CN114920569A - 一种纳米陶瓷复合喷涂粉末及其制备方法 - Google Patents

一种纳米陶瓷复合喷涂粉末及其制备方法 Download PDF

Info

Publication number
CN114920569A
CN114920569A CN202210455851.XA CN202210455851A CN114920569A CN 114920569 A CN114920569 A CN 114920569A CN 202210455851 A CN202210455851 A CN 202210455851A CN 114920569 A CN114920569 A CN 114920569A
Authority
CN
China
Prior art keywords
powder
nano
ceramic composite
water
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210455851.XA
Other languages
English (en)
Inventor
李佳佳
田万英
刘伯玉
王伟
陈涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Polytechnic Institute
Original Assignee
Yangzhou Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Polytechnic Institute filed Critical Yangzhou Polytechnic Institute
Priority to CN202210455851.XA priority Critical patent/CN114920569A/zh
Publication of CN114920569A publication Critical patent/CN114920569A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种纳米陶瓷复合喷涂粉末及其制备方法,具体涉及纳米耐高温陶瓷粉涂层材料技术领域,包括ZrOCl2·8H2O(氯氧化锆)、Y(NO3)3·6H2O(硝酸钇)、Sc2O3(氧化钪)、分散剂、溶剂和沉淀剂,所述分散剂为聚乙二醇(PEG),所述溶剂为无水乙醇/水,所述沉淀剂为氨水。纳米陶瓷复合粉体中纳米陶瓷相的熔点较低,并易于在喷涂过程中得到充分加热,能够制得优质的喷涂层,乙醇水为溶剂时,采用反向滴淀方式制备的粉末团聚较松散;采用正向滴淀制备的粉末形成硬团聚体,从而可以得到粒径不同的两种粉末,便于根据需求制备;采用反向滴淀方式制备的粉末的粒径约为20nm,粉末团聚较松散;采用正向滴淀制备的粉末粒径约为30nm,粉末形成硬团聚体。

Description

一种纳米陶瓷复合喷涂粉末及其制备方法
技术领域
本发明涉及纳米耐高温陶瓷粉涂层材料技术领域,具体为一种纳米陶瓷复合喷涂粉末及其制备方法。
背景技术
纳米耐高温陶瓷粉涂层材料是一种通过化学反应而形成耐高温陶瓷涂层的材料;纳米陶瓷粉末涂料在高温环境下具有优异的隔热保温效果,不脱落、不燃烧,耐水、防潮,无毒、对环境没有污染;测验证明,将几厘米厚的纳米陶瓷粉末涂料涂在热力管道外,就能有效防止热力向外扩散;涂料涂在炼钢厂等高温炉内,能使炉外表温度控制在50摄氏度以内,适用于冶金、化工工业电厂的热力锅炉及焦化煤气等热力设备和热力管网等高温设备的防腐、炉外降温。
而用于腐蚀条件恶劣环境中的重防腐纳米陶瓷涂料,则能有效防护航标灯座、船舶、石油化工设施和各类贮罐、桥梁、桥墩、铁路涵洞、钻井设备、海上油田等设施以及强酸、强碱等生产设备的外表面,在较长时间内防止强酸碱、盐雾、冻融、霉菌等的浸渍;陶瓷本就耐高温并有高介电性质、耐酸碱,故可利用此优点,以纳米粉末混成制造任何工具或涂料。
现有技术中的纳米陶瓷复合喷涂粉末及其制备方法存在以下问题:
纳米耐高温陶瓷粉涂层材料是目前广泛应用的热障涂层(TBCs)材料,但当其工作温度长期高于1200℃时,钇稳定二氧化锆将发生相变,过程中会发生体积膨胀使涂层产生裂纹,并且钇稳定二氧化锆极易烧结,从而加速涂层的剥落;为此,我们提出一种纳米陶瓷复合喷涂粉末及其制备方法用于解决上述问题。
发明内容
本发明的目的在于提供一种纳米陶瓷复合喷涂粉末及其制备方法,以解决上述背景技术中提出的问题。
为解决上述技术问题,本发明采用如下技术方案:一种纳米陶瓷复合喷涂粉末,所述纳米陶瓷复合喷涂粉末的组分及纯度百分比为:
ZrOCl2·8H2O(氯氧化锆) 99.7%;
Y(NO3)3·6H2O(硝酸钇) 99.7%;
Sc2O3(氧化钪) 99.7%;
分散剂、溶剂和沉淀剂。
优选地,所述分散剂为聚乙二醇(PEG)。
优选地,所述溶剂为无水乙醇/水,醇水体积比为5∶1。
优选地,所述沉淀剂为氨水。
一种纳米陶瓷复合喷涂粉末及其制备方法,该加工方法如下:
步骤一:首先将Sc2O3溶于硝酸中并加热数分钟除去其多余硝酸,然后按化学计量比将各主要组元溶于无水乙醇和去离子水的混合溶剂中,醇水比为5:1,控制总金属离子浓度为0.3mol/L。
步骤二:加入适量PEG为分散剂,将混合溶液置于恒温水浴锅中加热至78℃并保温适当时间,然后通过正向滴淀(将氨水缓缓滴加至混合盐溶液)和反向滴定(将混合盐溶液缓慢滴加至氨水溶液)来制备复合粉末前驱体。
步骤三:整个过程中控制最终体系的pH≈10,反应后陈化12h,然后用去离子水洗涤数次,直至用1.0mol/L的AgNO3溶液检测不到Cl-,再用无水乙醇洗涤,将醇洗后的凝胶在鼓风干燥箱中干燥24h,最后经600℃煅烧2h得到YSZ和ScYSZ复合陶瓷粉末。
为了表征本发明所制备粉末的性能,采用法国SETSYS Evolution-2400综合热分析仪对干燥后的粉末进行热分析;采用日本电子株式会社JEOL JSM 3100F透射电镜测定粉末颗粒大小与形貌(TEM);采用日本理学D/MAX2550型X-射线衍射仪分析复合粉末的物相结构(XRD);采用PHS-3C精密酸度计测定溶液pH值进行表征,以下是具体的性能测试方法:
醇水反应过程及粉末的物相分析
水和醇的介电常数见表1,溶剂温度与介电常数符合式(1)~(2)的经验关系。
D=D0exp(-T/190) (1)
ε=φ1ε12ε2 (2)
4ZrOCl2+6H20=Zr4O2(0H)8Cl4+4HCl (3)
式中D和D0分别表示在0K和T K时,液体的介电常数;εi为各溶剂的摩尔百分数;当以醇水为溶剂时,混合盐溶液在加热过程中有白色胶体产生;而以水为溶剂时,混合盐溶液在加热过程中则无胶体产生。
与现有技术相比,本发明的有益效果在于:
本发明中纳米陶瓷复合粉体中纳米陶瓷相的熔点较低,并易于在喷涂过程中得到充分加热,能够制得优质的喷涂层,以醇水为溶剂时,采用反向滴淀方式制备的粉末的粒径约为20nm,粉末团聚较松散;采用正向滴淀制备的粉末粒径约为30nm,粉末形成硬团聚体,从而可以得到粒径不同的两种粉末,便于根据需求制备。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
本发明提供了一种纳米陶瓷复合喷涂粉末及其制备方法,纳米陶瓷复合喷涂粉末的组分及纯度百分比为:
ZrOCl2·8H2O(氯氧化锆) 99.7%;
Y(NO3)3·6H2O(硝酸钇) 99.7%;
Sc2O3(氧化钪) 99.7%;
分散剂、溶剂和沉淀剂。
其中,分散剂为聚乙二醇(PEG);溶剂为无水乙醇/水,醇水体积比为5∶1;沉淀剂为氨水。
一种纳米陶瓷复合喷涂粉末及其制备方法,该加工方法如下:
步骤一:首先将Sc2O3溶于硝酸中并加热数分钟除去其多余硝酸,然后按化学计量比将各主要组元溶于无水乙醇和去离子水的混合溶剂中,醇水比为5:1,控制总金属离子浓度为0.3mol/L。
步骤二:加入适量PEG为分散剂,将混合溶液置于恒温水浴锅中加热至78℃并保温适当时间,然后通过正向滴淀(将氨水缓缓滴加至混合盐溶液)和反向滴定(将混合盐溶液缓慢滴加至氨水溶液)来制备复合粉末前驱体。
步骤三:整个过程中控制最终体系的pH≈10,反应后陈化12h,然后用去离子水洗涤数次,直至用1.0mol/L的AgNO3溶液检测不到Cl-,再用无水乙醇洗涤,将醇洗后的凝胶在鼓风干燥箱中干燥24h,最后经600℃煅烧2h得到YSZ和ScYSZ复合陶瓷粉末。
为了表征本发明所制备粉末的性能,采用法国SETSYS Evolution-2400综合热分析仪对干燥后的粉末进行热分析;采用日本电子株式会社JEOL JSM 3100F透射电镜测定粉末颗粒大小与形貌(TEM);采用日本理学D/MAX2550型X-射线衍射仪分析复合粉末的物相结构(XRD);采用PHS-3C精密酸度计测定溶液pH值进行表征,以下是具体的性能测试方法:
醇水反应过程及粉末的物相分析
水和醇的介电常数见表1,溶剂温度与介电常数符合式(1)~(2)的经验关系。
D=D0exp(-T/190) (1)
ε=φ1ε12ε2 (2)
4ZrOCl2+6H20=Zr4O2(0H)8Cl4+4HCl (3)
式中D和D0分别表示在0K和T K时,液体的介电常数;εi为各溶剂的摩尔百分数;当以醇水为溶剂时,混合盐溶液在加热过程中有白色胶体产生;而以水为溶剂时,混合盐溶液在加热过程中则无胶体产生;由表1、式(1)、式(2)可知,乙醇有较低的介电常数,乙醇的加入或温度的升高都会使溶剂的介电常数下降;溶剂介电常数的降低将导致其溶解能力下降,而当Y(NO3)3·6H2O和Sc(NO3)3分别溶于醇水溶剂且加热时,即使加热时间达7h,仍无白色胶体产生,这表明ZrOCl2·8H2O可能发生了如式(3)所示的水解反应从而在加热过程中产生白色溶胶;
由表1可知,当以水为溶剂时,水有较高的介电常数,虽然加热时其介电常数降低,但降低程度还不足以使溶液产生白色溶胶。
表1醇和水的物理性能
Figure BDA0003620421300000051
当混合盐共溶于醇水溶剂中且加热时,Y3+、Sc3+将自由分散在溶胶体系中。由于加热过程是均匀进行的且整个过程中搅拌速率恒定,所以这种分散是比较均匀的;当溶胶滴加至氨水溶液中后,Zr4O2(0H)8Cl4将水解完全,转变成Zr(OH)4凝胶,而Y3+、Sc3+则与氨水溶液发生反应,转变成Y(OH)3、Sc(OH)3
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (9)

1.一种纳米陶瓷复合喷涂粉末,其特征在于:所述纳米陶瓷复合喷涂粉末的组分及纯度百分比为:
ZrOCl2·8H2O(氯氧化锆) 99.7%;
Y(NO3)3·6H2O(硝酸钇) 99.7%;
Sc2O3(氧化钪) 99.7%;
分散剂、溶剂和沉淀剂。
2.如权利要求1所述的一种纳米陶瓷复合喷涂粉末,其特征在于,所述分散剂为聚乙二醇(PEG)。
3.如权利要求1所述的一种纳米陶瓷复合喷涂粉末,其特征在于,所述溶剂为无水乙醇/水,醇水体积比为5∶1。
4.如权利要求1所述的一种纳米陶瓷复合喷涂粉末,其特征在于,所述沉淀剂为氨水。
5.如权利要求1所述的一种纳米陶瓷复合喷涂粉末的制备方法,其特征在于,
步骤一、首先将所述Sc2O3溶于硝酸中并加热数分钟除去其多余硝酸,然后按化学计量比将各主要组元溶于无水乙醇和去离子水的混合溶剂中,醇水比为5:1,控制总金属离子浓度为0.3mol/L;
步骤二、加入适量PEG为分散剂,将混合溶液置于恒温水浴锅中加热并保温适当时间,然后通过正向滴淀和反向滴定来制备复合粉末前驱体,整个过程中控制最终体系的pH≈10,反应后陈化12h;
步骤三、然后用去离子水洗涤数次,直至用AgNO3溶液检测不到Cl-,再用无水乙醇洗涤,将醇洗后的凝胶在鼓风干燥箱中干燥,最后经煅烧2h得到YSZ和ScYSZ复合陶瓷粉末。
6.如权利要求5所述的一种纳米陶瓷复合喷涂粉末及其制备方法,其特征在于,所述混合溶液在恒温水浴锅内的加热温度为78℃。
7.如权利要求5所述的一种纳米陶瓷复合喷涂粉末及其制备方法,其特征在于,所述AgNO3溶液检测的浓度为1.0mol/L。
8.如权利要求5所述的一种纳米陶瓷复合喷涂粉末及其制备方法,其特征在于,所述凝胶在鼓风干燥箱内干燥时长为24h。
9.如权利要求5所述的一种纳米陶瓷复合喷涂粉末及其制备方法,其特征在于,所述YSZ和ScYSZ复合陶瓷粉末的煅烧温度为600℃。
CN202210455851.XA 2022-04-28 2022-04-28 一种纳米陶瓷复合喷涂粉末及其制备方法 Pending CN114920569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210455851.XA CN114920569A (zh) 2022-04-28 2022-04-28 一种纳米陶瓷复合喷涂粉末及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210455851.XA CN114920569A (zh) 2022-04-28 2022-04-28 一种纳米陶瓷复合喷涂粉末及其制备方法

Publications (1)

Publication Number Publication Date
CN114920569A true CN114920569A (zh) 2022-08-19

Family

ID=82807663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210455851.XA Pending CN114920569A (zh) 2022-04-28 2022-04-28 一种纳米陶瓷复合喷涂粉末及其制备方法

Country Status (1)

Country Link
CN (1) CN114920569A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861700A (zh) * 2006-05-26 2006-11-15 上海大学 氧化锆基复合纳米粉体的制备方法
CN101481247A (zh) * 2009-02-25 2009-07-15 中国航空工业第一集团公司北京航空制造工程研究所 一种含二元稀土氧化物的高相稳定复合陶瓷粉末的制备方法
CN113956037A (zh) * 2021-12-11 2022-01-21 广西大学 一种抗cmas腐蚀的双相组织钪钇稀土掺杂氧化锆粉末的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861700A (zh) * 2006-05-26 2006-11-15 上海大学 氧化锆基复合纳米粉体的制备方法
CN101481247A (zh) * 2009-02-25 2009-07-15 中国航空工业第一集团公司北京航空制造工程研究所 一种含二元稀土氧化物的高相稳定复合陶瓷粉末的制备方法
CN113956037A (zh) * 2021-12-11 2022-01-21 广西大学 一种抗cmas腐蚀的双相组织钪钇稀土掺杂氧化锆粉末的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何轶伦;周伍喜;李松林;刘怀菲;: "Sc_2O_3-Y_2O_3-ZrO_2纳米复合陶瓷粉末的制备" *
王开军;胡劲;刘建良;张云峰;: "醇水共沉淀法制备氧化锆超细粉末及团聚控制" *

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis of nanostructured La2Zr2O7 by a non-alkoxide sol–gel method: From gel to crystalline powders
Lee et al. Preparation and properties of Y 2 O 3-doped ZrO 2 thin films by the sol–gel process
CN106588004B (zh) 一种纯相稀土锆酸盐纳米材料及其制备方法
JP2004506584A (ja) リン酸アルミニウム系高温用非晶質組成物
CN101407336A (zh) 锆酸镧粉体制备方法
CN111978761B (zh) 一种锆酸盐复合材料及其制备方法和应用
CN113956037B (zh) 一种抗cmas腐蚀的双相组织钪钇稀土掺杂氧化锆粉末的制备方法
CN108242554B (zh) 一种铈酸钡基电解质材料及其制备方法和应用
CN113004035B (zh) 具有纳米核壳结构的稀土改性锆基氧化物
Wang et al. Comparison of corrosion behaviors of Sc2O3-CeO2 co-stabilized ZrO2 and YSZ ceramics exposed to CMAS at 1250° C
CN107585786B (zh) Sm-Gd-Dy三稀土离子钽酸盐及其制备方法与应用
Guo et al. Microstructure evolution and hot corrosion mechanisms of Ba2REAlO5 (RE= Yb, Er, Dy) exposed to V2O5+ Na2SO4 molten salt
Sivakumar et al. Influence of water vapour on structural and thermal conductivity of post-heat treated plasma sprayed LZ and YSZ coatings
CN114920569A (zh) 一种纳米陶瓷复合喷涂粉末及其制备方法
Zhang et al. Hot corrosion behavior of Ba2REAlO5 (RE= Dy, Er, Yb) ceramics by vanadium pentoxide at 900–1000° C
Kim et al. Sol-gel processing of yttria-stabilized zirconia films derived from the zirconium n-butoxide-acetic acid-nitric acid-water-isopropanol system
CN103304236A (zh) 一种烧绿石结构三相纳米热障涂层材料及制备方法
CN114226723B (zh) 氧化物陶瓷包覆金属铝的低红外、抗氧化复合材料、制备方法及其应用
Su et al. Synthesis of La2NiO4 by the molten salt method and its infrared radiation properties
CN113248255B (zh) 一种高温隔热萤石型中熵氧化物及其制备方法
Chen et al. Construction and corrosion behavior of Al2O3/Al2O3-Ca2SiO4 double ceramic coating
CN105967665A (zh) 氧化铝陶瓷及其制备方法和等离子体刻蚀设备
Smith et al. Novel yttrium-stabilized zirconia polymeric precursor for the fabrication of thin films
CN102080224A (zh) 一种掺杂乙酸钴的溶胶凝胶膜层及制备方法
Gan et al. Effects on Phase Evolution of La 2 O 3–ZrO 2 Mixed Oxides Prepared Via Sol–Gel Process and its Crystal Growth Behavior

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220819