CN114927569A - 具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件 - Google Patents

具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件 Download PDF

Info

Publication number
CN114927569A
CN114927569A CN202210553866.XA CN202210553866A CN114927569A CN 114927569 A CN114927569 A CN 114927569A CN 202210553866 A CN202210553866 A CN 202210553866A CN 114927569 A CN114927569 A CN 114927569A
Authority
CN
China
Prior art keywords
region
oxide layer
contact
injection region
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210553866.XA
Other languages
English (en)
Other versions
CN114927569B (zh
Inventor
黄义
王学成
王礼祥
王�琦
陈伟中
严文生
张楠
张红升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN202210553866.XA priority Critical patent/CN114927569B/zh
Publication of CN114927569A publication Critical patent/CN114927569A/zh
Application granted granted Critical
Publication of CN114927569B publication Critical patent/CN114927569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

本发明涉及一种具有双沟槽的4H‑SiC横向绝缘栅双极型晶体管器件,属于功率半导体器件技术领域。该器件包括沟槽氧化层、N‑drift区、轻掺杂P‑epi层、重掺杂P+epi层、N型4H‑SiC衬底、P‑base区、N+注入区、P+注入区Ⅰ、P+注入区Ⅱ、N‑buffer区、金属衬底电极、金属集电极、金属发射极、栅极氧化层和多晶硅沟槽栅。本发明基于高可靠性的N型4H‑SiC衬底,深入漂移区的氧化层沟槽在器件正向阻断时辅助耗尽漂移区、同时减小了发射极和集电极之间的寄生电容;延伸到P‑epi层的沟槽栅结构提高了器件的栅氧可靠性,并且与其他器件隔离,简化了制造工艺。

Description

具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件
技术领域
本发明属于功率半导体器件技术领域,涉及一种具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件。
背景技术
SiC(碳化硅)是一种由硅(Si)和碳(C)构成的化合物半导体材料,作为典型的宽禁带半导体材料,SiC的禁带宽度是Si材料的3倍左右,临界击穿电场大约是Si的10倍,而且有着晶体结构稳定,熔点高,热导率高等优点;根据Si/C双原子层堆垛顺序将SiC材料进行划分,其有近两百种不同的结晶结构,对比其它的同质异形体,其中SiC原子密排层数为4的六方晶系结构(4H-SiC)各项性能更优异,作为硅的替代品在电力电子领域中具有广阔的应用前景。
随着SiC功率器件的采用,功率损耗被发现在一个全SiC功率模块中比其全Si模块减少了60%。通常,分立的SiC功率器件是由Si制造的栅极驱动器驱动的,为了最小化驱动环路中的寄生参数,利用它们在高频应用中的巨大潜力,栅极驱动器必须放置在离分立功率器件尽可能近的地方。在这种情况下,栅极驱动集成电路将经历与功率器件几乎相同的温度,并将受到Si的温度极限的限制。理想的情况是将驱动电路和功率器件以类似于Si和GaN中的电源管理IC的方式集成在同一个芯片上。因此研究各式各样的SiC基横向器件,在高压功率集成电路领域十分具有潜力。
发明内容
有鉴于此,本发明的目的在于提供一种具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件,提高器件的击穿电压,提高开关速度并降低关断能量损失,减小器件的尺寸。
为达到上述目的,本发明提供如下技术方案:
一种具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件,包括沟槽氧化层1、N-drift区2、轻掺杂P-epi层3、重掺杂P+epi层4、N型4H-SiC衬底5、P-base区6、N+注入区7、P+注入区Ⅰ8、P+注入区Ⅱ10、N-buffer区9、金属衬底电极11、金属集电极12、金属发射极13、栅极氧化层14和多晶硅沟槽栅15;
所述沟槽氧化层1位于金属集电极12和金属发射极13之间,下方深入N-drift区2,其左侧与P-base区6右侧和P+注入区Ⅰ8右侧接触,右侧与N-buffer区9被N-drift区2隔开;
所述N-drift区2位于沟槽氧化层1下表面,与栅极氧化层14右侧下部、P-base区6下表面和N-buffer区9左下表面接触,N-drift区2下表面与轻掺杂P-epi层3接触;
所述轻掺杂P-epi层3分别位于N-drift区2的下表面与重掺杂P+epi层4的上表面;
所述重掺杂P+epi层4分别位于轻掺杂P-epi层3的下表面与N型4H-SiC衬底5的上表面;
所述N型4H-SiC衬底5分别位于重掺杂P+epi层4的下表面与(N型)金属衬底电极11的上表面;
所述P-base区6位于N-drift区2的上表面,同时P-base区6上表面与N+注入区7下表面和P+注入区Ⅰ8下表面接触,P-base区6的左右侧面分别与栅极氧化层14右侧中部和沟槽氧化层1左侧中下部接触;
所述N+注入区7下侧与P-base区6接触,其右侧与P+注入区Ⅰ8左侧接触,其上侧与金属发射极13下侧左半部分接触,其左侧与栅极氧化层14右侧部分接触;
所述P+注入区Ⅰ8右侧与沟槽氧化层1左侧部分接触,其下侧与P-base区6上侧右半部分接触,其左侧与N+注入区7右侧接触,其上侧与金属发射极13下侧右半部分接触;
所述N-buffer区9与N-drift区2和P+注入区Ⅱ10接触,切位于中间位置,三者上表面齐平与沟槽氧化层1接触;
所述P+注入区Ⅱ10下表面和左侧与N-buffer区9接触,其上表面分别与沟槽氧化层1和金属集电极12下表面接触;
所述金属衬底电极11位于N型4H-SiC衬底5的下表面;
所述金属集电极12位于P+注入区Ⅱ10的上表面,左侧与沟槽氧化层1接触;
所述金属发射极13位于N+注入区7和P+注入区Ⅰ8的上表面,其左侧与栅极氧化层14接触,其右侧与沟槽氧化层1接触;
所述栅极氧化层14位于轻掺杂P-epi层3上方,其左侧与多晶硅沟槽栅15接触,右侧分别于与N-drift区2、P-base区6和N+注入区7接触;
所述多晶硅沟槽栅15镶嵌于栅极氧化层14内部。
可选的,所述N-drift区2、N型4H-SiC衬底5、N+注入区7和N-buffer区9掺入N型杂质具体为:所述N-drift区2掺入N型杂质浓度为2×1016cm-3,N型4H-SiC衬底5掺入N型杂质浓度为1×1013cm-3,N+注入区7掺入N型杂质浓度为1×1017cm-3,N-buffer区9掺入N型杂质浓度为4×1017cm-3
可选的,所述轻掺杂P-epi层3、重掺杂P+epi层4、重掺杂P+epi层4掺、P+注入区Ⅰ8和P+注入区Ⅱ10掺入P型杂质。具体为:轻掺杂P-epi层3掺入P型杂质浓度为5×1015cm-3,重掺杂P+epi层4掺入P型杂质浓度为2×1017cm-3,P-base区6掺入P型杂质浓度为1×1017cm-3,P+注入区Ⅰ8掺入P型杂质浓度为3×1019cm-3,P+注入区Ⅱ10掺入P型杂质浓度为1×1019cm-3
可选的,所述金属衬底电极11、金属集电极12和金属发射极13的材料为Al、Au或Pt。
可选的,所述栅极氧化层14采用SiO2、SiN、Al2O3、AlN、MgO、Ga2O3、AlHfOx及HfSiON中的一种或者几种的组合。
本发明的有益效果在于:本发明器件工作在正向阻断模式下,改变器件漂移区电场分布,从而提高器件的击穿电压,相同耐压需求下具有更短的漂移区,达到减小器件的尺寸的目的。氧化物沟槽增强了导电性调制,从而在漂移区产生高电子/空穴浓度以及低正向压降(Von)。氧化物沟槽会导致低发射极-集电极极电容,从而提高开关速度并降低关断能量损失(Eoff)。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为实施例1提供的改进型4H-SiC LIGBT(具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件)结构示意图;
图2为实施例1提供的改进型4H-SiC LIGBT(具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件)实施案例尺寸示意图;
图3为传统4H-SiC LIGBT结构示意图;
图4为图3所示的传统4H-SiC LIGBT结构尺寸示意图;
图5为两种不同器件的特性曲线图,其中,图5(a)为T=300K,不同Vge(栅极电压)下改进型4H-SiC LIGBT器件(实施例1)的输出特性曲线;图5(b)为T=300K时,Vge(栅极电压)=15V时传统4H-SiC LIGBT、改进型4H-SiC LIGBT(实施例1)的输出特性曲线;图5(c)为T=300K时,Vce(集电极电压)=4V时传统4H-SiC LIGBT、改进型4H-SiC LIGBT(实施例1)的转移特性曲线;
图6为T=300K时,Vge(栅极电压)=0V时的传统4H-SiC LIGBT、改进型4H-SiCLIGBT(实施例1)的阻断特性曲线;
图7为T=300K,Vge(栅极电压)=0V时,不同漂移区掺杂浓度对改进型4H-SiCLIGBT(实施例1)阻断特性曲线的影响。
图8为测试器件开关特性的阻性负载测试电路。
图9为T=300K,改进型4H-SiC LIGBT(实施例1)开关波形图。
图10为T=300K,传统4H-SiC LIGBT和改进型4H-SiC LIGBT(实施例1)关断波形图。
附图标记:1-沟槽氧化层、2-N-drift区、3-轻掺杂P-epi层、4-重掺杂P+epi层、5-N型4H-SiC衬底、6-P-base区、7-N+注入区、8-P+注入区Ⅰ、9-N-buffer区、10-P+注入区Ⅱ、11-金属衬底电极、12-金属集电极、13-金属发射极、14-栅极氧化层、15-多晶硅沟槽栅、16-多晶硅平面栅。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
实施例1:
本实施例提供一种具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件,如图1~图2所示,该器件包括沟槽氧化层1、N-drift区2、轻掺杂P-epi层3、重掺杂P+epi层4、N型4H-SiC衬底5、P-base区6、N+注入区7、P+注入区Ⅰ8、P+注入区Ⅱ10、N-buffer区9、金属衬底电极11、金属集电极12、金属发射极13、栅极氧化层14和多晶硅沟槽栅15。
沟槽氧化层1位于金属集电极12和金属发射极13之间,下方深入N-drift区2,其左侧与P-base区6右侧和P+注入区Ⅰ8右侧接触,右侧与N-buffer区9被N-drift区2隔开。沟槽氧化层1深入N-drift区2的部分水平方向长度l5为7.5μm,垂直方向长度h1为2.5μm。
N-drift区2位于沟槽氧化层1下表面,与栅极氧化层14右侧下部、P-base区6下表面和N-buffer区9左下表面接触,N-drift区2下表面与轻掺杂P-epi层3接触。N-drift区2上表面长度l6为8μm,整个水平方向长度l为14μm,垂直方向长度h3为4μm,掺入N型杂质浓度为2×1016cm-3
轻掺杂P-epi层3分别位于N-drift区2的下表面与重掺杂P+epi层4的上表面。水平方向长度l为14μm,垂直方向长度h4为6μm;掺入P型杂质浓度为5×1016cm-3
重掺杂P+epi层4分别位于轻掺杂P-epi层3的下表面与N型4H-SiC衬底5的上表面。水平方向长度l为14μm,垂直方向长度h5为2μm;掺入P型杂质浓度为2×1016cm-3
N型4H-SiC衬底5分别位于重掺杂P+epi层4的下表面与(N型)金属衬底电极11的上表面。N型4H-SiC衬底5水平方向长度l为14μm,垂直方向长度为12μm;掺入N型杂质浓度为1×1013cm-3
P-base区6位于N-drift区2的上表面,同时P-base区6上表面与N+注入区7下表面和P+注入区Ⅰ8下表面接触,P-base区6的左右侧面分别与栅极氧化层14右侧中部和沟槽氧化层1左侧中下部接触。P-base区6水平方向长度(l3+l4-l2)为2μm,垂直方向长度为0.6μm,掺入P型杂质浓度为1×1017cm-3
N+注入区7下侧与P-base区6接触,其右侧与P+注入区Ⅰ8左侧接触,其上侧与金属发射极13下侧左半部分接触,其左侧与栅极氧化层14右侧部分接触。N+注入区7水平方向长度(l3-l2)为1μm,垂直方向长度h6为0.2μm,掺入N型杂质浓度为1×1020cm-3
P+注入区Ⅰ8右侧与沟槽氧化层1左侧部分接触,其下侧与P-base区6上侧右半部分接触,其左侧与N+注入区7右侧接触,其上侧与金属发射极13下侧右半部分接触。P+注入区Ⅰ8水平方向长度l4为1μm,垂直方向长度h6为0.2μm,掺入P型杂质浓度为3×1019cm-3
所述N-buffer区9与N-drift区2和P+注入区Ⅱ10接触,切位于中间位置,三者上表面齐平与沟槽氧化层1接触。N-buffer区9水平方向长度l7为3μm,垂直方向长度(h6+h7)为0.8μm,掺入N型杂质浓度为4×1017cm-3
P+注入区Ⅱ10下表面和左侧与N-buffer区9接触,其上表面分别与沟槽氧化层1和金属集电极12下表面接触。P+注入区Ⅱ10水平方向长度l8为2μm,垂直方向长度h6为0.2μm,掺入P型杂质浓度为1×1019cm-3
金属衬底电极11位于N型4H-SiC衬底5的下表面。金属集电极12位于P+注入区Ⅱ10的上表面,左侧与沟槽氧化层1接触。金属发射极13位于N+注入区7和P+注入区Ⅰ8的上表面,其左侧与栅极氧化层14接触,其右侧与沟槽氧化层1接触。栅极氧化层14位于轻掺杂P-epi层3上方,其左侧与多晶硅沟槽栅15接触,右侧分别于与N-drift区2、P-base区6和N+注入区7接触。多晶硅沟槽栅15镶嵌于栅极氧化层14内部。多晶硅沟槽栅15侧壁宽度(l2-l1)为0.05μm,底部深度(h3-h2)为0.3μm。
实施例1的晶体管器件尺寸详见表1。
表1实施例1晶体管器件的尺寸
器件参数 尺寸(um)
l 14
l<sub>1</sub> 0.95
l<sub>2</sub> 1
l<sub>3</sub> 2
l<sub>4</sub> 1
l<sub>5</sub> 7.5
l<sub>6</sub> 8
l<sub>7</sub> 3
l<sub>8</sub> 2
l<sub>9</sub> 1.5
h<sub>1</sub> 2.5
h<sub>2</sub> 3.7
h<sub>3</sub> 4
h<sub>4</sub> 6
h<sub>5</sub> 2
h<sub>6</sub> 0.2
h<sub>7</sub> 0.6
对比实验:
将实施例1的改进型4H-SiC LIGBT(具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件)与传统沟槽栅MOSFET结构(传统4H-SiC LIGBT器件)进行性能对比分析。
如图3~图4所示,传统4H-SiC LIGBT器件包括沟槽氧化层1、N-drift区2、轻掺杂P-epi层3、重掺杂P+epi层4、N型4H-SiC衬底5、P-base区6、N+注入区7、P+注入区Ⅰ8和P+注入区Ⅱ10、N-buffer区9、金属衬底电极11、金属集电极12、金属发射极13、多晶硅平面栅16。其中,N-drift区2长度L5为8μm,整个水平方向长度L为14μm,垂直方向长度H1为4μm;掺入N型杂质浓度为8×1015cm-3。轻掺杂P-epi层3水平方向长度L为14μm,垂直方向长度H2为6μm;掺入P型杂质浓度为5×1016cm-3。重掺杂P+epi层4水平方向长度L为14μm,垂直方向长度H3为2μm;掺入P型杂质浓度为2×1016cm-3。N型4H-SiC衬底5水平方向长度L为14μm,垂直方向长度H4为12μm,掺入N型杂质浓度为1×1013cm-3。P-base区6整体水平方向长度(L3+L4)为3μm,右侧部分的水平方向长度L4为1μm,垂直方向长度(H5+H6)为0.8μm,沟道长度L1为1μm,掺入P型杂质浓度为1×1017cm-3。N+注入区7水平方向长度(L3-L1)为1μm,垂直方向长度H5为0.2μm,掺入N型杂质浓度为1×1020cm-3。P+注入区Ⅰ8水平方向长度L1为1μm,垂直方向长度H6为0.2μm,掺入P型杂质浓度为3×1019cm-3。N-buffer区9水平方向长度L8为3μm,垂直方向长度(H5+H6)为0.8μm,掺入N型杂质浓度为4×1017cm-3。P+注入区10水平方向长度L7为2μm,垂直方向长度H5为0.2μm,掺入P型杂质浓度为1×1019cm-3。多晶硅平面栅16镶嵌于沟槽氧化层1内部;多晶硅平面栅16底部栅氧层厚度为0.05μm。传统4H-SiC LIGBT器件的尺寸详见表2。
表2传统4H-SiC LIGBT器件的尺寸
Figure BDA0003654111490000071
Figure BDA0003654111490000081
图5为两种不同器件的特性曲线图,具体的,图5(a)为T=300K,不同Vge(栅极电压)下改进型4H-SiC LIGBT器件(实施例1)的输出特性曲线,由图可知改进型4H-SiC LIGBT器件的输出特性与MOS器件的类似,不同的是有一个2.7V左右的开启电压。图5(b)为T=300K时,Vge(栅极电压)=15V时传统4H-SiC LIGBT、改进型4H-SiC LIGBT(实施例1)的输出特性曲线,由于沟槽氧化层结构的引入,改进型4H-SiC LIGBT的N-drift区的掺杂浓度可以很高,使得导通电阻减小,输出特性更好。图5(c)为T=300K时,Vce(集电极电压)=4V时传统4H-SiC LIGBT、改进型4H-SiC LIGBT(实施例1)的转移特性曲线,两种器件有着相似的阈值电压特性。
图6为T=300K时,Vge(栅极电压)=0V时的传统4H-SiC LIGBT、改进型4H-SiCLIGBT(实施例1)的阻断特性曲线,改进型4H-SiC LIGBT的阻断电压为1785V,传统4H-SiCLIGBT阻断电压为1044V,阻断电压提高了741V。
图7为T=300K,Vge(栅极电压)=0V时,不同漂移区掺杂浓度对改进型4H-SiCLIGBT(实施例1)阻断特性曲线的影响。由图可知漂移区的掺杂浓度对阻断电压有着很大的理想,对于改进型4H-SiC LIGBT,漂移区掺杂浓度从1×1016cm-3增加到3.5×1016cm-3时,器件的阻断电压先增大后减小,在漂移区掺杂浓度为3×1016cm-3时,阻断电压达到最大值。
图8为测试器件开关特性的阻性负载测试电路,其中母线电压VDD设置为400V,栅极输入信号为频率200kHz,占空比为50%,-5V/15V变化的电压信号,栅极电阻Rg=5Ω,负载电阻RS=4Ω,电感LD=10μH,仿真设置反向恢复二极管FRD为理想二极管。
图9为T=300K,改进型4H-SiC LIGBT(实施例1)开关波形图,显示改进型4H-SiCLIGBT集电极电流随器件开关变化时的波形,可以看到器件关断时有明显的拖尾电流现象,关断时间比开启时间更长,这是由于电导调制效应的存在,使得器件在开启时存储了过多的载流子,这些载流子在器件关闭时要消耗额外的时间来去除。
图10为T=300K,传统4H-SiC LIGBT和改进型4H-SiC LIGBT(实施例1)关断波形图,传统4H-SiC LIGBT关断时间为114ns,关断损耗为0.78mJ/cm2;改进型4H-SiC LIGBT关断时间为77.8ns,关断损耗为0.52mJ/cm2;相比传统4H-SiC LIGBT,本发明设计的改进型4H-SiC LIGBT关断时间减少了31.8%,关断损耗减少了33.3%。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件,其特征在于,该器件包括沟槽氧化层(1)、N-drift区(2)、轻掺杂P-epi层(3)、重掺杂P+epi层(4)、N型4H-SiC衬底(5)、P-base区(6)、N+注入区(7)、P+注入区Ⅰ(8)、P+注入区Ⅱ(10)、N-buffer区(9)、金属衬底电极(11)、金属集电极(12)、金属发射极(13)、栅极氧化层(14)和多晶硅沟槽栅(15);
所述沟槽氧化层(1)位于金属集电极(12)和金属发射极(13)之间,下方深入N-drift区(2),其左侧与P-base区(6)右侧和P+注入区Ⅰ(8)右侧接触,右侧与N-buffer区(9)被N-drift区(2)隔开;
所述N-drift区(2)位于沟槽氧化层(1)下表面,与栅极氧化层(14)右侧下部、P-base区(6)下表面和N-buffer区(9)左下表面接触,N-drift区(2)下表面与轻掺杂P-epi层(3)接触;
所述轻掺杂P-epi层(3)分别位于N-drift区(2)的下表面与重掺杂P+epi层(4)的上表面;
所述重掺杂P+epi层(4)分别位于轻掺杂P-epi层(3)的下表面与N型4H-SiC衬底(5)的上表面;
所述N型4H-SiC衬底(5)分别位于重掺杂P+epi层(4)的下表面与金属衬底电极(11)的上表面;
所述P-base区(6)位于N-drift区(2)的上表面,同时P-base区(6)上表面与N+注入区(7)下表面和P+注入区Ⅰ(8)下表面接触,P-base区(6)的左右侧面分别与栅极氧化层(14)右侧中部和沟槽氧化层(1)左侧中下部接触;
所述N+注入区(7)下侧与P-base区(6)接触,其右侧与P+注入区Ⅰ(8)左侧接触,其上侧与金属发射极(13)下侧左半部分接触,其左侧与栅极氧化层(14)右侧部分接触;
所述P+注入区Ⅰ(8)右侧与沟槽氧化层(1)左侧部分接触,其下侧与P-base区(6)上侧右半部分接触,其左侧与N+注入区(7)右侧接触,其上侧与金属发射极(13)下侧右半部分接触;
所述N-buffer区(9)与N-drift区(2)和P+注入区Ⅱ(10)接触,切位于中间位置,三者上表面齐平与沟槽氧化层(1)接触;
所述P+注入区Ⅱ(10)下表面和左侧与N-buffer区(9)接触,其上表面分别与沟槽氧化层(1)和金属集电极(12)下表面接触;
所述金属衬底电极(11)位于N型4H-SiC衬底(5)的下表面;
所述金属集电极(12)位于P+注入区Ⅱ(10)的上表面,左侧与沟槽氧化层(1)接触;
所述金属发射极(13)位于N+注入区(7)和P+注入区Ⅰ(8)的上表面,其左侧与栅极氧化层(14)接触,其右侧与沟槽氧化层(1)接触;
所述栅极氧化层(14)位于轻掺杂P-epi层(3)上方,其左侧与多晶硅沟槽栅(15)接触,右侧分别于与N-drift区(2)、P-base区(6)和N+注入区(7)接触;
所述多晶硅沟槽栅(15)镶嵌于栅极氧化层(14)内部。
2.根据权利要求1所述的4H-SiC横向绝缘栅双极型晶体管器件,其特征在于,所述N-drift区(2)、N型4H-SiC衬底(5)、N+注入区(7)和N-buffer区(9)掺入N型杂质。
3.根据权利要求1所述的4H-SiC横向绝缘栅双极型晶体管器件,其特征在于,所述轻掺杂P-epi层(3)、重掺杂P+epi层(4)、重掺杂P+epi层(4)掺、P+注入区Ⅰ(8)和P+注入区Ⅱ(10)掺入P型杂质。
4.根据权利要求1所述的4H-SiC横向绝缘栅双极型晶体管器件,其特征在于,所述金属衬底电极(11)、金属集电极(12)和金属发射极(13)的材料为Al、Au或Pt。
5.根据权利要求1所述的4H-SiC横向绝缘栅双极型晶体管器件,其特征在于,所述栅极氧化层(14)采用SiO2、SiN、Al2O3、AlN、MgO、Ga2O3、AlHfOx及HfSiON中的一种或者几种的组合。
CN202210553866.XA 2022-05-20 2022-05-20 具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件 Active CN114927569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210553866.XA CN114927569B (zh) 2022-05-20 2022-05-20 具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210553866.XA CN114927569B (zh) 2022-05-20 2022-05-20 具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件

Publications (2)

Publication Number Publication Date
CN114927569A true CN114927569A (zh) 2022-08-19
CN114927569B CN114927569B (zh) 2024-06-18

Family

ID=82810011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210553866.XA Active CN114927569B (zh) 2022-05-20 2022-05-20 具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件

Country Status (1)

Country Link
CN (1) CN114927569B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117457732A (zh) * 2023-12-22 2024-01-26 深圳天狼芯半导体有限公司 一种栅极下方具有P型空间层的SiC LIGBT及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681819A (zh) * 2012-09-17 2014-03-26 中国科学院微电子研究所 一种沟槽型的绝缘栅双极性晶体管及其制备方法
CN105826367A (zh) * 2016-03-18 2016-08-03 东南大学 一种大电流绝缘体上硅横向绝缘栅双极型晶体管器件
CN105917469A (zh) * 2014-01-14 2016-08-31 三菱电机株式会社 电力用半导体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681819A (zh) * 2012-09-17 2014-03-26 中国科学院微电子研究所 一种沟槽型的绝缘栅双极性晶体管及其制备方法
CN105917469A (zh) * 2014-01-14 2016-08-31 三菱电机株式会社 电力用半导体装置
CN105826367A (zh) * 2016-03-18 2016-08-03 东南大学 一种大电流绝缘体上硅横向绝缘栅双极型晶体管器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117457732A (zh) * 2023-12-22 2024-01-26 深圳天狼芯半导体有限公司 一种栅极下方具有P型空间层的SiC LIGBT及制备方法
CN117457732B (zh) * 2023-12-22 2024-05-28 深圳天狼芯半导体有限公司 一种栅极下方具有P型空间层的SiC LIGBT及制备方法

Also Published As

Publication number Publication date
CN114927569B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
EP2438611B1 (en) High voltage insulated gate bipolar transistors with minority carrier diverter
CN107785415B (zh) 一种soi-rc-ligbt器件及其制备方法
KR101309674B1 (ko) 절연 게이트형 바이폴라 트랜지스터와 그 제조방법
JP5875680B2 (ja) 絶縁ゲート型バイポーラトランジスタ
CN110610986B (zh) 一种利用结终端集成横向续流二极管的rc-igbt器件
CN111834449A (zh) 一种具有背面双mos结构的快速关断rc-igbt器件
CN114899219A (zh) 一种具有屏蔽效应的超结P柱和N-沟道的4H-SiC基VDMOS器件
CN114927569B (zh) 具有双沟槽的4H-SiC横向绝缘栅双极型晶体管器件
Onozawa et al. 1200-V low-loss IGBT module with low noise characteristics and high ${d} I_ {C}/{d} t $ controllability
CN110504305B (zh) 一种具有自偏置pmos钳位载流子存储层的SOI-LIGBT器件
Zhang et al. Optimization of ${V} _ {\text {CE}} $ Plateau for Deep-Oxide Trench SOI Lateral IGBT During Inductive Load Turn-OFF
CN117038718A (zh) 一种具有三栅结构的复合型rc-ligbt器件
CN113497113A (zh) 具有超低导通电压的新型绝缘栅双极晶体管
CN113540224B (zh) 一种N衬底沟槽型GaN绝缘栅双极型晶体管
JP3655049B2 (ja) 静電誘導トランジスタの駆動方法
CN113140636B (zh) 一种沟槽门型叠栅SiC MOSFET器件
Agarwal et al. SiC power devices–an overview
CN110265477B (zh) 具有pnp穿通三极管的igbt器件
CN109888006B (zh) 一种低功耗绝缘体上硅横向绝缘栅双极型晶体管
CN113488525A (zh) 一种具有电荷积累效应的超结ea-sj-finfet器件
CN113611738A (zh) 一种异质结注入的沟槽型GaN绝缘栅双极型晶体管
CN115117161A (zh) 半导体装置
CN112018171A (zh) 绝缘栅双极晶体管、智能功率器件及电子产品
Uchida et al. High Current SiC Transistors for Automotive Applications
CN111276537A (zh) 一种具有多晶硅耐压层的逆导型rc-ligbt器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant