域,涉及一种亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法。
背景技术
热电材料能够实现热能和电能的直接转换,具有体积小、可靠性高、不排放污染物、适用温度范围广、环境友好等特点,具有广泛的应用前景。热电发电效率主要由材料的无量纲性能优值zT决定,zT=S2σT/кtot。其中,S,σ,T,кtot分别为塞贝克系数,电导率,绝对温度和总热导率。理想的热电材料需要具有优良的电导率和大的塞贝克系数,同时需要很低的热导率,而这几个热电参数之间的耦合关系使得获得高的热电优值zT成为巨大挑战。所以在热电领域,通过对电传输和热传输的解耦调控来提高热电材料的电传输性能(S2σ)并降低其热传输性能(кtot)是其主要研究目标。
近年来,具有固有低热导率的无毒热电材料Cu2SnSe3引起了人们的广泛关注。由于Cu2SnSe3的键合特性,Cu-Se键可以形成导电框架,而Sn原子驻留在框架中,并提供电子来平衡结构。因此,Sn位点的掺杂是优化其电输运性能的重要方法。通过用价电子较少的元素(如In、Sb、Zn和Mn等)取代Sn原子来增加载流子浓度,用Ag取代Cu,引入Cu空位以及用S代替Se扩大带隙增加态密度提高Cu2SnSe3的塞贝克系数,引入点缺陷散射、晶界散射、位错散射等降低材料的热导可以提高Cu2SnSe3基材料热电性能,具有较高的研究价值。同时,多种元素占据等效原子位的高熵合金(HEAs),使其构型熵增加,很好地实现了能带结构工程与全尺度多级微结构的协同。Li等人通过Ag和In共掺杂Cu2SnSe3,首次研究了Cu位点掺杂对热电性能的影响,使zT增加了近80%(10.1002/adfm.201601486)。Ming等人通过合金化S和掺杂In,实现多价带运输和多维缺陷的形成,在858K时,Cu2Sn0.82In0.18Se2.7S0.3的zT达到了1.51(10.1021/acsnano.1c03120)。然而,这些材料的结构多为单斜结构,而作为亚稳相具有高对称性的立方结构则很少获得,因为它需要通过特定的合成条件进行热力学控制。
发明内容
本发明提供一种亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法。
本发明所述的亚稳态立方相铜锡基硫属化物高熵热电材料,其化学通式为Cu2- yAgy(InxSn1-x)Se2S,x=0.05~0.25,y=0.07~0.13。优选地,x=0.06,y=0.13。
本发明所述的亚稳态立方相铜锡基硫属化物高熵热电材料的制备方法,具体步骤如下:
步骤1,将二苯基二硒醚超声溶解到油胺中,形成硒的前驱体溶液;
步骤2,按氯化亚铜、硝酸银、氯化铟和二水合氯化亚锡的摩尔比为8.4~9:0.3~0.6:0.15~1:3,将氯化亚铜、硝酸银、氯化铟和二水合氯化亚锡加入到油胺和十二烷基硫醇的混合溶液中,形成金属盐溶液;
步骤3,将金属盐溶液抽真空,通N2,加热至228±2℃注入硒的前驱体溶液,然后将混合溶液升温到240±1℃并保温反应30±10min,反应结束后,冷却到室温,离心洗涤除杂,真空干燥,研磨得到Cu2-yAgy(InxSn1-x)Se2S纳米晶粉末;
步骤4,将Cu2-yAgy(InxSn1-x)Se2S纳米晶粉末进行放电等离子体烧结,烧结温度为400±50℃,保温时间为10~15min,烧结压力为50~60MPa,得到块体Cu2-yAgy(InxSn1-x)Se2S纳米晶。
优选地,步骤1中,硒的前驱体溶液中,二苯基二硒醚的浓度为0.25mol/L,超声时间为20±5min。
优选地,步骤2中,氯化亚铜、硝酸银、氯化铟和二水合氯化亚锡的摩尔比为8.4:0.6:0.2:3。
优选地,步骤2中,油胺和十二烷基硫醇的混合溶液中,油胺和十二烷基硫醇的体积比为8:1。
优选地,步骤3中,采用无水乙醇洗涤4次。
优选地,步骤3中,离心条件为11000r/min,离心5min。
优选地,步骤3中,真空干燥温度为50~70℃,干燥时间为6~10h。
与现有技术相比,本发明具有以下优点:
(1)本发明采用胶体法合成了Cu2-yAgy(InxSn1-x)Se2S纳米晶,合成工艺简单,耗时较短,采用放电等离子烧结技术,相较于热压等成型技术所需温度更低且样品机械性能以及致密度较好,提高了生产效率且降低了合成能耗,适合工业化应用;
(2)本发明通过在不去除长有机配体的情况下压制纳米晶体,并由此获得了一系列稳定性良好的亚稳态立方相高熵材料。通过相结构和熵设计,Cu1.87Ag0.13(In0.06Sn0.94)Se2S样品在873K时具有高功率因数(0.44mW m-1K-2)和超低导热系数(0.25W m-1K-1),ZT高达1.52。
附图说明
图1为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)烧结后样品的室温X射线衍射(XRD)图谱。
图2为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的电导率(σ)与温度变化关系图。
图3为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品塞贝克系数(S)与温度变化关系图。
图4为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的功率因子(S2σ)与温度变化关系图。
图5为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的总热导率(κtot)与温度变化关系图。
图6为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的晶格热导率(κL)与温度变化关系图。
图7为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的热电优值(zT)与温度变化关系图。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例1
将7.5mmol二苯基二硒醚超声溶解到30mL油胺中备用;在手套箱中称量3mmol二水合氯化亚锡、0.15mmol氯化铟、9mmol氯化亚铜置于三颈烧瓶中,从手套箱中取出三颈烧瓶,再分别量取120mL油胺、15mL十二烷基硫醇置于三颈烧瓶中;将三颈烧瓶放入加热套中,搭好装置,开启搅拌,体系抽真空和通N2交替操作三次,最终通N2保护并将加热套设到240℃,228℃时用注射器注射配置的二苯基二硒醚的油胺溶液,然后升温至240℃保温30min;反应结束后,待冷却到60℃,关闭N2,乙醇洗涤除杂四次后在60℃下真空干燥8h;将得到的产物研磨成粉末后放入内径为10mm的石墨模具中,进行放电等离子体烧结,烧结温度为400℃,保温时间10min,烧结压力50MPa,得到Cu2(In0.05Sn0.95)Se2S。热电性能测试按照垂直于烧结压力方向进行。
实施例2
将7.5mmol二苯基二硒醚超声溶解到30mL油胺中备用;在手套箱中称量3mmol二水合氯化亚锡、0.2mmol氯化铟,9mmol氯化亚铜置于三颈烧瓶中,从手套箱中取出三颈烧瓶,再分别量取120mL油胺、15mL十二烷基硫醇置于三颈烧瓶中;将三颈烧瓶放入加热套中,搭好装置,开启搅拌,体系抽真空和通N2交替操作三次,最终通N2保护并将加热套设到240℃,228℃时用注射器注射配置的二苯基二硒醚的油胺溶液;然后升温至240℃保温30min;反应结束后,待冷却到60℃,关闭N2,乙醇洗涤除杂四次后在60℃下真空干燥8h;将得到的产物研磨成粉末后放入内径为10mm的石墨模具中,进行放电等离子体烧结,烧结温度为400℃,保温时间10min,烧结压力50MPa,得到Cu2(In0.06Sn0.94)Se2S。热电性能测试按照垂直于烧结压力方向进行。
实施例3
将7.5mmol二苯基二硒醚超声溶解到30mL油胺中备用;在手套箱中称量3mmol二水合氯化亚锡、1mmol氯化铟,9mmol氯化亚铜置于三颈烧瓶中,从手套箱中取出三颈烧瓶,再分别量取120mL油胺、15mL十二烷基硫醇置于三颈烧瓶中;将三颈烧瓶放入加热套中,搭好装置,开启搅拌,体系抽真空和通N2交替操作三次,最终通N2保护并将加热套设到240℃,228℃时用注射器注射配置的二苯基二硒醚的油胺溶液;然后升温至240℃保温30min;反应结束后,待冷却到60℃,关闭N2,乙醇洗涤除杂四次后在60℃下真空干燥8h;将得到的产物研磨成粉末后放入内径为10mm的石墨模具中,进行放电等离子体烧结,烧结温度为400℃,保温时间10min,烧结压力50MPa,得到Cu2(In0.25Sn0.75)Se2S。热电性能测试按照垂直于烧结压力方向进行。
实施例4
将7.5mmol二苯基二硒醚超声溶解到30mL油胺中备用;在手套箱中称量3mmol二水合氯化亚锡、0.2mmol氯化铟,8.7mmol氯化亚铜置于三颈烧瓶中,从手套箱中取出三颈烧瓶,称量0.3mmol硝酸银再分别量取120mL油胺、15mL十二烷基硫醇置于三颈烧瓶中;将三颈烧瓶放入加热套中,搭好装置,开启搅拌,体系抽真空和通N2交替操作三次,最终通N2保护并将加热套设到240℃,228℃时用注射器注射配置的二苯基二硒醚的油胺溶液;然后升温至240℃保温30min;反应结束后,待冷却到60℃,关闭N2,乙醇洗涤除杂四次后在60℃下真空干燥8h;将得到的产物研磨成粉末后放入内径为10mm的石墨模具中,进行放电等离子体烧结,烧结温度为400℃,保温时间10min,烧结压力50MPa,得到Cu1.93Ag0.07(In0.06Sn0.94)Se2S。热电性能测试按照垂直于烧结压力方向进行。
实施例5
将7.5mmol二苯基二硒醚超声溶解到30mL油胺中备用;在手套箱中称量3mmol二水合氯化亚锡、0.2mmol氯化铟,8.4mmol氯化亚铜置于三颈烧瓶中,从手套箱中取出三颈烧瓶,称量0.6mmol硝酸银再分别量取120mL油胺、15mL十二烷基硫醇置于三颈烧瓶中;将三颈烧瓶放入加热套中,搭好装置,开启搅拌,体系抽真空和通N2交替操作三次,最终通N2保护并将加热套设到240℃,228℃时用注射器注射配置的二苯基二硒醚的油胺溶液;然后升温至240℃保温30min;反应结束后,待冷却到60℃,关闭N2,乙醇洗涤除杂四次后在60℃下真空干燥8h;将得到的产物研磨成粉末后放入内径为10mm的石墨模具中,进行放电等离子体烧结,烧结温度为400℃,保温时间10min,烧结压力50MPa,得到Cu1.87Ag0.13(In0.06Sn0.94)Se2S。热电性能测试按照垂直于烧结压力方向进行。
对比例1
将7.5mmol二苯基二硒醚超声溶解到30mL油胺中备用;在手套箱中称量3mmol二水合氯化亚锡,9mmol氯化亚铜置于三颈烧瓶中,从手套箱中取出三颈烧瓶,再分别量取120mL油胺、15mL十二烷基硫醇置于三颈烧瓶中;将三颈烧瓶放入加热套中,搭好装置,开启搅拌,体系抽真空和通N2交替操作三次,最终通N2保护并将加热套设到240℃,228℃时用注射器注射配置的二苯基二硒醚的油胺溶液;240℃保温30min;反应结束后,待冷却到60℃,关闭N2,乙醇洗涤除杂四次后在60℃下真空干燥8h;将得到的产物研磨成粉末后放入内径为10mm的石墨模具中,进行放电等离子体烧结,烧结温度为400℃,保温时间10min,烧结压力50MPa,得到Cu2SnSe2S。热电性能测试按照垂直于烧结压力方向进行。
表1
Figure BDA0003671767080000051
图1为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)烧结后样品的室温X射线衍射(XRD)图谱,表明主相为面心立方结构(空间群为
Figure BDA0003671767080000052
),其中Cu2SnSe2S、Cu2In0.05Sn0.95Se2S、Cu2In0.06Sn0.94Se2S样品中存在Cu1.8Se第二相,随着铟掺杂量的增加和合金化银,Cu1.8Se第二相消失。
图2为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的电导率(σ)与温度变化关系图,可以看出电导率先是随着温度的升高而降低,然后在高温区随着温度的升高而升高;电导率的变化趋势与x和y的值呈复杂关系,在x=0.06,y=0.07时,电导率在873K时达到9.18×103S m-1的最大值。
图3为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的塞贝克系数(S)与温度变化关系图,可以看出塞贝克系数在323~723K范围内随温度升高而升高,在高温区略有降低,这可能是少数热激发的结果;对比例1制得的未掺杂铟样品的塞贝克系数较低,在873K时为214μV K-1,而当铟的掺杂量为0.25时,在873K时取得了较高的塞贝克系数298μV K-1,说明铟掺杂可以明显提高材料的塞贝克系数。
图4为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的功率因子(S2σ)与温度变化关系图,可以看出综合电导率和塞贝克系数之后的电输运性能,掺杂铟和合金化银样品的功率因子出现了明显的提升,在873K时,Cu1.93Ag0.07(In0.06Sn0.94)Se2S和Cu1.87Ag0.13(In0.06Sn0.94)Se2S分别得到了0.45和0.44mW m- 1K-2的最大功率因子。
图5为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的总热导率(κtot)与温度变化关系图,可以看出总的热导率随着温度的升高而降低,并且随着铟的掺杂和银的合金化逐步降低,最终在x=0.06,y=0.13时,在873K得到0.25W m-1K-1的最小值。
图6为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的晶格热导率(κL)与温度变化关系图,可以看出与总热导率的变化趋势一致,最终在x=0.06,y=0.13时,在873K得到0.13W m-1K-1的最小值。
图7为各实施例和对比例中Cu2-yAgy(InxSn1-x)Se2S(x=0,0.05,0.06,0.25,y=0,0.07,0.13)样品的热电优值(zT)与温度变化关系图,可以看出当x=0.06,y=0.13时,在873K时达到1.52的最高zT值,相比于不掺杂铟和合金化银的样品,热电性能提升了约72%。

Claims (7)

1.亚稳态立方相铜锡基硫属化物高熵热电材料的制备方法,其特征在于,具体步骤如下:
步骤1,将二苯基二硒醚超声溶解到油胺中,形成硒的前驱体溶液;
步骤2,按氯化亚铜、硝酸银、氯化铟和二水合氯化亚锡的摩尔比为8.4:0.6:0.2:3,将氯化亚铜、硝酸银、氯化铟和二水合氯化亚锡加入到油胺和十二烷基硫醇的混合溶液中,形成金属盐溶液;
步骤3,将金属盐溶液抽真空,通N2,加热至228±2℃注入硒的前驱体溶液,然后将混合溶液升温到240±1℃并保温反应30±10min,反应结束后,冷却到室温,离心洗涤除杂,真空干燥,研磨得到Cu2-yAgy(InxSn1-x)Se2S纳米晶粉末;
步骤4,将Cu2-yAgy(InxSn1-x)Se2S纳米晶粉末进行放电等离子体烧结,烧结温度为400±50℃,保温时间为10~15min,烧结压力为50~60MPa,得到块体Cu2-yAgy(InxSn1-x)Se2S纳米晶,其中x=0.06,y=0.13。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,硒的前驱体溶液中,二苯基二硒醚的浓度为0.25mol/L,超声时间为20±5min。
3.根据权利要求1所述的制备方法,其特征在于,步骤2中,油胺和十二烷基硫醇的混合溶液中,油胺和十二烷基硫醇的体积比为8:1。
4.根据权利要求1所述的制备方法,其特征在于,步骤3中,采用无水乙醇洗涤4次。
5.根据权利要求1所述的制备方法,其特征在于,步骤3中,离心条件为11000r/min,离心5min。
6.根据权利要求1所述的制备方法,其特征在于,步骤3中,真空干燥温度为50~70℃,干燥时间为6~10h。
7.根据权利要求1至6任一所述的制备方法制得的块体Cu2-yAgy(InxSn1-x)Se2S纳米晶。
CN202210607035.6A 2022-05-31 2022-05-31 亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法 Active CN114940618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210607035.6A CN114940618B (zh) 2022-05-31 2022-05-31 亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210607035.6A CN114940618B (zh) 2022-05-31 2022-05-31 亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114940618A CN114940618A (zh) 2022-08-26
CN114940618B true CN114940618B (zh) 2023-05-05

Family

ID=82908725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210607035.6A Active CN114940618B (zh) 2022-05-31 2022-05-31 亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114940618B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012112491A1 (en) * 2011-02-15 2012-08-23 Purdue Research Foundation Nanostructured copper zinc tin sulfide-based thermoelectric energy conversion
JP2014013869A (ja) * 2012-07-05 2014-01-23 Toyota Motor Corp ナノコンポジット熱電変換材料およびその製造方法
KR20190029969A (ko) * 2017-09-13 2019-03-21 엘지전자 주식회사 열전소재 및 그 제조 방법
CN110335936A (zh) * 2019-06-28 2019-10-15 清华大学 一种铜铟硫基热电材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194989B (zh) * 2010-03-18 2013-10-02 中国科学院上海硅酸盐研究所 一种三元类金刚石结构的热电材料的制备方法
CN103909262B (zh) * 2013-06-07 2015-03-04 武汉理工大学 一种高性能Cu2SnSe3热电材料及其快速制备方法
EP2977129B1 (en) * 2013-03-19 2020-09-02 Wuhan University Of Technology Thermoelectric compound preparation based on self-propagating combustion synthesis new criterion
CN107445621B (zh) * 2017-09-06 2020-05-12 济南大学 一种Cu-Te纳米晶/Cu2SnSe3热电复合材料及其制备方法
CN107737921B (zh) * 2017-10-22 2019-09-06 东莞市热点电热科技有限公司 一种热电材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012112491A1 (en) * 2011-02-15 2012-08-23 Purdue Research Foundation Nanostructured copper zinc tin sulfide-based thermoelectric energy conversion
JP2014013869A (ja) * 2012-07-05 2014-01-23 Toyota Motor Corp ナノコンポジット熱電変換材料およびその製造方法
KR20190029969A (ko) * 2017-09-13 2019-03-21 엘지전자 주식회사 열전소재 및 그 제조 방법
CN110335936A (zh) * 2019-06-28 2019-10-15 清华大学 一种铜铟硫基热电材料及其制备方法

Also Published As

Publication number Publication date
CN114940618A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
US8716589B2 (en) Doped lead tellurides for thermoelectric applications
CN108531795B (zh) n-型Mg-Sb基室温热电材料及其制备方法
US6069312A (en) Thermoelectric materials with filled skutterudite structure for thermoelectric devices
CN106904972B (zh) 一种环境友好型碲化锡基热电材料及其制备方法
CN107946450B (zh) 一种掺杂变价元素协同优化BiCuSeO基热电材料
CN100549195C (zh) 一种填充方钴矿基热电复合材料及其制备方法
CN111490148B (zh) 一种多晶SnSe基热电材料的制备方法
CN108807654B (zh) 高性能低成本MnGeTe2基热电材料及其制备
CN114940618B (zh) 亚稳态立方相铜锡基硫属化物高熵热电材料及其制备方法
CN109022863B (zh) 一种填充Ga的基方钴矿热电材料及其制备方法
CN109087987B (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
CN115050884A (zh) 一种ZrNiSn基Half-Heusler热电材料及其制备方法
CN113066922B (zh) 一种n型碲化锡热电材料及其制备方法
CN114408874A (zh) 一种基于熵工程的碲化铋热电材料及其制备方法
CN111653662B (zh) 伪立方相结构GeTe基热电材料及其制备方法
Tee et al. Compositionally tuned hybridization of n-type Ag 0: Ag 2 Se under ambient conditions towards excellent thermoelectric properties at room temperature
CN111312887A (zh) 一种含高浓度无序点缺陷的SnTe基热电材料及其制备
KR102026517B1 (ko) 열전성능이 향상된 망간-규소계 열전재료 및 이의 제조방법
EP3352234A1 (en) Apparatus and method for enhancing figure of merit in composite thermoelectric materials with aerogel
CN116283295B (zh) 一种碲化铋基复合热电材料及其制备方法
CN114890791B (zh) 锑化镁基热电材料及其制备方法和应用
CN112885948B (zh) 一种具有高结构稳定性的铜硒基热电材料及其制备方法
CN115522110B (zh) 一种A位多构型熵half-Heusler合金热电材料及其制备方法
EP4292982A1 (en) Gamma-argyrodite structure material for thermoelectric conversion and the method of obtaining the same
CN117646129A (zh) 一种Mg3(Sb/Bi)2基热电材料的致密化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant