CN114930155A - 红外成像系统及相关的方法 - Google Patents

红外成像系统及相关的方法 Download PDF

Info

Publication number
CN114930155A
CN114930155A CN202080090429.8A CN202080090429A CN114930155A CN 114930155 A CN114930155 A CN 114930155A CN 202080090429 A CN202080090429 A CN 202080090429A CN 114930155 A CN114930155 A CN 114930155A
Authority
CN
China
Prior art keywords
sample
illumination
infrared
imaging system
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080090429.8A
Other languages
English (en)
Inventor
大卫·里乌
丹尼尔·欧亚马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photon etc Inc
Original Assignee
Photon etc Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photon etc Inc filed Critical Photon etc Inc
Publication of CN114930155A publication Critical patent/CN114930155A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

提供红外成像系统和对具有荧光标记的样品进行成像的方法。所述系统包括被配置成照亮样品接触表面的光源。所述光源包括各自被配置成朝向样品架投射对应的第一红外照明光束和第二红外照明光束的第一照明模块和第二照明模块,所述红外照明光束在成像平面处相互作用,以形成具有矩形形状且功率分布均匀的照明区域。所述系统还包括可操作地连接到电机组件和光机械机构的控制单元。所述控制单元被配置成在所述封装壳体内的所述多个位置中的任一位置处使得采样平面和所述成像平面相互重叠。所述系统包括检测器,该检测器被配置成,当所述采样平面与所述成像平面相互重叠时,接收所述样品在所述成像平面中被照明时由所述样品的所述荧光标记发射的光。

Description

红外成像系统及相关的方法
技术领域
本申请的技术领域涉及成像系统及相关的方法,并且更具体地涉及红外成像系统及相关的方法。
背景技术
许多临床前成像系统在市场上有售。非限制性示例包括来自Perkin Elme的
Figure BDA0003713435970000011
光谱体内成像系统、来自光谱仪器成像公司的Lago系统、来自Li-Cor的Pearl
Figure BDA0003713435970000012
系统和来自Vilber的Newton系统。这些可商购获得的解决方案通常依赖于基于硅的检测器,并且作为结果,在应用方面存在固有的局限性,这是因为它们仅可在从电磁光谱的可见光部分到电磁光谱的近红外窗口(NIR-I)部分(即,约400nm到约1000nm)的范围内成像。
相比于电磁光谱的可见光部分或NIR-I部分,活体组织的光吸收和散射在第二近红外窗口(NIR-II,即,约1000nm到约1700nm)部分弱得多,这意味着小动物在NIR-II成像窗口中将更透明。
因此,需要解决或至少减轻上文呈现的挑战中的至少一些的技术、方法、系统和设备。
发明内容
根据一方面,提供了用于对具有荧光标记的样品进行成像的红外成像系统。该红外成像系统包括封装壳体、样品架、光源、电机组件、光机械机构、控制单元和检测器。样品架安装在封装壳体中。样品架具有样品接触表面和采样平面。光源被配置成照亮所述样品接触表面,并且包括各自被配置成朝向所述样品架投射对应的第一红外照明光束和第二红外照明光束的第一照明模块和第二照明模块。第一红外照明光束和第二红外照明光束在成像平面处相互作用,以形成具有矩形形状且功率分布均匀的照明区域。电机组件被配置成将样品架移动至封装壳体内的多个位置。光机械机构被配置成对第一红外照明光束和第二红外照明光束进行取向调整,以在封装壳体内移动照明区域。控制单元可操作地连接到电机组件和光机械机构,该控制单元被配置成在封装壳体内的多个位置中的任一位置处使得采样平面和成像平面相互重叠。检测器被配置成,当采样平面与成像平面相互重叠时,接收样品在成像平面中被照明时由样品的荧光标记发射的光。
在一些实施方案中,封装壳体定义内部体积,封装壳体还包括用于存取内部体积的内容物的门或抽屉。
在一些实施方案中,采样平面从样品接触表面垂直偏移。
在一些实施方案中,采样平面从样品接触表面垂直偏移与样品的厚度或样品的一部分的厚度相对应的距离值。
在一些实施方案中,采样平面与样品接触表面重合。
在一些实施方案中,样品接触表面由黑色粉末涂覆的钢板制成。
在一些实施方案中,红外成像系统还包括一个或多个麻醉端口,所述一个或多个麻醉端口被配置成用于在封装壳体中注射麻醉气体以及用于从封装壳体收集麻醉气体。
在一些实施方案中,红外成像系统还包括与样品架热接触的加热元件。
在一些实施方案中,红外成像系统还包括安装到样品架的阻隔件,阻隔件从采样平面向上突出。
在一些实施方案中,第一照明模块和第二照明模块中的每一个包括一个或多个激光二极管。
在一些实施方案中,第一红外照明光束和第二红外照明光束具有约750nm、约808nm或约980nm的波长。
在一些实施方案中,照明区域具有约1mW/mm2到约3mW/mm2范围内的照明功率密度。
在一些实施方案中,第一照明模块和第二照明模块中的每一个包括科勒
Figure BDA0003713435970000031
积分器。
在一些实施方案中,第一照明模块和第二照明模块对称设置在所述检测器的两侧。
在一些实施方案中,第一照明模块和第二照明模块基于校准数据被校准,校准数据将第一照明模块和第二照明模块的多个取向映射至第一红外照明光束和第二红外照明光束的对应的多个照明功率密度,并映射至样品架在封装壳体内的对应的多个位置。
在一些实施方案中,检测器包括InGaAs相机。
在一些实施方案中,检测器包括:
传感器;
第一光路装置,被配置成对由荧光标记发射的光进行收集和准直;以及
第二光路装置,被配置成在所述传感器上形成所述样品的图像。
在一些实施方案中,红外成像系统还包括连接到检测器的机动化聚焦机构,机动化聚焦机构被配置成使第一光路装置和第二光路装置之间的距离变化。
在一些实施方案中,红外成像系统还包括被定位在第一光路装置和第二光路装置之间的滤光轮,滤光轮包括多个滤光片。
根据另一方面,提供一种对具有荧光标记的样品进行成像的方法。该方法包括:在样品架上提供样品,样品架具有样品接触表面和采样平面;利用第一照明模块和第二照明模块生成射向样品的第一红外照明光束和第二红外照明光束,第一红外照明光束和第二红外照明光束在成像平面处相互作用,以形成具有矩形形状且功率分布均匀的照明区域;将样品架移动至封装壳体内的多个位置;对第一红外照明光束和第二红外照明光束进行取向调整,以在封装壳体内移动照明区域;在封装壳体内的多个位置中的任一位置处使得采样平面和成像平面相互重叠;以及当采样平面与成像平面相互重叠时,收集样品在成像平面中被照明光束的光照明时由样品的荧光标记发射的光。
在一些实施方案中,该方法还包括从样品接触表面垂直偏移采样平面。
在一些实施方案中,采样平面从样品接触表面垂直偏移与样品的厚度或样品的一部分的厚度相对应的距离值。
在一些实施方案中,采样平面与样品接触表面重合。
在一些实施方案中,该方法还包括对样品架进行加热。
在一些实施方案中,第一红外照明光束和第二红外照明光束具有约750nm、约808nm或约980nm的波长。
在一些实施方案中,该方法还包括利用科勒
Figure BDA0003713435970000051
积分器对第一红外照明光束和第二红外照明光束中的每一个进行调制。
在一些实施方案中,该方法还包括基于校准数据对第一照明模块和第二照明模块进行校准,校准数据将第一照明模块和第二照明模块的多个取向映射至第一红外光束和第二红外光束的对应的多个照明功率密度,并映射至样品架在封装壳体内的对应的多个位置。
在一些实施方案中,该方法还包括:
利用第一光路装置对由荧光标记发射的光进行收集和准直;以及
利用第二光路装置在传感器上形成样品的图像。
本文所述的方法和系统的其他特征和优点在参考附图阅读本文的优选实施例时将更容易被理解。尽管上文的发明内容概述和下文的具体实施方式中所描述的特定的特征可以参照各特定实施例或其方面来描述,但应该注意的是,除非另外指明,这些特定的特征可以相互组合。
附图说明
图1示出了用于对具有荧光标记的样品进行成像的红外成像系统的实施例。
图2示出了照明模块的实施例。
图3示出了根据一个实施例的检测器的示意图。
图4示出了其中样品架开始处于初始位置或第一位置(此图的左部)并且然后移动到随后位置或第二位置(此图的右部)的示例。
图5为示出了被包括在红外成像系统中的部件中的一些部件之间的可操作连接的框图。
具体实施方式
在本说明书中,附图中的类似的特征已给予类似的附图标记。为了避免使某些附图混乱,如果一些元素已在前面的附图中被识别,那么它们可能不再被指示出来。应当理解的是,附图的元素不一定按比例来描绘,这是因为重点放在清楚地展示本申请实施方案的元素和结构上。此外,为了容易且清楚地进行描述,本文使用指示一个元素相对于另一个元素的位置和/或方向的位置描述符。除非另外指明,这些位置描述符应参照附图的语境来使用,并且不应被认为是限制性的。更具体地,应当理解,除了在附图中举例说明的取向,此类空间相对性的术语旨在涵盖本申请实施方案的使用或操作过程中的各种不同取向。
除非另外指明,术语“连接的”和“耦接的”及其衍生词和变型在本文是指两个或多个元素之间的直接的或间接的结构性或功能性的连接或耦接。例如,元素之间的连接或耦接可为机械的、光学的、电气的、热的、逻辑的或它们的任何组合。
除非另外指明,术语“一”(“a”,“an”)和“一个”在本文被定义为“至少一个”,即,这些术语不排除多个指代物的情形。
用于修饰示例性实施方案的特征的值、条件或特性的术语诸如“大体上”、“通常”和“约”应被理解为该值、条件或特性被定义在本示例性实施方案就其预期应用的正确操作可接受的公差范围内,或落在实验误差的可接受的范围内。具体地,术语“约”通常是指本领域的技术人员将会考虑的等同于所述的值(例如,具有相同或等同的功能或效果)的数字范围。在某些情况下,术语“约”意指所述的值的±10%的变化。需要注意的是,除非另外指明,本文使用的所有数值都假定由术语“约”进行修饰。
同样地,术语“使得……相互重叠”(“superimposition”,“superimpose”,“superimposed”和“superimposing”)在本文旨在是指两个元素或者处于相同的位置或者就空间对准方面彼此处于某种预先确定的公差范围内。即,这些术语旨在不仅涵盖“精确地”或“相同地”使两个元素重叠,而且涵盖“大体上”、“近似地”或“主观上”使两个元素重叠,以及在多个重叠可能性中提供更高或最好的重叠。
在本说明书中,表达“基于”旨在意指“至少部分地基于”,即,该表达可意指“仅基于”或“部分地基于”,并且不应以限制方式被解释。更具体地,表达“基于”还可被理解为意指“取决于”、“指示了”、“与……相关联”或类似的表达。
在本说明书中,术语“光”和“光学的”及其变型和衍生词用于指电磁波谱的任何合适区段中的辐射。术语“光”和“光学的”因此不局限于可见光,并且还可包括而不限于红外光区段和紫外光区段。例如,在一些实施方式中,本申请的技术可与电磁信号一起使用,该电磁信号具有约400nm至约1700nm例如介于1000nm和1700nm之间的波长。然而,该范围仅为了进行示意性的说明而被提供,并且本申请的技术的一些实施方式可在该范围外进行操作。同时,技术人员将会知道对就光谱范围而言的紫外光、可见光、红外光和近红外光范围以及它们之间的分界线的具体定义可根据所考虑的技术领域或定义而变化,而并不旨在限制本申请的技术的应用范围。
在本说明书中,表达“照明光束光谱”及其同义词或衍生词用于在广义上指照明光束的光谱功率分布。照明光谱可表示为电磁光谱的光谱区段上的每单位面积和每单元波长或频率的辐射功率分布。
本说明书整体涉及红外成像系统、用于临床前成像目的的一种或多种相关联的方法和技术。在本说明书的上下文中,红外成像系统有时可被称为“IRVIVO器械”。值得注意的是,表达“临床前成像”在本文被理解为允许对活体动物(例如,小动物,诸如小鼠、大鼠等)进行可视化和检查的技术。临床前成像技术可具体用于研究目的(例如,药物开发)。
在下文将更详细地进行描述的红外成像系统为基于荧光的成像器械。此类器械通常包括使用激发光以激发样品内的荧光探针的光源,该样品在临床前成像系统的语境中可为小动物。此类器械还包括被配置成检测由这些探针生成的荧光信号的检测器。其他光学部件可被提供在样品和检测器之间,例如并且非限制性地,光学部件诸如是一个或多个成像透镜、一个或多个光谱滤光片、二向色元件(例如,用于将输出信号分离成两个光谱波段,两个光谱波段可由两个不同的相机检测到)、以及其他光学部件。
现在转向附图,红外成像系统和方法的不同实施例将被呈现。
参考图1,其示出了用于对样品22进行成像的红外成像系统20。值得注意的是,样品22可包括一个或个动物。同样地,表达“样品”不限于指仅一个动物并且并非意图为限制性的。在样品22中提供荧光标记(未示出)。例如,并且非限制性地,荧光标记可被注射到被成像的小动物体内。值得注意的是,表达“荧光标记”和“荧光探针”将在整个说明书中互换使用。荧光标记的非限制性示例为量子点(例如,PbS、Ag2S)、有机分子如吲哚菁绿(ICG)和IR800染料分子、单壁碳纳米管、稀土纳米粒子等。
封装壳体和样品架
红外成像系统20包括封装壳体24(有时称为“室”)。封装壳体24包括界定内部体积26的壁,在内部体积26中,可安装红外成像系统20的其他部件中的至少一些。封装壳体24通常包括用于在需要时访问内部体积26(其内容物)的门或抽屉(未在图1中示出),例如,并且非限制性地,用于创建临床前测试并准备样品22。在一些实施例中,整个封装壳体24可为不透光的。在一些实施例中,门或抽屉为不透光的。值得注意的是,封装壳体24可配备有部件,例如并且非限制性地,所述部件诸如是一个或多个麻醉气体歧管、一个或多个气体管道和一个或多个热板,如将在下文更详细描述的。
红外成像系统20还包括样品架28。样品架28定位在封装壳体24中并且具有样品接触表面30。样品接触表面30具有采样平面32。值得注意的是,在一些实施例中,采样平面32可从样品接触表面30垂直偏移与被成像的动物的厚度(或高度)或被成像的动物的厚度(或高度)的一部分对应的距离值。另选地,采样平面32可与样品接触表面30重合或大体上重合。样品22可以被放置到样品接触表面30上以使得采样平面32与样品22或样品22的至少一部分相交。如将在下文更详细描述的,样品架28可沿三个维度例如x轴,y轴和z轴进行平移调整。同样地,采样平面32的位置可被改变或调整。
在一些实施例中,样品接触表面30由涂覆有黑色粉末的钢板制成。在其他实施例中,样品接触表面30可由铝制成。另选地,样品接触表面30可由具有用于临床前测试和相关的医学应用的合适特性的任何类型的材料(例如,经阳极电镀的铝、经加热的玻璃等)制成,只要该材料在红外波段具有低反射和低荧光并且能够利用乙醇溶液或漂白剂相对容易地进行清洗。值得注意的是,形成样品接触表面30的材料可根据化学属性(例如,组分)和/或物理属性(例如,光学属性和磁属性)来选择。
红外成像系统20通常包括存在于典型的临床前器械中的部件。例如,红外成像系统20可通常包括一个或多个麻醉端口。在一些实施例中,红外成像系统20包括三个麻醉端口,这意味着这三个样品22可被放置在样品接触表面30上。将要指出的是,麻醉端口的数量可与三不同,并且红外成像系统20可包括三个麻醉端口这一事实仅用于说明目的,并且因此不应被认为是限制性的。例如,红外成像系统20可包括一个、两个、三个、四个、五个或更多个麻醉端口。类似地,构成样品22的动物的数量也可与三不同。例如,并且非限制性地,样品22可包括一个、两个、三个、四个、五个或更多个动物。在一些实施例中,麻醉端口的数量可等于构成样品22的动物的数量。在其他实施例中,麻醉端口的数量可与构成样品22的动物的数量成比例或至少相关。例如,并且非限制性地,麻醉端口的数量与构成样品22的动物的数量的比率可为1:1、1:2、1:3或允许麻醉端口实现其功能的任何其他比率。就这一点而言,值得注意的是,麻醉端口允许用于麻醉气体的注射和收集,以用于向封装壳体24输入麻醉气体和从封装壳体24输出麻醉气体。麻醉气体通常可用于在对样品22进行成像期间将其保持固定。
红外成像系统20还可包括热板或类似的设备。值得注意的是,热板可将整个内部体积26或其仅一部分(例如,样品接触表面30)维持在给定温度。热板通常可用于将样品22维持在给定温度。事实上,通常就小动物或哺乳动物而言,在麻醉状态下,它们的平均体温趋于下降。热板可因此减轻该结果。红外成像系统20还可包括被安装到样品架28或安装到样品架28上的阻隔件或栏架。这个特征在样品22(例如,小动物)在麻醉状态下时或在麻醉过程中出现失败时醒来的罕见场合中可特别有用。
样品架28的尺寸和几何构型可改变。然而,样品架28的尺寸优选为使得样品架28大体上适配成像系统20的视场,如将在下文更详细描述的。在实施方式的一个示例中,视场具有以下尺寸:约15.6cm×约12.5cm。
在一些实施例中,样品架28可包括下平台和上平台。下平台可跨越封装壳体24的整个底板(即,宽度和深度)。上平台可较小并且可具有以下尺寸:300mm×250mm。上平台可安装到下平台。在一些实施例中,上平台可通过二维平移台机械地连接到下平台。在当前描述的语境中,二维平移台被配置成沿X轴和Y轴对上平台的表面进行平移以将样品22向一侧移动、沿这两个轴平移并相对于相机的视场平移。
光源
红外成像系统20包括被配置成照亮样品接触表面30的光源34。光源34包括第一照明模块36和第二照明模块38。第一照明模块36和第二照明模块38各自被配置成朝向样品架30投射相对应的第一红外照明光束40和第二红外照明光束42。第一照明模块36和第二照明模块38可各自生成相对高功率的红外照明光束。必须指出的是,第一照明模块36和第二照明模块38可各自包括一个或多个激光二极管,每个激光二极管与相应的光学特性(例如,强度和/或光谱分布)相关联。相对高的功率可用于生成足够强从而能被检测到的荧光信号(约0.05mW/mm2至约3mW/mm2)。必须指出的是,相比于在电磁光谱的可见光部分中使用的荧光标记,在电磁光谱的NIR-II部分中使用的荧光标记通常具有相对低的效率。必须指出的是,相比于被配置成在电磁光谱的可光见部分中操作的检测器,被配置成在电磁光谱的NIR-II部分中操作的检测器通常敏感程度较低。必须指出的是,由第一照明模块36和第二照明模块38发射的第一红外照明光束40和第二红外照明光束42的波长可被选择和改变。所述选择可为手动的(例如,由用户选择)或自动的(例如,每个模块36、38可顺序地和/或自动地选择红外照明波长)。该特征对于激发不同性质的荧光标记是有用的。将要指出的是,不同波长的照明通常是顺序执行的,而不是同时执行的。可使用的波长的非限制性示例为750nm、808nm、860nm和980nm。
第一红外照明光束40和第二红外照明光束42在成像平面44处相互作用,以形成照明区域46。成像平面44沿X轴和Y轴延伸。照明区域46具有矩形形状且具有均匀的功率分布(有时被称为“照明分布”或“功率密度分布”),并且也沿X轴和Y轴延伸。照明区域中的功率或照明密度代表了第一红外照明光束40和第二红外照明光束42的累积功率。在一些实施例中,对于约20W的总功率,功率或照明密度为约1mW/mm2。这些值相对地接近于但低于针对活体组织的功率或照明密度的极限值(约3mW/mm2)。本领域技术人员将注意到,现有的使用可见管的临床前成像器中的照明通常由卤素白灯提供。这些灯通常与滤光片(例如,滤光轮)光学耦接,以用于对激发光的过滤。现有的使用可见光的临床前成像器还可使用LED光源和/或激光光源。在这些情况下,相比于使用包括在本文描述的技术中的第一照明模块36和第二照明模块38而能够获得的照明密度,现有的成像器的照明密度较小。事实上,利用在本申请的公开内容中呈现的技术所能实现的照明密度比依赖于卤素设备和LED设备的现有技术所能实现的照明密度高出一个数量级。
由包括在第一照明模块36和第二照明模块38中的每个激光二极管生成的光经由包括在第一照明模块36和第二照明模块38中的光学部件而在光学上被结构化。这允许在样品22上形成具有大体上均匀的矩形形状的照明区域46。将要指出的是,照明区域46通常具有与红外成像系统20的视场相同的尺寸。本领域技术人员将理解的是,均匀照明为重要的,以确保样品22的每一部分接收到相同的照明密度。例如,在其中三个小鼠被成像并被放置在视场中的情况中,它们必须利用相同的功率密度进行照明,从而使得成像结果可相互比较。还有利的是,将照明区域46限制到红外成像系统20的视场中,以避免浪费激光功率。事实上,如果太多的激光功率散失,则将需要更多的高功率的激光器,这将增加系统的成本,还增加了对第一照明模块36和第二照明模块38的热管理的复杂度。此外,本领域技术人员将注意到,只投射了第一红外照明光束40和第二红外照明光束42的一部分将会导致增加红外成像系统20中的可由检测器检测到的不必要的杂散光,并且因而将会减小红外成像系统20的总体敏感度。
现在转向图2,第一照明模块36和第二照明模块38使用科勒
Figure BDA0003713435970000131
积分器的设计对由激光二极管发射的光进行结构化。在图2中,仅第一照明模块36被示出,并且将容易理解的是,该描述还适用于第二照明模块38。科勒
Figure BDA0003713435970000132
积分器的设计在本领域中是已知的,其使用的元件包括准直透镜48、第一蝇眼透镜50、第二蝇眼透镜52、投射透镜54和折叠反射镜55。这些元件限定其间的光学路径,该光学路径沿光轴56延伸。在一些实施例中,投射透镜54可被其它光学组件(未在图中示出)代替。所述其它光学组件可包括多个光学元件。此类光学元件包括但不限于透镜、反射镜、滤光片和其他合适的反射、折射和/或衍射光学部件。
在例示的实施方案中,第一照明模块36和第二照明模块38被定位以从样品22上方投射光(即,第一红外照明光束40和第二红外照明光束42)。现在重新参见图1,可以看到,第一照明模块36和第二照明模块38位于检测器58的两侧上。在一些实施例中,第一照明模块36和第二照明模块38对称设置在检测器58的两侧上。然而,将理解的是,在不脱离要求保护的范围的情况下,第一照明模块36和第二照明模块38可相对于检测器设置在其他位置处,和/或可相对于检测器非对称地布置。
第一照明模块36和第二照明模块38并且因此第一红外照明光束40和第二红外照明光束42大体上不平行于Z轴,而是相对于Z轴形成小角度。在样品22包括多个动物(即,两个或更多个动物)时,必须指出的是,为了防止动物之间互相投下阴影,第一照明光束和第二照明光束与Z轴之间的角度被保持为尽可能小。
如将在下文更详细描述的,第一照明模块36和第二照明模块38可旋转,这允许例如当样品架28向上和/或向下移动时将第一红外照明光束40和第二红外照明光束42投射在红外成像系统20的视场的中心处或其附近。第一照明模块36和第二照明模块38的旋转允许保持照明区域46中的均匀照明。
电机组件
图5示出了被包括在红外成像系统20中的部件中的一些部件之间的可操作连接的框图。红外成像系统20包括被配置成将样品架移动至封装壳体24内的多个位置的电机组件60。电机组件60可包括一个或多个电机。电机可为任何类型或设计。
在一些实施例中,样品架28可由电机组件60沿两个轴(例如,X轴和Y轴)移动或平移。电机组件60可被配置成在X轴和Y轴方向上顺序地或同时平移样品架28。例如,样品架28可以顺序地先在平行于X轴的方向上平移,然后在平行于Y轴的方向上平移,或者反之亦然。另选地,样品架28可被配置成沿X轴和Y轴同时可调。将要指出的是,电机组件60可沿每个轴监视或记录样品架28的位移。所监视或记录的信息被包括在校准数据中。
在一些实施例中,电机组件60可包括两个电机,这两个电机中的每个电机被配置成沿相应方向(例如,X轴或Y轴)移动样品架28。
样品架28还可在Z轴方向上移动或平移。一旦样品架28已在封装壳体24中在X轴和Y轴方向上对准或定位,便大体上进行样品架28的上述在Z轴方向上的位移。样品架28沿这个方向的移动可由一个或多个电机提供。
将理解的是,利用电机组件60移动样品架28允许从“广域视场模式”进入“靠近视场模式”。当样品22包括多个动物时,这两种视场模式之间的切换可以是有用的。例如,并且非限制性地,电机组件60可允许从涵盖样品22的所有动物的第一视场进入涵盖形成样品22或形成样品22的一部分的仅一个动物的第二视场。在一些实施例中,视场可被调整,以对形成样品22的动物中的每个动物的一部分同时成像,这在对各个动物的特定部分的进行特性比较的情况中可以是有用的。
在一些实施例中,电机组件60为手动的。在这些实施例中,平移样品架28包括两个步骤。在第一步骤中,释放防止上平台滑动的弹簧加载的常开制动闸。其可通过按压按钮而被暂时释放,或通过按压并锁定相同的按钮而被半永久地释放。一旦制动闸被释放,上平台便可被相对平滑地(例如,沿X轴)“从一侧向另一侧”以及(例如,沿Y轴)“向前和向后”推动。在其他实施例中,电机组件60为自动的。
光机械机构
参考图5,红外成像系统20包括光机械机构62,该光机械机构62被配置成对第一红外照明光束40和第二红外照明光束42进行取向调整,以在封装壳体24内移动照明区域46。对第一红外照明光束40和第二红外照明光束42进行取向调整通常包括改变第一照明模块36和第二照明模块38的空间构型(通过旋转、平移或其组合)。更具体地,由与电机组件60相结合的光机械机构62进行的对第一红外照明光束40和第二红外照明光束42的取向的调整可用于控制照明区域46的尺寸。
在一些实施例中,并且现参考图2,对第一照明模块36和第二照明模块38进行取向调整包括围绕光轴56旋转第一照明模块36和第二照明模块38。第一照明模块36和第二照明模块38从初始位置朝向后续位置的旋转导致第一红外照明光束40和第二红外照明光束42的相互作用平面从第一成像平面(与模块36、38的初始位置相关联)移动到后续成像平面(与模块36、38的后续位置相关联),从而形成后续照明区域,该后续照明区域也具有大体矩形形状且功率分布均匀,如参考图4将更详细描述的。值得注意的是,第一成像平面和后续成像平面通常不位于沿Z轴的相同位置处。例如,后续成像平面通常高于或低于第一成像平面。同样地,第一照明模块36和第二照明模块38的取向调整导致封装壳体24内的成像平面44的位置的改变(例如,沿Z轴)。在其他实施例中,可以仅对折叠反射镜55进行旋转。值得注意的是,除了对其进行取向调整之外,第一红外照明光束40和第二红外照明光束42的功率也可被更改(即,修改或改变)。对第一红外照明光束40和第二红外照明光束42的取向进行更改或调整以在封装壳体内移动照明区域46的操作通常被称为“照明调制”。
必须指出的是,第一照明模块36和第二照明模块38大体上被校准。校准数据包括但不限于第一照明模块36和第二照明模块38的多个取向与第一红外照明光束40和第二红外照明光束42的相应光学属性之间的映射。同样地,一旦封装壳体24中的样品架28位置已知,便能够确定要实现的第一照明模块36和第二照明模块38的取向,这是因为这一映射信息被包含在校准数据中,或基于校准数据可被计算出来,例如,采用内插法、外推法和其他方法进行计算。内插法可采用线性的、多项式的(Lagrange、Newton等等)、曲线的拟合等。在一个示例中,校准步骤用于维持封装壳体24内的任何位置处的约1mW/mm2至约3mW/mm2的相对恒定的功率密度,即使样品架28和检测器58之间的距离发生变化。更具体地,第一红外照明光束40和第二红外照明光束42的取向的改变允许至少部分地、近似地或实质上在封装壳体24内的任何位置处保持矩形和均匀的功率分布。在一些实施例中,校准数据还可包括关于需要提供或生成的照明功率的信息,以便于保持功率密度恒定或达到期望值。注意,功率密度大体上随样品架28的升高而增加,即,随样品架28与第一照明模块36和第二照明模块38之间距离的减小而增加。矩形和均匀的照明区域随样品架28升高而变小。在一些实施例中,第一红外照明光束40和第二红外照明光束42的功率密度可被控制,以维持照明区域的相对恒定的功率密度。在一些实施例中,当平台升高时,第一照明模块36和第二照明模块38的功率密度可为恒定的,这将允许增加照明区域的照明功率密度。
控制单元
如在图5中示出的,红外成像系统20包括控制单元64。控制单元64可操作地连接到电机组件60和光机械机构62。控制单元64被配置成在封装壳体24内的多个位置中的任一位置处使得采样平面32和成像平面44相互重叠。在采样平面32和成像平面44相互重叠时,这两个平面大体上位于沿Z轴的相同位置处。值得注意的是,当采样平面32从样品接触表面30垂直偏移时,例如在需要留出距离以容纳样品22的厚度(或其一部分的厚度)时,控制单元64可被配置成根据这一垂直偏移来定位采样平面32和成像平面44。在一些实施例中,垂直偏移的值可由红外成像系统20自动确定。在其他实施例中,垂直偏移的值可由用户提供,例如手动提供。在又一个实施例中,垂直偏移的值可从数据库获得。此类数据库可以,例如并且非限制性地,将形成样品22的一个或多个动物的厚度的平均值与样品架28在封装壳体24内的相应位置关联起来。
例如,并且非限制性地,控制单元64可由可编程计算机来实施,可编程计算机包括至少一个处理器、数据存储系统(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备和至少一个输出设备。在一些实施例中,可编程计算机可执行允许其控制电机组件60和光机械机构62的计算机程序。控制单元64被配置成保持追踪、监视或记录样品架28在封装壳体24内的位置。更具体地,控制单元64接收样品架28在封装壳体24内的位置作为输入,并且,基于校准数据,输出用于发送到第一照明模块36和第二照明模块38的信号。
现参考图4,示出了其中样品架28开始处于初始位置或第一位置(此图的左部)并且然后移动到后续位置或第二位置(此图的右部)的示例。
在初始位置中,样品架28被定位成使得检测器58和样品架28之间的距离为约400mm(在Z轴方向上)。同样地,采样平面32与检测器58相距约400mm。在初始位置中,第一照明模块36和第二照明模块38的取向被调整为使得照明区域46覆盖样品22,而且成像平面44和采样平面32相互重叠。
在后续位置中,样品架28被定位成使得检测器58和样品架28之间的距离为约200mm(在Z轴方向上),这意味着样品架28已被带到更靠近检测器58的位置。同样地,采样平面32’与检测器58相距约200mm。在后续位置中,相比于初始位置,第一照明模块36和第二照明模块38的取向被改变。将要指出的是,在图4的非限制性实施例中示出的后续位置中,第一照明模块36和第二照明模块38的取向被调整为使得照明区域46’覆盖样品22,而且成像平面44’和采样平面32相互重叠。
必须指出的是,照明区域46的形状和尺寸可在第一照明模块36和第二照明模块38的取向改变和/或样品架28在封装壳体24内的位置改变时也发生改变。
检测器
如上所述,红外成像系统20包括检测器58,例如参见图1和图3。检测器58被配置成,当采样平面32与成像平面44相互重叠时,接收样品22在成像平面44中被第一红外照明光束40和第二红外照明光束42照明时由样品22的荧光标记发射的光。在所描绘的实施例中,检测器58包括InGaAs相机。此类相机允许对源自样品22内的荧光进行相对精确的定位,从而为生物学家带来宝贵的信息。
如在图3中更好地示出的,检测器58包括由滤光轮70分隔开的两个光路装置66、68。检测器58还包括传感器72。
第一光路装置66收集从样品22发出的光并且对光进行大致的准直。所得到的光然后穿过双滤光轮70。滤光轮70大体上包括多个滤光片。在一些实施例中,滤光轮70包括带通滤光片和边通滤光片。在一些实施例中,第一光路装置66可包括一个或多个检测透镜和/或任何其他光学元件。例如,在一个实施例中,第一光路装置66可包括两个透镜。第二光路装置68在传感器72上形成样品22的图像。在一些实施例中,第二光路装置68可包括一个或多个透镜和/或任何其他光学元件。在一些实施例中,检测器58设置机动化聚焦机构74。机动化聚焦机构74被定位在第二光路装置68与传感器72之间,并且能够改变第二光路装置68与传感器72两者之间的距离以调整焦距。
被包括在滤光轮70中的滤光片典型地是介质干涉滤光片,其透射波长与角度有关。在一些实施例中,第一光路装置66的光学设计使得传送穿过滤光轮70的光尽可能接近于法向入射(即,平行于Z轴)。来自样品22上的不同视点的光以不同角度冲击滤光片。同样地,优化第一光路装置66的光学设计以允许穿过滤光片的光接近于法向入射能够确保针对视场中的每个点所检测到波长彼此很接近。
还要注意的是,将滤光轮70定位在两个光路装置66、68之间还防止杂散光在远离法线角的角度冲击滤光片,这将导致不想要的光没有被滤光片阻挡从而在传感器72上形成的图像中产生不期望的伪影。
结合电机组件60和光机械机构62的操作,改变工作距离(即,样品22和传感器72之间的距离)并且调整红外成像系统20的焦距(例如,采用所述机动化聚焦机构)能够允许对从尺寸为约156mm×约125mm的区域(即照明区域46)到尺寸为约50mm×约40mm的区域(即照明区域46)的各种区域进行成像,这意味着检测器58的视场可被控制。在第一构型中,多至三个小鼠(或其他类似的样品22)可被成像。在第二构型中,单个小鼠(或类似的样品22)的身体的大约三分之一可在50mm×40mm的区域中(在Z轴距离为200mm处)被成像。
照明调制、X-Y平移和视场(FOV)调整的组合允许红外成像系统在156mm×125mm×50mm的三维空间中的任意位置捕获样本22的图像,其中在视场为大约50mm×40mm时,空间采样率为每个像素80μm。
方法
根据实施例,还提供了一种对具有荧光标记的样品进行成像的方法。
该方法可包括在样品架上提供样品的步骤,样品架具有样品接触表面和采样平面。
该方法可包括利用第一照明模块和第二照明模块生成射向样品的第一红外照明光束和第二红外照明光束的步骤,第一红外照明光束和第二红外照明光束在成像平面处相互作用,以形成具有矩形形状且功率分布均匀的照明区域。
该方法可包括将样品架移动至封装壳体内的多个位置的步骤。
该方法可包括对第一红外照明光束和第二红外照明光束进行取向调整,以在封装壳体内移动照明区域的步骤。
该方法可包括在封装壳体内的多个位置中的任一位置处使得采样平面和成像平面相互重叠的步骤。
该方法可包括当采样平面与成像平面相互重叠时,收集样品在成像平面中被照明光束的光照明时由样品的荧光标记发射的光的步骤。
在一些实施例中,该方法还包括从样品接触表面垂直偏移采样平面。
在一些实施例中,采样平面从样品接触表面垂直偏移与样品的厚度或样品的一部分的厚度相对应的距离值。
在一些实施例中,采样平面与样品接触表面重合。
在一些实施例中,该方法还包括对样品架进行加热。
在一些实施例中,第一红外照明光束和第二红外照明光束具有约750nm、约808nm或约980nm的波长。
在一些实施例中,该方法还包括利用科勒
Figure BDA0003713435970000221
积分器对第一红外照明光束和第二红外照明光束中的每一个进行调制。
在一些实施例中,该方法还包括基于校准数据对第一照明模块和第二照明模块进行校准,校准数据将第一照明模块和第二照明模块的多个取向映射至第一红外光束和第二红外光束的对应的多个照明功率密度,并映射至样品架在封装壳体内的对应的多个位置。
在一些实施例中,该方法还包括利用第一光路装置对由荧光标记发射的光进行收集和准直以及利用第二光路装置在传感器上形成所述样品的图像。
一些另选的实施例和示例在本文已被描述和示出。上文所述的实施例旨在仅为示例性的。本领域的技术人员将领会各个单独的实施例的特征以及各成分的可能的组合和变型。本领域的技术人员还将理解,任一实施例可以与本文公开的其他实施例进行任意组合。因此,本申请的示例和实施例可在所有方面可被认为是示例性的,而非限制性的。因此,尽管具体实施例已被示出和描述,但是在没有显著脱离所附权利要求书中定义的范围的情况下能够想到多种变型实施方式。

Claims (28)

1.一种红外成像系统,用于对具有荧光标记的样品进行成像,所述红外成像系统包括:
封装壳体;
样品架,安装在所述封装壳体中,所述样品架具有样品接触表面和采样平面;
光源,被配置成照亮所述样品接触表面,所述光源包括第一照明模块和第二照明模块,所述第一照明模块和所述第二照明模块各自被配置成朝向所述样品架投射相应的第一红外照明光束和第二红外照明光束,所述第一红外照明光束和所述第二红外照明光束在成像平面处相互作用,以形成具有矩形形状且功率分布均匀的照明区域;
电机组件,被配置成将所述样品架移动至所述封装壳体内的多个位置;
光机械机构,被配置成对所述第一红外照明光束和所述第二红外照明光束进行取向调整,以在所述封装壳体内移动所述照明区域;
控制单元,可操作地连接到所述电机组件和所述光机械机构,所述控制单元被配置成在所述封装壳体内的所述多个位置中的任一位置处使得所述采样平面和所述成像平面相互重叠;以及
检测器,被配置成,当所述采样平面与所述成像平面相互重叠时,接收所述样品在所述成像平面中被照明时由所述样品的所述荧光标记发射的光。
2.根据权利要求1所述的红外成像系统,其中所述封装壳体定义内部体积,所述封装壳体还包括用于存取所述内部体积的内容物的门或抽屉。
3.根据权利要求1或2所述的红外成像系统,其中所述采样平面从所述样品接触表面垂直偏移。
4.根据权利要求3所述的红外成像系统,其中所述采样平面从所述样品接触表面垂直偏移与所述样品的厚度或所述样品的一部分的厚度相对应的距离值。
5.根据权利要求1或2所述的红外成像系统,其中所述采样平面与所述样品接触表面重合。
6.根据权利要求1至5中任一项所述的红外成像系统,其中所述样品接触表面由黑色粉末涂覆的钢板制成。
7.根据权利要求1至6中任一项所述的红外成像系统,还包括一个或多个麻醉端口,所述一个或多个麻醉端口被配置成用于向所述封装壳体中注射麻醉气体以及用于从所述封装壳体收集所述麻醉气体。
8.根据权利要求1至7中任一项所述的红外成像系统,还包括加热元件,所述加热元件与所述样品架热接触。
9.根据权利要求1至8中任一项所述的红外成像系统,还包括安装到所述样品架的阻隔件,所述阻隔件从所述采样平面向上突出。
10.根据权利要求1至9中任一项所述的红外成像系统,其中所述第一照明模块和所述第二照明模块中的每一个包括一个或多个激光二极管。
11.根据权利要求1至10中任一项所述的红外成像系统,其中所述第一红外照明光束和所述第二红外照明光束具有约750nm、约808nm或约980nm的波长。
12.根据权利要求1至11中任一项所述的红外成像系统,其中所述照明区域具有从约1mW/mm2至约3mW/mm2的范围内的照明功率密度。
13.根据权利要求1至12中任一项所述的红外成像系统,其中所述第一照明模块和所述第二照明模块中的每一个包括科勒
Figure FDA0003713435960000021
积分器。
14.根据权利要求1至13中任一项所述的红外成像系统,其中所述第一照明模块和所述第二照明模块对称设置在所述检测器的两侧。
15.根据权利要求1至14中任一项所述的红外成像系统,其中所述第一照明模块和所述第二照明模块基于校准数据被校准,所述校准数据将所述第一照明模块和所述第二照明模块的多个取向映射至所述第一红外照明光束和所述第二红外照明光束的对应的多个照明功率密度,并映射至所述样品架在所述封装壳体内的对应的多个位置。
16.根据权利要求1至15中任一项所述的红外成像系统,其中所述检测器包括InGaAs相机。
17.根据权利要求1至16中任一项所述的红外成像系统,其中所述检测器包括:
传感器;
第一光路装置,被配置成对由所述荧光标记发射的光进行收集和准直;以及
第二光路装置,被配置成在所述传感器上形成所述样品的图像。
18.根据权利要求17所述的红外成像系统,还包括连接到所述检测器的机动化聚焦机构,所述机动化聚焦机构被配置成使所述第一光路装置和所述第二光路装置之间的距离变化。
19.根据权利要求17或18所述的红外成像系统,还包括被定位在第一光路装置和所述第二光路装置之间的滤光轮,所述滤光轮包括多个滤光片。
20.一种对具有荧光标记的样品进行成像的方法,所述方法包括:
在样品架上提供样品,所述样品架具有样品接触表面和采样平面;
利用第一照明模块和所述第二照明模块生成射向所述样品的第一红外照明光束和所述第二红外照明光束,所述第一红外照明光束和所述第二红外照明光束在成像平面处相互作用,以形成具有矩形形状且功率分布均匀的照明区域;
将所述样品架移动至所述封装壳体内的多个位置;
对所述第一红外照明光束和所述第二红外照明光束进行取向调整,以在所述封装壳体内移动所述照明区域;
在所述封装壳体内的所述多个位置中的任一位置处使得所述采样平面和所述成像平面相互重叠;以及
当所述采样平面与所述成像平面相互重叠时,收集所述样品在所述成像平面中被照明光束的光照明时由所述样品的所述荧光标记发射的光。
21.根据权利要求20所述的方法,还包括使得所述采样平面从所述样品接触表面垂直偏移。
22.根据权利要求21所述的方法,其中所述采样平面从所述样品接触表面垂直偏移与所述样品的厚度或所述样品的一部分的厚度相对应的距离值。
23.根据权利要求20所述的方法,其中所述采样平面与所述样品接触表面重合。
24.根据权利要求20至23中任一项所述的方法,还包括对所述样品架进行加热。
25.根据权利要求20至24中任一项所述的方法,其中所述第一红外照明光束和所述第二红外照明光束具有约750nm、约808nm或约980nm的波长。
26.根据权利要求20至25中任一项所述的方法,还包括利用科勒
Figure FDA0003713435960000041
积分器对所述第一红外照明光束和所述第二红外照明光束中的每一个进行调制。
27.根据权利要求20至26中任一项所述的方法,还包括基于校准数据对所述第一照明模块和所述第二照明模块进行校准,所述校准数据将所述第一照明模块和所述第二照明模块的多个取向映射至所述第一红外光束和所述第二红外光束的对应的多个照明功率密度,并映射至所述样品架在所述封装壳体内的对应的多个位置。
28.根据权利要求20至27中任一项所述的方法,还包括:
利用第一光路装置对由所述荧光标记发射的光进行收集和准直;
利用第二光路装置在传感器上形成所述样品的图像。
CN202080090429.8A 2019-11-21 2020-11-20 红外成像系统及相关的方法 Pending CN114930155A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962938589P 2019-11-21 2019-11-21
CA3062471A CA3062471A1 (en) 2019-11-21 2019-11-21 Infrared imaging system and related method
CA3,062,471 2019-11-21
US62/938,589 2019-11-21
PCT/CA2020/051584 WO2021097577A1 (en) 2019-11-21 2020-11-20 Infrared imaging system and related method

Publications (1)

Publication Number Publication Date
CN114930155A true CN114930155A (zh) 2022-08-19

Family

ID=75967115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080090429.8A Pending CN114930155A (zh) 2019-11-21 2020-11-20 红外成像系统及相关的方法

Country Status (6)

Country Link
US (1) US20220412888A1 (zh)
EP (1) EP4062155A4 (zh)
JP (1) JP2023502482A (zh)
CN (1) CN114930155A (zh)
CA (1) CA3062471A1 (zh)
WO (1) WO2021097577A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6775567B2 (en) * 2000-02-25 2004-08-10 Xenogen Corporation Imaging apparatus
US7361472B2 (en) * 2001-02-23 2008-04-22 Invitrogen Corporation Methods for providing extended dynamic range in analyte assays
US7298415B2 (en) * 2001-07-13 2007-11-20 Xenogen Corporation Structured light imaging apparatus
US7629573B2 (en) * 2002-02-06 2009-12-08 Xenogen Corporation Tissue phantom calibration device for low level light imaging systems
US7474399B2 (en) * 2002-02-22 2009-01-06 Xenogen Corporation Dual illumination system for an imaging apparatus and method
US7570359B2 (en) * 2004-02-09 2009-08-04 John S. Fox Illuminating and panoramically viewing a macroscopically-sized specimen along a single viewing axis at a single time
US7499166B2 (en) * 2004-05-20 2009-03-03 The Regents Of The University Of California Wide field imager for quantitative analysis of microarrays
US8041409B2 (en) * 2005-09-08 2011-10-18 Carestream Health, Inc. Method and apparatus for multi-modal imaging
CA2738317C (en) * 2008-09-24 2020-01-14 Straus Holdings Inc. Imaging analyzer for testing analytes
GB0901040D0 (en) * 2009-01-22 2009-03-11 Renishaw Plc Optical measuring method and system
US9830501B2 (en) * 2013-07-23 2017-11-28 Northwestern University High throughput partial wave spectroscopic microscopy and associated systems and methods
JP6743137B2 (ja) * 2015-11-13 2020-08-19 ノバダック テクノロジーズ ユーエルシー ターゲットの照明およびイメージングのためのシステムおよび方法
US10408675B2 (en) * 2017-02-15 2019-09-10 Marqmetrix, Inc. Enclosed benchtop Raman spectrometry device

Also Published As

Publication number Publication date
CA3062471A1 (en) 2021-05-21
WO2021097577A1 (en) 2021-05-27
EP4062155A4 (en) 2023-12-27
US20220412888A1 (en) 2022-12-29
JP2023502482A (ja) 2023-01-24
EP4062155A1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
US7474399B2 (en) Dual illumination system for an imaging apparatus and method
US11806111B2 (en) Systems and methods for in-vivo optical imaging and measurement
JP4887989B2 (ja) 光学顕微鏡及びスペクトル測定方法
ES2617664T3 (es) Procedimiento de enfoque automático y dispositivo de enfoque automático
US7474398B2 (en) Illumination system for an imaging apparatus with low profile output device
JP2019500612A (ja) コンパクトスペクトロメータ
JP2004264312A (ja) 多パラメータスキャナー
JP2014115151A (ja) 光イメージング装置
JP6005641B2 (ja) 薬剤検出装置及び薬剤検出方法
US11392016B2 (en) System and methods of fluorescence microscope calibration
JP2008139062A (ja) 分光測定装置よび分光測定方法
CN114930155A (zh) 红外成像系统及相关的方法
US11486828B2 (en) Fluorescence photometer and observation method
EP2021774B1 (en) A system comprising a dual illumination system and an imaging apparatus and method using said system
KR101709398B1 (ko) 의료용 복합 이미징 시스템
CN108267298A (zh) Cmos图像传感器光谱响应空间辐射损伤的测试设备及其方法
JP2009053006A (ja) 蛍光検出装置、及び蛍光検出装置制御システム
ES2973455T3 (es) Sistemas y métodos de microscopia para el microanálisis de vestigios
CN106770392A (zh) 一种近边x射线吸收谱仪
JP6617978B2 (ja) 光イメージング装置
Fry Sensitivity and accuracy limits of molecular imaging in fluorescence guided surgery
US20130020505A1 (en) System And Method For Evaluating Material In Rotary Motion
KR20190048617A (ko) 모유 분석 장치
Bagchi An Experimental Evaluation of Radiation Transport Through Scattering Media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination