CN114933297A - 一种纳米晶/碳纳米管复合超级微球的制备方法 - Google Patents

一种纳米晶/碳纳米管复合超级微球的制备方法 Download PDF

Info

Publication number
CN114933297A
CN114933297A CN202210670183.2A CN202210670183A CN114933297A CN 114933297 A CN114933297 A CN 114933297A CN 202210670183 A CN202210670183 A CN 202210670183A CN 114933297 A CN114933297 A CN 114933297A
Authority
CN
China
Prior art keywords
nano tube
microsphere
carbon nano
modified
composite super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210670183.2A
Other languages
English (en)
Other versions
CN114933297B (zh
Inventor
韩丹丹
吴丹
周倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN202210670183.2A priority Critical patent/CN114933297B/zh
Publication of CN114933297A publication Critical patent/CN114933297A/zh
Application granted granted Critical
Publication of CN114933297B publication Critical patent/CN114933297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于无机材料技术领域,具体涉及一种纳米晶/碳纳米管复合超级微球的制备方法,首先通过配体交换将水相羧基修饰的1D碳纳米管转换成有机相长碳氢链配体修饰的碳纳米管;再通过热解法制备油酸/油胺包覆的纳米晶;最后通过限域乳液共组装策略将1D碳纳米管和0D纳米晶(或1D纳米晶)共同组装成纳米晶/碳纳米管复合超级微球。本发明的纳米晶/碳纳米管复合超级微球具有三维交联的碳纳米管导电网络结构、高效耦合、孔结构等特点,本发明将在能源存储、光电催化等方面具有巨大的应用前景。

Description

一种纳米晶/碳纳米管复合超级微球的制备方法
技术领域
本发明属于无机材料技术领域,具体涉及一种纳米晶/碳纳米管复合超级微球的制备方法。
背景技术
近年来,通过自组装技术,自下而上的构筑3D纳米晶超晶格或超结构受到了诸多关注。其中,由多组分组装形成的异质组装体(如二元超晶格)因具有可以提高纳米晶间的电子耦合、拓宽超晶格单元库等优点,一直是纳米晶组装领域的研究热点。特别地,以0D胶体无机纳米晶为构建单元的二元异质组装得到了极大发展。但是,0D构建单元一定程度上限制了组装体微介观结构的调控,缩窄了多元组装体的单元库。那么,进一步扩展胶体组分以构建多样的组装体结构对实现多维度、多组分的异质组装具有重要的研究意义。
相比于0D纳米晶,1D碳纳米管由于具有良好的机械稳定性和导电性,常常作为导电矩阵以提高电极材料的导电性和结构稳定性。但是,由于碳纳米管间较强的范德华作用,其常常发生团聚,阻碍了它们的广泛应用。此外,碳纳米管的能量密度低,表面碳壁无电化学活性,其作为单组分材料难以获得较好的电化学性能。将碳纳米管与纳米晶相结合构建3D异质结构可以整合两组分的优势,是实现新特性的可行方法之一。目前,制备3D纳米晶/碳纳米管结构的典型方法是基于喷雾热解、静电自组装和水热处理等。这些制备方法通常存在多种缺点,比如苛刻的反应条件、纳米晶尺寸不均一、相分离等。因此,仍需发展一种更简便、普适的策略来构建高性能电极的3D纳米晶/CNTs异质结构。
发明内容
本发明人将羧基修饰的1D碳纳米管通过配体交换改性为长碳氢链分子修饰的碳纳米管。发现此修饰后的碳纳米管可作为胶体构建单元,与不同类型的油酸(或油胺)修饰的纳米晶进行共组装。在表面活性剂的助力下,1D碳纳米管和0D纳米晶(或1D纳米晶)能够协同异质组装成3D纳米晶/碳纳米管复合超级微球,从而完成本发明。
在一个方面,本发明提供一种纳米晶/碳纳米管复合超级微球的制备方法,所述方法包括如下步骤:
(1)将羧基修饰的碳纳米管分散在水中,加入等体积的非极性溶剂,向此两相混合物中逐滴加入长碳氢链配体,直至下层的羧基修饰的碳纳米管转移至上层非极性溶剂相,加入乙醇,离心,得到长碳氢链配体修饰的碳纳米管,并将其重新分散在非极性溶剂中;
(2)纳米晶前驱体经过高温热解法制得油酸/油胺修饰的纳米晶,将油酸/油胺修饰的纳米晶分散在非极性溶剂中;
(3)配置表面活性剂水溶液,在搅拌下,使其与上述长碳氢链配体修饰的碳纳米管和油酸/油胺修饰的纳米晶均匀,加热,搅拌1-5小时,直至非极性溶剂挥发完全,对混合物进行离心,干燥,得到纳米晶/碳纳米管复合超级微球。
进一步地,所述的非极性溶剂选自于正己烷、甲苯、环己烷、氯仿中的一种或多种,优选正己烷。
进一步地,所述的长碳氢链配体选自于油胺、十四胺、十二胺、癸胺的一种或多种,优选油胺。
进一步地,所述纳米晶可以为金属氧化物、金属、半导体纳米晶等。如Fe3O4、CoFe2O4、MnFe2O4、NiFe2O4、Au、TiO2纳米晶。所述纳米晶前驱体为本领域已知的制造上述纳米晶的原料。
进一步地,步骤(3)中,所述表面活性剂选自于十二烷基三甲基溴化铵、十六烷基三甲基溴化铵、十二烷基硫酸钠,其浓度为5~20mg/mL。
进一步地,步骤(3)中,油酸/油胺修饰的纳米晶与长碳氢链配体修饰的碳纳米管的比例为500:1~1:5(质量比)。
进一步地,步骤(3)中,加热温度为40~60℃。
进一步地,步骤(3)中,搅拌器转速为500~1000r/s,搅拌时间为1~3h。
在另一个方面,本发明提供了通过上述制备方法获得的纳米晶/碳纳米管复合超级微球。
在又一个方面,本发明提供了所述纳米晶/碳纳米管复合超级微球在于能源存储、光电催化领域的应用。
有益效果
本发明利用长碳氢链分子修饰的碳纳米管作为胶体组装构建单元,使其在限域乳液环境中与油酸/油胺修饰的纳米晶共组装成纳米晶/碳纳米管复合超级微球。本发明具有以下优点:
一方面通过简单的配体交换,将羧基修饰的碳纳米管成功改性为长碳氢链配体修饰的碳纳米晶,将碳纳米管纳入了胶体组装单元的范畴,实现了1D碳纳米管与0D纳米晶、1D纳米晶的胶体共组装。
另一方面,碳纳米管作为良好的导电网络,通过改变纳米晶与碳纳米管的相对比例,可实现不同导电能力的纳米晶/碳纳米管复合超级微球。并且,纳米晶的尺寸和种类可调,这为制备类型更加广泛的纳米晶/碳纳米管复合超级微球提供了可能。
最后,纳米晶/碳纳米管复合超级微球具有内部三维交联的导电网络、高效耦合、孔结构的优点,有利于电子传输、快速传质等过程,协同促进电化学反应,是一种有潜力的电极材料。
此种构筑纳米晶/碳纳米管复合超级微球的方法具有一定的普适性。碳纳米管和纳米晶的相对比例可调(质量比,500:1~1:5),纳米晶的类型多样(Fe3O4、CoFe2O4、MnFe2O4、NiFe2O4、Au、TiO2等),进而可以得到具有不同类型组合的纳米晶/碳纳米管复合超级微球。本发明合成的纳米晶/碳纳米管复合超级微球具有三维交联的碳纳米管导电网络结构、高效耦合、孔结构等特点,可以广泛应用于能源存储、光电催化等领域。
附图说明
图1为本发明实施例1制备的碳纳米管配体交换前后的红外图谱;
图2为本发明实施例1制备的碳纳米管配体交换前后的相转移图;
图3为本发明实施例1制备的碳纳米管配体交换前后的透射电镜图;
图4为本发明实施例1制备的Fe3O4/CNTs复合超级微球的扫描电镜图;
图5为本发明实施例2制备的CoFe2O4/CNTs复合超级微球的扫描电镜图及透射电镜图;
图6为本发明实施例3制备的Au纳米晶的透射电镜图Au/CNTs复合超级微球的扫描电镜图;
图7为本发明实施例4制备的TiO2纳米晶的透射电镜图和TiO2/CNTs复合超级微球的扫描电镜图;
图8为本发明对比例1制备的羧基修饰的碳纳米管和CoFe2O4纳米晶复合材料的扫描电镜图;
图9为本发明实施例4制备的TiO2/CNTs复合超级微球的氮气吸脱附曲线和孔径分布曲线;
图10为本发明实施例2制备的CoFe2O4/CNTs复合超级微球在锂离子电池中的性能表现。
具体实施例方式
下面结合具体实施例以及附图对本发明的技术方案进行详细阐述;本发明中所用试剂如无特殊说明均可通过购买获得。
实施例1:
采用以下方法制备纳米晶/碳纳米管复合超级微球:
(1)油胺修饰CNTs的制备:商用羧基修饰的碳纳米管购自于先丰纳米材料有限公司。产品名称:羧基化多壁碳纳米管(短)10-20nm,货号:100262,直径:10-20nm,内径:5-10nm,纯度:>95%,长度0.5-2μm,羧基含量:2.00wt%。
室温下,向5mL上述商用羧基修饰的碳纳米管水溶液中加入5mL正己烷,向此两相混合溶液中逐滴加入油胺,震荡,直至碳纳米管从下层水相交换至上层正己烷相。加入2mL乙醇,离心,将沉淀重新溶于非极性溶剂中如正己烷,即所得油胺修饰的CNTs。
(2)油酸修饰的Fe3O4纳米晶的制备:5.4g氯化铁,19g油酸钠,70mL正己烷,40mL乙醇,30mL正己烷混合均匀,60℃回流4h,冷却后水洗,分离出有机相得到纳米晶前驱体油酸铁。油酸铁50℃干燥过夜至粘稠备用。9g油酸铁、2.3g油酸、50g十八碳烯混合,在120℃抽真空,然后在氩气氛围下加热至320℃保持1h。产物油酸修饰的Fe3O4纳米晶由乙醇异丙醇洗涤离心,倒掉上清液,沉淀分散在10mL正己烷中,浓度约为50mg/mL。
(3)Fe3O4/CNTs复合超级微球的制备:将5mL所得油酸修饰的Fe3O4纳米晶胶体溶液,1mL油胺修饰的CNTs与50mL10 mg/mL DTAB(十二烷基三甲基溴化铵)在均质机的搅拌下混合,搅拌20min。随后,将混合物转移至三颈烧瓶中,于40℃持续搅拌1h,使正己烷挥发完全,可得Fe3O4/CNTs复合超级微球。
实施例2:
采用以下方法制备纳米晶/碳纳米管复合超级微球:
(1)十四胺修饰CNTs的制备:商用羧基修饰的碳纳米管购自于先丰纳米材料有限公司。产品名称:羧基化多壁碳纳米管(短)20-30nm,货号:100268,直径:20-30nm,内径:5-10nm,纯度:>95%,长度0.5-2μm,羧基含量:1.23wt%。
室温下,向5mL上述商用羧基修饰的碳纳米管水溶液中加入5mL甲苯,向此两相混合溶液中逐滴加入十四胺,震荡,直至碳纳米管从下层水相交换至上层甲苯相。加入2mL乙醇,离心,将沉淀重新溶于非极性溶剂中如正己烷,即所得十四胺修饰的CNTs。
(2)CoFe2O4纳米晶的制备:5.55g乙酰丙酮铁,2g乙酰丙酮钴,25mL二苄醚,5.6g油酸,18.8g油胺混合,120℃抽真空30min,然后在氩气氛围下加热至200℃,该温度下保持1.5h,然后再升温到295℃,保持1h。产物由乙醇异丙醇离心,倒掉上清液,沉淀分散在10mL正己烷中,浓度约为50mg/mL。
(3)CoFe2O4/CNTs复合超级微球的制备:将5mL所得CoFe2O4纳米晶胶体溶液,1mL十四胺修饰的CNTs与50mL 10mg/mL DTAB在均质机的搅拌下混合,搅拌20min。随后,将混合物转移至三颈烧瓶中,于50℃持续搅拌2h,使正己烷挥发完全,可得CoFe2O4/CNTs复合超级微球。
实施例3:
采用以下方法制备纳米晶/碳纳米管复合超级微球:
(1)十二胺修饰CNTs的制备:商用羧基修饰的碳纳米管购自于先丰纳米材料有限公司。产品名称:羧基化多壁碳纳米管(短)30-50nm,货号:100286,直径:30-50nm,内径:5-12nm,纯度:>95%,长度0.5-2μm,羧基含量:0.73wt%。
室温下,向5mL上述商用羧基修饰的碳纳米管水溶液中加入5mL环己烷,向此两相混合溶液中逐滴加入十二胺,震荡,直至碳纳米管从下层水相交换至上层环己烷相。加入2mL乙醇,离心,将沉淀重新溶于非极性溶剂中如正己烷,即所得十二胺修饰的CNTs。
(2)Au纳米晶的制备:10mL正己烷,10mL油胺,0.085g氯金酸,20℃在氮气氛围下搅拌15min。叔丁胺硼烷0.022g,1mL油胺,1mL正己烷超声混合,注入到上述混合氯金酸液中,溶液变紫色。反应1h后,乙醇洗涤离心,重新分散在5mL正己烷中,浓度约为10mg/mL。
(3)Au/CNTs复合超级微球的制备:将8mL所得Au纳米晶胶体溶液,1mL十二胺修饰的CNTs与50mL 20mg/mL DTAB在均质机的搅拌下混合,搅拌20min。随后,将混合物转移至三颈烧瓶中,于40℃持续搅拌2h,使正己烷挥发完全,可得Au/CNTs复合超级微球。
实施例4:
采用以下方法制备纳米晶/碳纳米管复合超级微球:
(1)癸胺修饰CNTs的制备:商用羧基修饰的碳纳米管购自于先丰纳米材料有限公司。产品名称:羧基化多壁碳纳米管(短)8-15nm,货号:100250,直径:8-15nm,内径:3-5nm,纯度:>95%,长度0.5-2μm,羧基含量:2.56wt%。
室温下,向5mL上述商用羧基修饰的碳纳米管水溶液中加入5mL氯仿,向此两相混合溶液中逐滴加入癸胺,震荡,直至碳纳米管从上层水相交换至下层氯仿相。加入2mL乙醇,离心,将沉淀重新溶于非极性溶剂中如正己烷,即所得癸胺修饰的CNTs。
(2)TiO2纳米晶的制备:48mL油酸,6mL钛酸四丁酯、20mg氟化钠加入到烧瓶中混合。搅拌条件下,120℃抽真空30min,氮气保护下加热到270℃,该温度保持3h。产物由乙醇异丙醇离心,倒掉上清液,沉淀分散在10mL正己烷中,浓度约为50mg/mL。
(3)TiO2/CNTs复合超级微球的制备:将15mL所得TiO2纳米晶胶体溶液,1mL癸胺修饰的CNTs与50mL 20mg/mL DTAB在均质机的搅拌下混合,搅拌20min。随后,将混合物转移至三颈烧瓶中,于60℃持续搅拌3h,使正己烷挥发完全,可得TiO2/CNTs复合超级微球。
对比例1:
为了彰显碳纳米管表面长碳氢链分子的修饰以制备复合超级微球的必要性,因此将直接购买的商用羧基修饰的碳纳米管和CoFe2O4纳米晶在与实施例2相同的环境下进行组装。
(1)商用羧基修饰CNTs:购自于先丰纳米材料有限公司。产品名称:羧基化多壁碳纳米管(短)20-30nm,货号:100268,直径:20-30nm,内径:5-10nm,纯度:>95%,长度0.5-2μm,羧基含量:1.23wt%。
(2)CoFe2O4纳米晶的制备:方法如上实施例2。
(3)羧基修饰的碳纳米管和CoFe2O4纳米晶复合材料的制备:将5mL所得CoFe2O4纳米晶胶体溶液,1mL上述羧基修饰的CNTs与50mL 10mg/mL DTAB在均质机的搅拌下混合,搅拌20min。随后,将混合物转移至三颈烧瓶中,于50℃持续搅拌2h,使正己烷挥发完全,可得CoFe2O4/CNTs复合材料。
结构鉴定
下面通过红外光谱、扫描电镜分析、透射电镜分析等手段对本发明中碳纳米管的表面改性及纳米晶/碳纳米管复合超级微球的结构进行表征。
1.红外光谱分析
图1为本发明实施例1中商用羧基修饰的碳纳米管配体交换前后的红外光谱图。从图中可以看出,配体交换后,在3321cm-1处出现了N-H键的吸收峰,同时出现2853~2924cm-1的C-H振动峰,这证明了油胺成功交换到了碳纳米管的表面。
2.实物图分析
图2为本发明实施例1中商用羧基修饰的碳纳米管配体交换前后的相转移实物图。图中可以看出,在未加入长碳氢链配体前,碳纳米管分散在下层水相中,上层为正己烷相。而加入油胺后,原本分散在水相的碳纳米管能够转移到上层正己烷相,此相转移过程说明了碳纳米管表面配体已发生变化。
3.透射电镜分析
图3为本发明实施例1中商用羧基修饰的碳纳米管配体交换前后的透射电镜图。从图中可以发现,此购置的纳米管为多壁纳米管,其宽度不等(10nm左右)。配体交换后,此纳米管的尺寸没有明显变化,且没有发生团聚。
4.扫描电镜分析
图4为本发明实施例1中Fe3O4/CNTs复合超级微球的扫描电镜图。从图a中可以看出,乳液组装后样品中无明显游离碳纳米管的存在,且形成了大量的微球。图b显示出微球由纳米晶和碳纳米管组成,且两者高效的复合在一起,碳纳米管三维交联,穿插在整个微球中。
5.扫描电镜及透射电镜分析
图5为本发明实施例2中CoFe2O4/CNTs复合超级微球的扫描电镜图和透射电镜图。从图a、b中可以看出,CoFe2O4纳米晶与碳纳米管形成了交联的微球,两者高效复合。
6.透射电镜和扫描电镜分析
图7为本发明实施例3中Au纳米晶的透射电镜图和Au/CNTs复合超级微球的扫描电镜图。图a显示出制备的Au纳米晶为均匀球形,其粒径约4nm。图b表明Au纳米晶和碳纳米管能够组装成复合异质微球,微球的尺寸约在2~4μm。
7.透射电镜和扫描电镜分析
图6为本发明实施例4中TiO2纳米晶的透射电镜图和TiO2/CNTs复合超级微球的扫描电镜图。图a显示出制备的TiO2为棒状结构,其直径约3nm,长度约40nm。图b表明1D TiO2和碳纳米管也可以组装成异质微球,其表面较为光滑,并其表面存在有大量的介孔。
8.扫描电镜分析
图8为本发明对比例1中直接购买的羧基修饰的碳纳米管和CoFe2O4纳米晶在同等环境下进行复合组装形成的材料。从图中可知,所得材料无球形形貌,只是碳纳米管和CoFe2O4复合堆积在一起,进而证明了通过长碳氢链配体对碳纳米管修饰以制备复合微球的必要性。
9.氮气吸脱附和孔径分布分析
测试过程如下:称取适量本发明实施例4中所制备TiO2/CNTs复合超级微球样品,将样品在300℃下脱气处理3h,以除去样品中的水分和小分子。脱气后对样品再称重,计算样品质量。将样品置于液氮环境中,于不同压力点下测定样品的氮气吸附量,结果如图9所示,图9a为本发明实施例4中所制备TiO2/CNTs复合超级微球的氮气吸脱附曲线,显示出典型的IV型曲线,说明材料中存在着一定的介孔,其比表面约为235.4m2 g-1。对氮气吸脱曲线进行BJH计算,进而可得到其对应的孔径分布图;图9b为孔径分布曲线,在10nm左右出现明显的峰,可归因于碳纳米管的内在孔结构。
10.锂离子电池性能分析
图10为本发明实施例2中所制备CoFe2O4/CNTs复合超级微球作为锂离子电池负极材料的锂离子电池性能(锂片为负极,扣式电池)。图a为在电流密度0.5A g-1下的循环性能。图b为在不同电镜密度下的倍率性能。图c为在电流密度5A g-1下的长循环性能。所制备的CoFe2O4/CNTs复合超级微球表现出超高的容量890mAh g-1(0.5Ag-1),良好的倍率性能(在20A g-1的电流密度下容量318mAh g-1),优异的结构稳定性(在5A g-1的电流密度下连续循环1000次后容量达5A g-1)。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不仅局限于此,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种纳米晶/碳纳米管复合超级微球的制备方法,所述方法包括如下步骤:
(1)将羧基修饰的碳纳米管分散在水中,加入等体积的非极性溶剂,向此两相混合物中逐滴加入长碳氢链配体,直至下层的羧基修饰的碳纳米管转移至上层非极性溶剂相,加入乙醇,离心,得到长碳氢链配体修饰的碳纳米管,并将其重新分散在非极性溶剂中;
(2)纳米晶前驱体经过高温热解法制得油酸/油胺修饰的纳米晶,将油酸/油胺修饰的纳米晶分散在非极性溶剂中;
(3)配置表面活性剂水溶液,在搅拌下,使其与上述长碳氢链配体修饰的碳纳米管和油酸/油胺修饰的纳米晶均匀,加热,搅拌1-5h,直至非极性溶剂挥发完全,对混合物进行离心,干燥,得到纳米晶/碳纳米管复合超级微球。
2.根据权利要求1所述的制备方法,其特征在于,所述非极性溶剂选自于正己烷、甲苯、环己烷、氯仿中的一种或多种,优选正己烷。
3.根据权利要求1所述的制备方法,其特征在于,所述的长碳氢链配体选自于油胺、十四胺、十二胺、癸胺的一种或多种,优选油胺。
4.根据权利要求1所述的制备方法,其特征在于,所述纳米晶选自于金属氧化物、金属、半导体纳米晶,优选Fe3O4、CoFe2O4、MnFe2O4、NiFe2O4、Au、TiO2纳米晶。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述表面活性剂选自于十二烷基三甲基溴化铵、十六烷基三甲基溴化铵、十二烷基硫酸钠,其浓度为5~20mg/mL。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,以质量计,所述油酸/油胺修饰的纳米晶与所述长碳氢链配体修饰的碳纳米管的比例为500:1~1:5。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,加热温度为40~60℃。
8.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,搅拌器转速为500~1000r/s,搅拌时间为1~3h。
9.通过权利要求1-8中任一项所述的制备方法获得的纳米晶/碳纳米管复合超级微球。
10.权利要求9所述的纳米晶/碳纳米管复合超级微球在能源存储、光电催化领域的应用。
CN202210670183.2A 2022-06-14 2022-06-14 一种纳米晶/碳纳米管复合超级微球的制备方法 Active CN114933297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210670183.2A CN114933297B (zh) 2022-06-14 2022-06-14 一种纳米晶/碳纳米管复合超级微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210670183.2A CN114933297B (zh) 2022-06-14 2022-06-14 一种纳米晶/碳纳米管复合超级微球的制备方法

Publications (2)

Publication Number Publication Date
CN114933297A true CN114933297A (zh) 2022-08-23
CN114933297B CN114933297B (zh) 2023-08-18

Family

ID=82866386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210670183.2A Active CN114933297B (zh) 2022-06-14 2022-06-14 一种纳米晶/碳纳米管复合超级微球的制备方法

Country Status (1)

Country Link
CN (1) CN114933297B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755463A (zh) * 2022-11-10 2023-03-07 中国科学技术大学 激光背光模组及利用其制造的显示器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594211A (zh) * 2004-06-25 2005-03-16 中国科学院上海硅酸盐研究所 四氧化三钴纳米晶包裹碳纳米管复合粉体及制备方法
CN1794372A (zh) * 2005-10-31 2006-06-28 中国科学院上海硅酸盐研究所 四氧化三铁纳米晶修饰碳纳米管的磁性复合粉体及制备方法
CN101224434A (zh) * 2007-12-29 2008-07-23 中国科学院长春应用化学研究所 一种纳米粒子碳纳米管复合物催化剂的制备方法
CN101499341A (zh) * 2008-11-04 2009-08-05 东华大学 醇热法制备碳纳米管(MWCNTs)/锰锌铁氧体(Mn1-xZnxFe2O4)磁性纳米材料
WO2011046330A2 (en) * 2009-10-16 2011-04-21 Bioneer Corporation Thermal conductive composites consisting of carbon namostructures and metal
CN103943838A (zh) * 2014-04-21 2014-07-23 西安交通大学 金属氧化物纳米片与碳纳米管复合储能材料的制备方法
KR101578911B1 (ko) * 2014-07-09 2015-12-18 고려대학교 산학협력단 다중벽 탄소나노튜브/전이금속 나노입자 다층박막 및 그 제조방법
CN105439121A (zh) * 2015-12-17 2016-03-30 复旦大学 一种三维有序方形孔介孔碳骨架材料的制备方法
CN109879278A (zh) * 2019-03-14 2019-06-14 复旦大学 一种零维-二维杂化叠层超结构纳米材料的制备方法
CN110127776A (zh) * 2019-05-09 2019-08-16 复旦大学 一种多孔结构的碳包覆纳米晶超晶格微球的制备方法
CN110316696A (zh) * 2019-04-01 2019-10-11 复旦大学 一种可大量制备二元超晶格乳液球的方法
CN111613452A (zh) * 2019-12-25 2020-09-01 江西悦安新材料股份有限公司 一种铁基碳纳米管复合材料的制备方法
CN111925820A (zh) * 2020-07-10 2020-11-13 长江大学 一种十二胺改性的碳纳米管破乳剂及其制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594211A (zh) * 2004-06-25 2005-03-16 中国科学院上海硅酸盐研究所 四氧化三钴纳米晶包裹碳纳米管复合粉体及制备方法
CN1794372A (zh) * 2005-10-31 2006-06-28 中国科学院上海硅酸盐研究所 四氧化三铁纳米晶修饰碳纳米管的磁性复合粉体及制备方法
CN101224434A (zh) * 2007-12-29 2008-07-23 中国科学院长春应用化学研究所 一种纳米粒子碳纳米管复合物催化剂的制备方法
CN101499341A (zh) * 2008-11-04 2009-08-05 东华大学 醇热法制备碳纳米管(MWCNTs)/锰锌铁氧体(Mn1-xZnxFe2O4)磁性纳米材料
WO2011046330A2 (en) * 2009-10-16 2011-04-21 Bioneer Corporation Thermal conductive composites consisting of carbon namostructures and metal
CN103943838A (zh) * 2014-04-21 2014-07-23 西安交通大学 金属氧化物纳米片与碳纳米管复合储能材料的制备方法
KR101578911B1 (ko) * 2014-07-09 2015-12-18 고려대학교 산학협력단 다중벽 탄소나노튜브/전이금속 나노입자 다층박막 및 그 제조방법
CN105439121A (zh) * 2015-12-17 2016-03-30 复旦大学 一种三维有序方形孔介孔碳骨架材料的制备方法
CN109879278A (zh) * 2019-03-14 2019-06-14 复旦大学 一种零维-二维杂化叠层超结构纳米材料的制备方法
CN110316696A (zh) * 2019-04-01 2019-10-11 复旦大学 一种可大量制备二元超晶格乳液球的方法
CN110127776A (zh) * 2019-05-09 2019-08-16 复旦大学 一种多孔结构的碳包覆纳米晶超晶格微球的制备方法
CN111613452A (zh) * 2019-12-25 2020-09-01 江西悦安新材料股份有限公司 一种铁基碳纳米管复合材料的制备方法
CN111925820A (zh) * 2020-07-10 2020-11-13 长江大学 一种十二胺改性的碳纳米管破乳剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU YANG ET AL.: "Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance", ELECTROCHIMICA ACTA, vol. 144, pages 235, XP029049756, DOI: 10.1016/j.electacta.2014.08.099 *
YUCHI YANG ET AL.: "Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties", J. AM. CHEM. SOC., vol. 140, pages 15038 - 15047 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755463A (zh) * 2022-11-10 2023-03-07 中国科学技术大学 激光背光模组及利用其制造的显示器

Also Published As

Publication number Publication date
CN114933297B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
Xu et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption
Li et al. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization
Wu et al. Hollow CeO2 spheres conformally coated with graphitic carbon for high-performance supercapacitor electrodes
Cui et al. High-yield gas− liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries
Wang et al. Fe3O4@ polyaniline yolk-shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption
Zhou et al. Iron triad (Fe, Co, Ni) nanomaterials: structural design, functionalization and their applications
CN105006559B (zh) 一种石墨烯包覆硅或其氧化物的核壳结构及其制备方法
CN111137915B (zh) 一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用
Lakra et al. Synthesis and characterization of cobalt oxide (Co3O4) nanoparticles
Xu et al. NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries
CN105833809B (zh) 一种零价铁/石墨烯3d纳米微囊的制备方法及应用
Teng et al. Microstructure control of MnO2/CNT hybrids under in-situ hydrothermal conditions
Qi et al. Grape-like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium storage
Hu et al. Magnetic nanoparticle sorbents
Huang et al. Well-dispersive Pt nanoparticles grown on 3D nitrogen-and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation
CN108249482B (zh) 磁性Fe2O3纳米颗粒的制备方法及其与纳米碳材料复合的方法
CN112094623B (zh) 一种二氧化钛包覆镍碳中空核壳纳米微球吸波材料的制备方法及应用
Yin et al. Controlled synthesis of hollow α-Fe2O3 microspheres assembled with ionic liquid for enhanced visible-light photocatalytic activity
WO2018176259A1 (zh) 一种纳米复合材料及其制备方法和应用
Zhu et al. Recent progress on nanostructured transition metal oxides as anode materials for lithium-ion batteries
CN111916288A (zh) 一种纳米管状NiCo2S4@碳化钛复合材料及其制备方法和应用
CN114933297A (zh) 一种纳米晶/碳纳米管复合超级微球的制备方法
Wei et al. Rational construction of magnetic core-shell structural carbon Nanotubes@ Mesoporous N-doped carbon nanofibers for efficient microwave absorption
CN111704732B (zh) 一种负载金属有机框架的石墨烯微米球及其制备方法和应用
CN111589435A (zh) 一种多孔还原氧化(碳纳米管/石墨烯)纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant