CN114917362A - 一种脂质纳米粒及其制备方法及用途 - Google Patents

一种脂质纳米粒及其制备方法及用途 Download PDF

Info

Publication number
CN114917362A
CN114917362A CN202210420694.9A CN202210420694A CN114917362A CN 114917362 A CN114917362 A CN 114917362A CN 202210420694 A CN202210420694 A CN 202210420694A CN 114917362 A CN114917362 A CN 114917362A
Authority
CN
China
Prior art keywords
sophocarpine
parts
solid lipid
emulsifier
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210420694.9A
Other languages
English (en)
Other versions
CN114917362B (zh
Inventor
胡扬
杨波
王昊
王金宏
李文兰
张文君
李钧
郑沛育
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Commerce
Original Assignee
Harbin University of Commerce
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Commerce filed Critical Harbin University of Commerce
Priority to CN202210420694.9A priority Critical patent/CN114917362B/zh
Publication of CN114917362A publication Critical patent/CN114917362A/zh
Application granted granted Critical
Publication of CN114917362B publication Critical patent/CN114917362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/595Polyamides, e.g. nylon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种聚磺酰胺修饰的壳聚糖‑槐果碱固体脂质纳米粒,在降低药物毒性的同时将药物靶向传递到肿瘤细胞,从而实现对槐果碱的有效利用,本发明所述壳聚糖‑槐果碱固体脂质纳米粒为聚磺酰胺修饰的壳聚糖‑槐果碱固体脂质纳米粒,具有pH敏感性,结合了槐果碱和固体脂质纳米粒的优势,充分发挥了槐果碱的药理活性尤其是抗肿瘤活性。

Description

一种脂质纳米粒及其制备方法及用途
技术领域
本发明属于医药技术领域,具体涉及一种经修饰的槐果碱固体脂质纳米粒、其制备方法及其用于抗肿瘤方面的用途。
背景技术
恶性肿瘤已经成为严重威胁中国人群健康的主要公共卫生问题之一,根据最新的统计数据显示,恶性肿瘤死亡占居民全部死因的23.91%,且近十几年来恶性肿瘤的发病死亡均呈持续上升态势。
槐果碱(Sophocarpine)是从豆科植物苦豆子、苦参及山豆根中提取的一种生物碱,白色针状结晶水合物,熔点54~55℃,可溶于甲醇、乙醇、氯仿、丙酮和苯,微溶于水,易溶于稀酸。槐果碱具有广泛的药理活性,目前多篇文章或专利已经公开了其具有至少包括抑制中枢神经、抗肿瘤、平喘、镇痛抗炎等多方面的临床疗效,尤其是槐果碱具有较强的抗肿瘤活性,能够抑制肿瘤细胞增殖、诱导肿瘤细胞凋亡、抗肿瘤细胞转移等,同时又具有免疫调节、升高白细胞、缓解癌痛等许多常规化疗药物所不具备的优势。尽管槐果碱被证明具有多种药理活性,但由于其脂溶性强,体内吸收差,生物利用度较低,导致口服给药疗效较差等缺点限制了其进一步的开发和临床应用,目前还未有任何一种槐果碱药物应用于临床。
近年来,纳米药物在多个治疗领域广泛得以应用,尤其是在肿瘤治疗领域,纳米药物的使用大大提高了常见抗癌药物的安全性和疗效。基于纳米技术的纳米药物和递送系统的主要优点是有效靶向,延迟释放,延长半衰期和降低全身毒性反应。与这些药物的传统给药方式相比,纳米药物的使用已显著改善了药物向靶标的输送。其中脂质纳米颗粒制剂的应用最为广泛,脂质纳米颗粒,如脂质体、固体脂质纳米颗粒和纳米脂质载体,是目前研究的热点,其作用主要是基于血管渗透性和保留(EPR效应)。自1995年FDA批准第一种纳米药物聚乙二醇化多柔比星脂质体起,一些用于治疗癌症的纳米药物陆续在全球获批上市。
为了克服槐果碱的上述缺陷,充分发掘并发挥其药理作用,固体脂质纳米粒可能是解决问题的方法。本研究拟在结合槐果碱和固体脂质纳米粒的优势,制备槐果碱固体脂质纳米粒,以期充分发挥槐果碱的药理活性尤其是抗肿瘤活性。
发明内容
为克服上述现有技术的缺陷和不足,本发明提供了一种固体脂质纳米粒作为纳米载体包裹槐果碱,在降低药物毒性的同时将药物靶向传递到肿瘤细胞,从而实现对槐果碱的有效利用。
本发明的目的是提供一种壳聚糖-槐果碱固体脂质纳米粒,其特征在于,所述壳聚糖-槐果碱固体脂质纳米粒为聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒,具有pH敏感性。
本发明所述的聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒,其特征在于,由下述原料制成:槐果碱、脂质、乳化剂、助乳化剂、壳聚糖、聚磺酰胺。
本发明所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒中,所述槐果碱的含量百分比为1%~30%,优选为2.5%~20%;更优选为3%~10%;再更优选为 3.5%~6%。
本发明所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒中,所述原料及重量配比如下:槐果碱1-13份(例如1、2、3、4、5、6、7、8、9、10、11、12、 13份)、脂质20-40份(例如20、21、22、23、24、25、26、27、28、29、30、 31、32、33、34、35、36、37、38、39、40份)、乳化剂10-20份(例如10、11、 12、13、14、15、16、17、18、19、20份)、助乳化剂5-10份(例如5、6、7、 8、9、10份)、壳聚糖1-10份(例如1、2、3、4、5、6、7、8、9、10份)、聚磺酰胺1-20份(例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、 16、17、18、19、20份)。
优选的,本发明所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒中,所述原料的重量配比如下:槐果碱1-8份、脂质20-30份、乳化剂10-15份、助乳化剂5-8份、壳聚糖1-5份、聚磺酰胺1-5份。
更优选的,本发明所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒中,所述原料的重量配比如下:槐果碱1-5份、脂质20-25份、乳化剂10-12份、助乳化剂5-8份、壳聚糖1-2份、聚磺酰胺1-2份。
优选的,本发明所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒中,其中所述脂质选自以下中的一种或多种:饱和脂肪酸类,如硬脂酸、棕榈酸、肉豆蔻酸、月桂酸、癸酸等;饱和脂肪酸甘油酯类,如单硬脂酸甘油酯、棕榈酸甘油三酯等。更优选的,所述脂质选自饱和脂肪酸类,饱和脂肪酸类中更优选硬脂酸。
优选的,本发明所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒中,其中所述乳化剂选自以下中的一种或多种:磷脂类,如大豆卵磷脂、蛋黄卵磷脂、磷脂酰胆碱等;非离子表面活性剂类,如吐温、司盘、泊洛沙姆等。更优选的,所述乳化剂选自以下中的一种或多种:大豆卵磷脂、泊洛沙姆。更优选的,所述乳化剂选自大豆卵磷脂、泊洛沙姆组成的复合乳化剂。
优选的,本发明所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒中,其中所述助乳化剂选自以下中的一种或多种:丙三醇、正丁醇、聚乙二醇、F-68、聚甘油酯等。更优选的,所述助乳化剂选自F-68。
本发明的目的还包括提供一种所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒的制备方法,其特征在于,包括如下步骤:
①称取脂质相及槐果碱,搅拌均匀制成油相;称取乳化剂和助乳化剂,在水中制成水相,将水相滴入至油相中,搅拌均匀制得初乳,将初乳超声后得到的液体在搅拌下加至分散相中,分散项为蒸馏水溶液,继续固化搅拌1-30min后,低温离心1-10min,微孔滤膜过滤,恢复到室温,得到槐果碱固体脂质纳米粒;
②将所得的槐果碱固体脂质纳米粒快速倾倒入超声下的连续相中,连续相为包含壳聚糖的醋酸缓冲溶液,搅拌继续固化,低温离心1-10min后收集滤液,微孔滤膜过滤,得到壳聚糖修饰的槐果碱固体脂质纳米粒;
③将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入超声下的连续相中,连续相为包含聚磺酰胺的氢氧化钠缓冲溶液,搅拌继续固化,低温离心 1-10min,后收集滤液,微孔滤膜过滤,得到聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒。
优选的,步骤①中,脂质相及槐果碱在50-100℃温度条件下搅拌均匀制成油相;更优选的,脂质相及槐果碱在60-90℃温度条件下搅拌均匀制成油相;更优选的,脂质相及槐果碱在75-80℃温度条件下搅拌均匀制成油相。
优选的,步骤①中,制成水相时使用的水为蒸馏水。
优选的,步骤①中,将水相滴入至油相中后搅拌10-60min后制得初乳;更优选的,将水相滴入至油相中后搅拌20-50min后制得初乳;更优选的,将水相滴入至油相中后搅拌30-40min后制得初乳。
优选的,步骤①中,初乳超声的时间为3-15min;更优选的,初乳超声的时间为6-10min。
优选的,步骤①中,初乳超声后得到的液体在搅拌下加至3-10倍体积的分散相中;更优选的,初乳超声后得到的液体在搅拌下加至5-7倍体积的分散相中。
优选的,步骤①中,所述分散相的温度为0-10℃;更优选的,所述分散相的温度为3-6℃。
优选的,步骤①中,继续固化搅拌的时间为10-25min;更优选的,继续固化搅拌的时间为15-20min。
优选的,步骤①中,低温离心时的温度小于10℃,时间为2-8min;更优选的,低温离心时的温度小于5℃,时间为5-6min。
优选的,步骤①中,使用的微孔滤膜为0.22μm-0.45μm。
优选的,步骤②中,将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入超声下的3-10倍体积的连续相中;更优选的,将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入超声下的5-7倍体积的连续相中。
优选的,步骤②中,所述连续相的pH值为1~3;更优选的,所述连续相的pH 值为2。
优选的,步骤②中,搅拌继续固化的时间为10-100min;更优选的,搅拌继续固化的时间为30-80min;更优选的,搅拌继续固化的时间为60min。
优选的,步骤②中,低温离心时的温度小于10℃,时间为2-8min;更优选的,低温离心时的温度为2-5℃,时间为5-6min。
优选的,步骤②中,使用的微孔滤膜为0.22μm-0.45μm。
优选的,步骤③中,将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入超声下的1-5倍体积的连续相中;更优选的,将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入超声下的2-4倍体积的连续相中。
优选的,步骤③中,所述连续相的pH为7.5~10;更优选的,所述连续相的pH 值为8~9。
优选的,步骤③中,搅拌继续固化的时间为10-100min;更优选的,搅拌继续固化的时间为30-80min;更优选的,搅拌继续固化的时间为60min。
优选的,步骤③中,低温离心时的温度小于10℃,时间为2-8min;更优选的,低温离心时的温度为2-5℃,时间为5-6min。
优选的,步骤③中,使用的微孔滤膜为0.22μm-0.45μm。
本发明的目的还包括提供上述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒在制备治疗肿瘤疾病的药物中的用途。在某些情境下,本发明所述肿瘤疾病也称为癌症。
优选的,所述肿瘤疾病包括头颈部的肿瘤、鼻咽癌、口腔癌、食道癌、胃癌、肺癌、肝癌、直肠癌、结肠癌、乳腺癌、卵巢癌、子宫癌、子宫内膜癌等;更优选的,所述肿瘤疾病为肝癌。
本发明的另一个目的还包括提供一种药物组合物,所述药物组合物包含上述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒和药学上可接受的载体。
本发明的技术效果如下:
①槐果碱对于治疗癌症有很好的效果,由于它的脂溶性,使其应用被大大的限制。壳聚糖作为天然多糖对人体无毒,带正电荷,可通过电荷吸引将其吸附在固体脂质纳米粒上。本发明获得的固体脂质纳米粒具有pH敏感性,聚磺酰胺可以借助人体环境天然存在的肿瘤细胞与正常细胞的pH差异,构建对肿瘤细胞微酸环境特异性响应的载药体系,而受到肿瘤细胞pH值的影响后会发生电荷转换,从而释放药物分子,达到靶向释药的效果。本发明将槐果碱固体脂质纳米粒的优点相结合,治疗癌症的同时达到了降低药物毒性、增强药物作用时间等优点。
②体内抗肿瘤试验表明,本发明的聚磺酰胺修饰的固体脂质纳米粒具有更高的抗肿瘤活性。
附图说明
图1产品在不同pH释放介质中的体外释放曲线
图2各组肿瘤生长曲线
具体实施方式
下面结合实施例,更具体地说明本发明的内容。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通与/或改变都将落入本发明保护范围。
实施例1
聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒
原料及用量比如下:槐果碱1份、硬脂酸20份、大豆卵磷脂4份、泊洛沙姆6份、F-685份、壳聚糖1份、聚磺酰胺1份。
制备方法:①称取硬脂酸及槐果碱,在75℃水浴条件下将其搅拌均匀至澄清透明状,制成油相。称取大豆卵磷脂、泊洛沙姆和F-68,75℃双蒸水,制成水相。将水相以5ml/min的速度滴入至油相中,搅拌30min使其充分混匀制得初乳。
于100w下超声处理6min,将超声后液体在搅拌下迅速加至5倍体积蒸馏水中,继续固化搅拌15min,于4℃,20000rpm条件下,低温离心5min,0.22μ m微孔滤膜过滤,恢复到室温,即得槐果碱固体脂质纳米粒。
②将所得的槐果碱固体脂质纳米粒快速倾倒入5倍体积超声下的连续相中,连续相为pH值2的含壳聚糖的醋酸缓冲溶液。搅拌继续固化1h,于4℃,20000 rpm条件下,低温离心5min,后收集滤液,0.45μm微孔滤膜过滤,恢复到室温,即得壳聚糖修饰的槐果碱固体脂质纳米粒。
③将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入2倍体积超声下的连续相中,连续相为pH值8的含聚磺酰胺的氢氧化钠缓冲溶液。搅拌继续固化1h,于4℃,20000rpm条件下,低温离心5min,后收集滤液,0.45μm 微孔滤膜过滤,恢复到室温,即得。
实施例2
聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒
原料及用量比如下:槐果碱3份、硬脂酸25份、大豆卵磷脂11份、F-687 份、壳聚糖2份、聚磺酰胺1份。
制备方法:①称取硬脂酸及槐果碱,在80℃水浴条件下将其搅拌均匀至澄清透明状,制成油相。称取大豆卵磷脂、F-68,80℃双蒸水,制成水相。将水相以6ml/min的速度滴入至油相中,搅拌35min使其充分混匀制得初乳。
于100w下超声处理7min,将超声后液体在搅拌下迅速加至6倍体积蒸馏水中,继续固化搅拌18min,于5℃,20000rpm条件下,低温离心6min,0.22μm微孔滤膜过滤,恢复到室温,即得槐果碱固体脂质纳米粒。
②将所得的槐果碱固体脂质纳米粒快速倾倒入6倍体积超声下的连续相中,连续相为pH值3的含壳聚糖的醋酸缓冲溶液。搅拌继续固化1h,于5℃,20000 rpm条件下,低温离心6min,后收集滤液,0.45μm微孔滤膜过滤,恢复到室温,即得壳聚糖修饰的槐果碱固体脂质纳米粒。
③将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入2.5倍体积超声下的连续相中,连续相为pH值8.5的含聚磺酰胺的氢氧化钠缓冲溶液。搅拌继续固化1h,于4℃,20000rpm条件下,低温离心6min,后收集滤液,0.45μ m微孔滤膜过滤,恢复到室温,即得。
实施例3
聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒
槐果碱5份、硬脂酸25份、泊洛沙姆12份、F-688份、壳聚糖1份、聚磺酰胺2份。
制备方法:①称取硬脂酸及槐果碱,在75℃水浴条件下将其搅拌均匀至澄清透明状,制成油相。称取泊洛沙姆、F-68,80℃双蒸水,制成水相。将水相以 5ml/min的速度滴入至油相中,搅拌32min使其充分混匀制得初乳。
于100w下超声处理6min,将超声后液体在搅拌下迅速加至5.5倍体积蒸馏水中,继续固化搅拌16min,于5℃,20000rpm条件下,低温离心6min,0.22μ m微孔滤膜过滤,恢复到室温,即得槐果碱固体脂质纳米粒。
②将所得的槐果碱固体脂质纳米粒快速倾倒入5.5倍体积超声下的连续相中,连续相为pH值1.5的含壳聚糖的醋酸缓冲溶液。搅拌继续固化1h,于5℃,20000 rpm条件下,低温离心6min,后收集滤液,0.45μm微孔滤膜过滤,恢复到室温,即得壳聚糖修饰的槐果碱固体脂质纳米粒。
③将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入2倍体积超声下的连续相中,连续相为pH值9的含聚磺酰胺的氢氧化钠缓冲溶液。搅拌继续固化1h,于4℃,20000rpm条件下,低温离心6min,后收集滤液,0.45μm 微孔滤膜过滤,恢复到室温,即得。
对比例1
未经聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒
将实施例1中步骤①-②制备得到的壳聚糖修饰的槐果碱固体脂质纳米粒作为对比例1。
试验例
1、粒径和电位检测
1.1粒径及其分布测定
方法:取制得的实施例1和对比例1的纳米粒10μL加入990μL 0.9%NaCl 水溶液,充分混合均匀。加入洁净的聚苯丙乙烯色杯中,排除气泡,使用激光粒径测定仪(MalvemZetasizer Nano ZS 90)测定纳米粒的粒度和粒度分布。
1.2 Zeta电位的测定
向洁净的聚苯丙乙烯U形管中加入1mL试验品溶液,排除气泡,按中国药典2020年第二部相关规定,用激光粒径测定仪(Malvem Zetasizer Nano ZS 90) 测定纳米粒的Zeta电位。
1.3测定结果
对比例1的纳米粒平均粒径为129.8±2.1nm,Zeta电位为20±0.6mv,PDI为 0.210±0.031。实施例1的纳米粒平均粒径为133.6±1.7nm,Zeta电位为-26.9±0.8mv, PDI为0.188±0.015。
Figure RE-GDA0003749942500000081
1.4结论
本文制备的靶向纳米粒的粒径大小在纳米级别内,具有靶向性,符合注射剂的要求。壳聚糖带正电,固体脂质材料制备的纳米粒带负电,通过静电吸附原理壳聚糖缠绕修饰在带负电的固体脂质纳米粒外围,修饰后的固体脂质纳米粒为正电,说明壳聚糖包裹在纳米粒的周围。同理聚磺酰胺pH7.4下带负电,吸附在带正电的壳聚糖上,修饰后的纳米粒带负电,说明本发明的纳米粒制备成功。
2、包封率测定
2.1方法
精密量取实施例1和对比例1的产品制备为混悬液各300μL,置10mL棕色容量瓶中加入适量乙腈破乳,超声2min溶解,流动相稀释至刻度,摇匀,超声提取15min,静置,过0.22μm的微孔滤膜,取20μL续滤液测定峰面积,计算样品中槐果碱的含量为W总。另精密量取实施例1和对比例1的纳米粒混悬液各300μL,于4℃,20000rpm条件下,低温离心5min,后收集游离沉淀,置 10mL棕色容量瓶中加入乙腈破乳,超声2min溶解,流动相稀释至刻度,摇匀,超声提取15min,静置,过0.22μm微孔滤膜,取20μL续滤液测定峰面积,计算样品中槐果碱的含量为W游。包封率和载药量按照下列公式进行计算。
包封率=(W-W)/W×100%
载药量=(W-W)/W×100%
式中W总——为总药量
W游——为游离药量
W纳——为纳米粒的重量。
2.2测定结果
Figure RE-GDA0003749942500000091
2.3结论
由2.2的测定结果可知,本发明制备的聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒与未经聚磺酰胺修饰的纳米粒相比,具有更高的包封率和载药量。
3、体外释放试验
3.1方法:
人体内环境pH值接近7.4,而肿瘤细胞细胞外基质pH偏低,为6.3-6.8之间,肿瘤细胞内含体及溶酶体pH值更低,pH<6。本发明试验选择pH 7.4、6.5和5.0的PBS缓冲液分别模拟正常血液环境、肿瘤细胞外基质和溶酶体环境,来研究纳米粒的体外释药行为。
3.1.1释放介质的配制
pH 7.4PBS缓冲液:取磷酸二氢钾1.36g,加0.1mol/L氢氧化钠溶液79m L,用水稀释至200m L,即得;
pH 6.5PBS缓冲液:取磷酸二氢钾0.68g,加0.1mol/L氢氧化钠溶液15.2m L,用水稀释至100m L,即得;
pH 5.0PBS缓冲液:取0.2mol/L磷酸二氢钠溶液一定量,用氢氧化钠溶液调节pH至5.0,即得。
3.1.2体外释药实验
分别称取10.0mg冻干后的实施例1和对比例1的纳米粒冻干粉,溶解于10 m L不同pH的PBS缓冲溶液中,待溶解完后置于透析袋内,封口后置于含有50m L不同pH的释放介质中,在温度为37℃,转速为60rpm的恒温振荡培养箱中进行培养,以此研究其释放行为。分别于0.5、1、2、3、4、6、9、12、18、 24、30、36、40、44、48h取样3m L,同时向体系中补充同体积的新鲜缓冲液维持释放介质体积不变,每组设置三个平行实验。该实验全程在避光条件下进行。利用HPLC法测定各样品溶液在479nm处的峰面积,并代入相应标准曲线计算槐果碱含量。根据下述公式计算槐果碱的累积释放百分率Q(%)。并以时间 t(h)为横坐标,槐果碱累积释放量Q(%)为纵坐标,绘制药物释放曲线。释放曲线结果如图1所示。
Figure RE-GDA0003749942500000101
注:Ci——各取样时间点释放介质药物浓度(μg/mL);Ct——为t时间点释放介质药物浓度(μg/mL)
Vi——取样体积(mL);V——释放介质总体积(mL);W——纳米粒的载药量(μg)。
3.1.3测定结果
图1所示为实施例1产品在不同pH释放介质中的体外释放曲线。释药行为表现出很明显的pH敏感性。前1h内,在pH 6.5和pH 7.4释放介质中槐果碱累积释放量分别仅为6%和2%,而在pH 5.0的释放介质中则达到22%;24h后, pH 6.5和pH 7.4释放介质中槐果碱累积释放量分别为35%和13%,而在pH 5.0 的释放介质中达到71%。
3.1.4结论
作为一个理想的药物传递系统,纳米载药系统不仅应在体循环过程中保持结构稳定,而且在到达靶向部位时应快速释放药物。对于本发明构建的pH敏感性纳米载药系统而言,在到达肿瘤细胞溶酶体(pH 5.0)时能够快速释放药物,而在体循环(pH 7.4)和肿瘤细胞外基质(pH 6.3-6.8)中基本不释放药物。
4、体内抗肿瘤试验
4.1药品与试剂
DMEM/HIGH GLUCOSE:美国GE公司
胎牛血清:浙江天杭生物科技股份有限公司
青霉素-链霉素溶液:碧云天
0.25%胰蛋白酶消化液:Solarbio
MTT:Amersco
DMSO:BioFroxx
水合氯醛
4.2实验动物
ICR小鼠(体重23±2g),雌雄各半,购自长春市亿斯实验动物技术有限责任公司,动物合格证号:SCXK(吉)-2016-0003,批号:201700019623,健康状况良好。
4.3肿瘤细胞系
Hepa1-6鼠源肝癌细胞系,购买自中国科学院细胞库。
4.4试验方法
4.4.1小鼠肿瘤模型的建立
选择对数生长期的Hepa1-6肿瘤细胞,经过PBS洗涤、适量0.25%胰酶消化、吸管充分吹打后,进行细胞计数,并用无菌0.9%生理盐水制备成癌细胞悬液,调整细胞浓度至5×107细胞/mL。用1mL注射器于鼠腋下注射0.1mL癌细胞悬液,接种Hepa1-6肿瘤细胞。精心饲养小鼠10-14天后,观察肿瘤生长情况,选择肿瘤生长情况良好的小鼠作为实验模型。待肿瘤体积长到100mm3左右开始给药。取24只肿瘤大小及体重相近的荷瘤小鼠,分为4组,每组6只。分别为:第①组:生理盐水组、第②组:Free-SPO组(即槐果碱对照组)、第③组:CS-SPO-SLN组(壳聚糖-槐果碱固体脂质纳米粒组)(对比例1)、第④组:OSA-CS-SPO-SLN组(聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒组) (实施例1)。
4.4.2给药方案
第③和④组:使用前精密称取所需药量,加入生理盐水稀释并配制成适宜浓度的晶体混悬液。
第②组:取适量的槐果碱,用无菌0.9%生理盐水将浓度调至400g/mL。
每三天通过小鼠的尾静脉注射给药共给五次药。按剂量40g/只(2mg/kg) 注射。生理盐水组按照给药组注射剂量进行给药。
从给药治疗当天开始用游标卡尺测量小鼠的最长径及垂直径,并计算肿瘤体积。隔天一次。计算公示为:肿瘤体积=长径×(短径×短径)/2;监督肿瘤体积的变化。
4.4.3试验结果
给予不同的组别后,各组肿瘤体积随时间变化的曲线如图2所示。从结果可以看出,与生理盐水组①相比,②③④各个给药组的肿瘤体积都有所减少,均有明显的抗肿瘤效果,其中第④组的体内抗肿瘤效果最好,肿瘤体积最小,其次是第③组,最后是第②组。在治疗中各组小鼠的体重均无明显变化,证明各药物没有毒性。

Claims (10)

1.一种固体脂质纳米粒,其特征在于,所述固体脂质纳米粒为聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒。
2.如权利要求1所述的固体脂质纳米粒,其特征在于,由下述原料制成:槐果碱、脂质、乳化剂、助乳化剂、壳聚糖、聚磺酰胺。
3.如权利要求1或2所述的固体脂质纳米粒,所述纳米粒中槐果碱的含量百分比为1%~30%,优选为2.5%~20%;更优选为3%~10%;再更优选为3.5%~6%。
4.如权利要求1-3任一项所述的固体脂质纳米粒,其中所述原料及重量配比如下:槐果碱1-13份(例如1、2、3、4、5、6、7、8、9、10、11、12、13份)、脂质20-40份(例如20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40份)、乳化剂10-20份(例如10、11、12、13、14、15、16、17、18、19、20份)、助乳化剂5-10份(例如5、6、7、8、9、10份)、壳聚糖1-10份(例如1、2、3、4、5、6、7、8、9、10份)、聚磺酰胺1-20份(例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20份);
优选的,所述原料的重量配比如下:槐果碱1-8份、脂质20-30份、乳化剂10-15份、助乳化剂5-8份、壳聚糖1-5份、聚磺酰胺1-5份;
更优选的,所述原料的重量配比如下:槐果碱1-5份、脂质20-25份、乳化剂10-12份、助乳化剂5-8份、壳聚糖1-2份、聚磺酰胺1-2份。
5.如权利要求1-4任一项所述的固体脂质纳米粒,其中所述脂质选自以下中的一种或多种:饱和脂肪酸类,如硬脂酸、棕榈酸、肉豆蔻酸、月桂酸、癸酸等;饱和脂肪酸甘油酯类,如单硬脂酸甘油酯、棕榈酸甘油三酯等;更优选的,所述脂质选自饱和脂肪酸类,饱和脂肪酸类中更优选硬脂酸。
6.如权利要求1-5任一项所述的固体脂质纳米粒,其中所述乳化剂选自以下中的一种或多种:磷脂类,如大豆卵磷脂、蛋黄卵磷脂、磷脂酰胆碱等;非离子表面活性剂类,如吐温、司盘、泊洛沙姆等;更优选的,所述乳化剂选自以下中的一种或多种:大豆卵磷脂、泊洛沙姆;更优选的,所述乳化剂选自大豆卵磷脂、泊洛沙姆组成的复合乳化剂。
7.如权利要求1-6任一项所述的固体脂质纳米粒,其中所述助乳化剂选自以下中的一种或多种:丙三醇、正丁醇、聚乙二醇、F-68、聚甘油酯等;更优选的,所述助乳化剂选自F-68。
8.如权利要求1-7任一项所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒的制备方法,包括以下步骤:
①称取脂质相及槐果碱,搅拌均匀制成油相;称取乳化剂和助乳化剂,在水中制成水相,将水相滴入至油相中,搅拌均匀制得初乳,将初乳超声后得到的液体在搅拌下加至分散相中,分散项为蒸馏水溶液,继续固化搅拌1-30min后,低温离心1-10min,微孔滤膜过滤,恢复到室温,得到槐果碱固体脂质纳米粒;
②将所得的槐果碱固体脂质纳米粒快速倾倒入超声下的连续相中,连续相为包含壳聚糖的醋酸缓冲溶液,搅拌继续固化,低温离心1-10min后收集滤液,微孔滤膜过滤,得到壳聚糖修饰的槐果碱固体脂质纳米粒;
③将所得的壳聚糖修饰的槐果碱固体脂质纳米粒快速倾倒入超声下的连续相中,连续相为包含聚磺酰胺的氢氧化钠缓冲溶液,搅拌继续固化,低温离心1-10min,后收集滤液,微孔滤膜过滤,得到聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒。
9.权利要求1-7任一项所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒在制备治疗肿瘤疾病的药物中的用途,
优选的,所述肿瘤疾病包括头颈部的肿瘤、鼻咽癌、口腔癌、食道癌、胃癌、肺癌、肝癌、直肠癌、结肠癌、乳腺癌、卵巢癌、子宫癌、子宫内膜癌等;更优选的,所述肿瘤疾病为肝癌。
10.一种药物组合物,所述药物组合物包含权利要求1-7任一项所述聚磺酰胺修饰的壳聚糖-槐果碱固体脂质纳米粒和药学上可接受的载体。
CN202210420694.9A 2022-04-21 2022-04-21 一种脂质纳米粒及其制备方法及用途 Active CN114917362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210420694.9A CN114917362B (zh) 2022-04-21 2022-04-21 一种脂质纳米粒及其制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210420694.9A CN114917362B (zh) 2022-04-21 2022-04-21 一种脂质纳米粒及其制备方法及用途

Publications (2)

Publication Number Publication Date
CN114917362A true CN114917362A (zh) 2022-08-19
CN114917362B CN114917362B (zh) 2024-06-04

Family

ID=82805965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210420694.9A Active CN114917362B (zh) 2022-04-21 2022-04-21 一种脂质纳米粒及其制备方法及用途

Country Status (1)

Country Link
CN (1) CN114917362B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115721734A (zh) * 2022-12-06 2023-03-03 浙江大学 负载布地奈德的固体脂质纳米颗粒复合物及制备方法
CN115869286A (zh) * 2022-11-10 2023-03-31 海南卓泰制药有限公司 一种含安吖啶的包封组合物及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931156A (zh) * 2005-09-14 2007-03-21 中国科学院上海药物研究所 紫杉醇类物质固体脂质纳米粒及其制备方法
CN101011359A (zh) * 2006-12-29 2007-08-08 浙江大学 一种具有抗肿瘤活性的固体脂质纳米粒
CN101947204A (zh) * 2010-07-21 2011-01-19 彭代银 新藤黄酸固体脂质纳米粒及其制备方法
CN102793672A (zh) * 2012-08-21 2012-11-28 南京医科大学 壳聚糖修饰的醋甲唑胺固体脂质纳米粒及其制备方法
KR20170022620A (ko) * 2015-08-21 2017-03-02 가천대학교 산학협력단 N-트리메틸 키토산 결합 팔미트산 중합체로 표면 개질된 지용성 약물 함유 고체 지질 나노입자
CN109045109A (zh) * 2018-10-23 2018-12-21 郑州大学 一种壳聚糖修饰的丹参提取物双相载药纳米脂质载体及其制备方法
CN110123992A (zh) * 2019-06-27 2019-08-16 哈尔滨商业大学 一种壳聚糖修饰的莪术油固体脂质纳米粒及其制备方法
CN112999197A (zh) * 2021-03-05 2021-06-22 浙江医药高等专科学校 一种促五环三萜类药物吸收的壳聚糖包覆固体脂质纳米粒及其制备方法
KR20220092106A (ko) * 2020-12-24 2022-07-01 서울대학교산학협력단 키토산 코팅 고체 지질 나노입자를 코어로 하는 pH 감응-방출제어형 캡소좀

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931156A (zh) * 2005-09-14 2007-03-21 中国科学院上海药物研究所 紫杉醇类物质固体脂质纳米粒及其制备方法
CN101011359A (zh) * 2006-12-29 2007-08-08 浙江大学 一种具有抗肿瘤活性的固体脂质纳米粒
CN101947204A (zh) * 2010-07-21 2011-01-19 彭代银 新藤黄酸固体脂质纳米粒及其制备方法
CN102793672A (zh) * 2012-08-21 2012-11-28 南京医科大学 壳聚糖修饰的醋甲唑胺固体脂质纳米粒及其制备方法
KR20170022620A (ko) * 2015-08-21 2017-03-02 가천대학교 산학협력단 N-트리메틸 키토산 결합 팔미트산 중합체로 표면 개질된 지용성 약물 함유 고체 지질 나노입자
CN109045109A (zh) * 2018-10-23 2018-12-21 郑州大学 一种壳聚糖修饰的丹参提取物双相载药纳米脂质载体及其制备方法
CN110123992A (zh) * 2019-06-27 2019-08-16 哈尔滨商业大学 一种壳聚糖修饰的莪术油固体脂质纳米粒及其制备方法
KR20220092106A (ko) * 2020-12-24 2022-07-01 서울대학교산학협력단 키토산 코팅 고체 지질 나노입자를 코어로 하는 pH 감응-방출제어형 캡소좀
CN112999197A (zh) * 2021-03-05 2021-06-22 浙江医药高等专科学校 一种促五环三萜类药物吸收的壳聚糖包覆固体脂质纳米粒及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘艳红;周建平;霍美蓉;: "肿瘤微环境响应型智能纳米药物载体的研究进展" *
刘艳红;周建平;霍美蓉;: "肿瘤微环境响应型智能纳米药物载体的研究进展", 中国药科大学学报, no. 02, 25 April 2016 (2016-04-25), pages 125 - 133 *
姚鹏;梁欢;王倩;王康;张家彬;宋鹤梁;邓同铭;晏为力;: "壳聚糖和帕米膦酸双修饰的固体脂质纳米粒的制备", 现代生物医学进展, no. 05, 20 February 2016 (2016-02-20), pages 811 - 813 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115869286A (zh) * 2022-11-10 2023-03-31 海南卓泰制药有限公司 一种含安吖啶的包封组合物及其制备方法
CN115869286B (zh) * 2022-11-10 2023-08-18 海南卓泰制药有限公司 一种含安吖啶的包封组合物及其制备方法
CN115721734A (zh) * 2022-12-06 2023-03-03 浙江大学 负载布地奈德的固体脂质纳米颗粒复合物及制备方法
CN115721734B (zh) * 2022-12-06 2024-02-02 浙江大学 负载布地奈德的固体脂质纳米颗粒复合物及制备方法

Also Published As

Publication number Publication date
CN114917362B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
Kong et al. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency
Wang et al. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy
Li et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel
Li et al. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: An in vivo/in vitro evaluation
Chen et al. Chitosan-modified lipid nanodrug delivery system for the targeted and responsive treatment of ulcerative colitis
Natesan et al. Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode
Zhang et al. NIR-triggerable ROS-responsive cluster-bomb-like nanoplatform for enhanced tumor penetration, phototherapy efficiency and antitumor immunity
Zhang et al. A smart dual-drug nanosystem based on co-assembly of plant and food-derived natural products for synergistic HCC immunotherapy
CN114917362A (zh) 一种脂质纳米粒及其制备方法及用途
Zhou et al. Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo
CN108042490B (zh) 纳米载药系统、其制备方法、药物组合物及在治疗癌症中的应用
Salah et al. Starch nanoparticles improve curcumin-induced production of anti-inflammatory cytokines in intestinal epithelial cells
Jiang et al. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy
Almeida et al. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer
Wang et al. Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo
Chen et al. Enhanced uptake and cytotoxity of folate-conjugated mitoxantrone-loaded micelles via receptor up-regulation by dexamethasone
Lee et al. A charge-switched nano-sized polymeric carrier for protein delivery
Wang et al. A tumor-targeted delivery of oral isoliquiritigenin through encapsulated zein phosphatidylcholine hybrid nanoparticles prevents triple-negative breast cancer
Yan et al. Design of a novel nucleus-targeted NLS-KALA-SA nanocarrier to delivery poorly water-soluble anti-tumor drug for lung cancer treatment
Lin et al. Cell membrane-camouflaged DOX-loaded β-glucan nanoparticles for highly efficient cancer immunochemotherapy
Zhu et al. Construction of long circulating and deep tumor penetrating gambogic acid-hydroxyethyl starch nanoparticles
Fan et al. Polysialic acid self-assembled nanocomplexes for neutrophil-based immunotherapy to suppress lung metastasis of breast cancer
CN115089561B (zh) 一种细胞膜包被的前药纳米粒、制备方法及应用
Hu et al. Anticancer effect of folic acid modified tumor-targeting quercetin lipid nanoparticle
Song et al. Preparation and evaluation of insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan for oral delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant