CN114907398B - 一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用 - Google Patents

一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用 Download PDF

Info

Publication number
CN114907398B
CN114907398B CN202210658153.XA CN202210658153A CN114907398B CN 114907398 B CN114907398 B CN 114907398B CN 202210658153 A CN202210658153 A CN 202210658153A CN 114907398 B CN114907398 B CN 114907398B
Authority
CN
China
Prior art keywords
perovskite
single crystal
chiral organic
symbiotic
chiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210658153.XA
Other languages
English (en)
Other versions
CN114907398A (zh
Inventor
罗军华
叶煌
刘希涛
姬成敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mindu Innovation Laboratory
Original Assignee
Mindu Innovation Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mindu Innovation Laboratory filed Critical Mindu Innovation Laboratory
Priority to CN202210658153.XA priority Critical patent/CN114907398B/zh
Publication of CN114907398A publication Critical patent/CN114907398A/zh
Application granted granted Critical
Publication of CN114907398B publication Critical patent/CN114907398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用。所述的手性有机无机杂化共生钙钛矿的单晶为四[左旋(4‑氯苯基)乙胺]一甲脒三铅十一碘,化学式为Pb6I11Cl8C33N12H49,室温下属于单斜晶系,空间群为P21,晶胞参数为α=90°,β=92.619°,γ=38.4523°,Z=2,本发明的手性有机无机杂化共生钙钛矿单晶稳定性较高、缺陷密度小、光响应范围优良,反应条件温和。

Description

一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用
技术领域
本发明属于涉及功能材料领域,具体涉及一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用。
背景技术
无机有机杂化钙钛矿因为拥有无机组分优异的半导体性能和有机组分的多样化官能团修饰,近些年来在太阳能电池以及光电材料领域具有广阔的运用。其中,手性无机有机杂化钙钛矿因为手性有机胺和无机骨架之间的手性转移,具有手性量子阱合手性半导体的特性,近些年来在铁电材料、非线性光学和自旋电子传输领域拥有广泛的前景,有望在圆偏振光探测与量子通讯领域发挥重大应用。然而,传统手性无机有机杂化钙钛矿吸收带隙较宽,光电性能普遍较差,且量子阱结构单一,这些都限制了手性无机有机杂化钙钛矿的进一步应用。
引入共生结构为手性无机有机杂化钙钛矿的发展提供了一条新路径。共生结构指的是在一种晶体结构中,通过物理或化学手段,将另一种晶体的结构呈一定的周期重复规律引入到已有的晶体结构当中,形成一种新的晶体结构。共生结构能够表现出其两种前体的物理化学特征,为整合各个材料的优势实现高性能光电功能材料提供良好的平台。
发明内容
本发明提供种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用,本发明的手性有机无机杂化共生钙钛矿单晶稳定性较高、缺陷密度小、光响应范围优良,反应条件温和。
手性有机无机杂化共生钙钛矿单晶,所述的手性有机无机杂化共生钙钛矿的单晶为四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘,化学式为Pb6I11Cl8C33N12H49,室温下属于单斜晶系,空间群为P21,晶胞参数为 α=90°,β=92.619°,γ=38.4523°,Z=2,/>
所述的手性有机无机杂化共生钙钛矿单晶的生长方法,包括如下步骤:
室温下,将2~3克三水合醋酸铅和0.5~0.7克醋酸甲脒加入20~30mL氢碘酸水溶液中,然后滴入0.05~0.7克左旋(4-氯苯基)乙胺,接着加热至120~130℃并搅拌20~30分钟之后于1小时内降温至20℃~30℃,然后以0.5~1℃/h的速率降温到5~10℃,即得所述的手性有机无机杂化共生钙钛矿单晶。
所述的氢碘酸水溶液中氢碘酸的质量份数为47~48%。
一种手性有机无机杂化共生钙钛矿单晶的应用:所述的一种手性有机无机杂化共生钙钛矿单晶能用于制备可见-近红外圆偏振探测器。
X-射线单晶衍射测试结构表明:该化合物的化学式为Pb6I11 Cl8C33N12H49,室温下属于单斜晶系,空间群为P21,晶胞参数为 α=90°,β=92.619°,γ=38.4523°,Z=2,/>本发明晶体结构具有单层钙钛矿和双层钙钛矿交替排列的的特征,在单层与双层之间整齐排列手性胺左旋(4-氯苯基)乙胺,双层的孔洞内填充着甲脒阳离子。
较之前的现有技术,本发明具有以下有益效果:
本发明制得的手性有机无机杂化共生钙钛矿单晶稳定性较高、缺陷密度小、光响应范围优良,反应条件温和。紫外-可见-近红外吸收光谱表明,该晶体拥有台阶状吸收图谱,吸收截止边为850nm,覆盖全部紫外与可见光区,覆盖部分近红外光区,具有潜在的可见-近红外圆偏振探测的潜质。
附图说明
图1是本发明手性有机无机杂化共生钙钛矿单晶的晶体结构图。
图2是本发明手性有机无机杂化共生钙钛矿单晶的照片。
图3是本发明手性有机无机杂化共生钙钛矿单晶的紫外-可见-近红外吸收图谱。
具体实施方式
以下结合附图合具体实施方式对本发明作进一步地说明。
实施例1
手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘的制备:
室温下,将2克三水合醋酸铅和0.5克醋酸甲脒加入20mL氢碘酸水溶液中,然后滴入0.05克左旋(4-氯苯基)乙胺,接着加热至120℃并搅拌20分钟之后于1小时内降温至20℃,然后以1℃/h的速率降温到5℃,即得所述的手性有机无机杂化共生钙钛矿单晶。
所述的氢碘酸水溶液中氢碘酸的质量份数为47%。
实施例2
手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘的制备:
室温下,将3克三水合醋酸铅和0.7克醋酸甲脒加入30mL氢碘酸水溶液中,然后滴入0.7克左旋(4-氯苯基)乙胺,接着加热至130℃并搅拌30分钟之后于1小时内降温至30℃,然后以0.5℃/h的速率降温到10℃,即得所述的手性有机无机杂化共生钙钛矿单晶。
所述的氢碘酸水溶液中氢碘酸的质量份数为48%。
实施例3
手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘的制备:
室温下,将2.5克三水合醋酸铅和0.6克醋酸甲脒加入25mL氢碘酸水溶液中,然后滴入0.1克左旋(4-氯苯基)乙胺,接着加热至125℃并搅拌25分钟之后于1小时内降温至25℃,然后以0.6℃/h的速率降温到6℃,即得所述的手性有机无机杂化共生钙钛矿单晶。
所述的氢碘酸水溶液中氢碘酸的质量份数为47%。
将实施例1-3所得到的手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘的微型单晶挑选至载晶座上,选择曝光时间为1s,扫描步长为0.5度,收集分辨率为0.77埃的单晶衍射数据。选择点群为单斜P,空间群为P21,利用单晶解析软件shelx-XS的直接法进行单晶解析,用shelx-XL的最小二乘法进行精修,均可得到如图1所示的手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘的单层钙钛矿-双层钙钛矿的手性共生交替结构。
上述实施例得到的化合物的化学式均为Pb6I11 Cl8C33N12H49,室温下属于单斜晶系,空间群为P21,晶胞参数为 α=90°,β=92.619°,γ=38.4523°,Z=2,/>本发明晶体结构具有单层钙钛矿和双层钙钛矿交替排列的的特征,在单层与双层之间整齐排列手性胺左旋(4-氯苯基)乙胺,双层的孔洞内填充着甲脒阳离子。
手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘的紫外-可见-近红外吸收光谱的表征:
将上述实施例制得的手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘晶体研磨成粉末,将其均匀铺在干燥压实的硫酸钡基底表面,置入紫外-可见-近红外吸收光谱仪的积分球模块中,选定扫描区间为200nm至1000nm,扫描速率为2nm每秒,数据收集方式为漫反射,得到如图3所示的紫外-可见-近红外吸收图谱。由图谱可知,手性层状钙钛矿四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘的吸收边远至近红外波段,具有实现可见-近红外圆偏振探测的潜质。
上述实施例仅用来进一步说明本发明,凡是依据本发明原理所做出的简单修改、等同替换均在本发明保护范围之内。

Claims (4)

1.一种手性有机无机杂化共生钙钛矿的单晶,其特征在于:所述的手性有机无机杂化共生钙钛矿的单晶为四[左旋(4-氯苯基)乙胺]一甲脒三铅十一碘,化学式为Pb6I11Cl8C33N12H49,室温下属于单斜晶系,空间群为P21,晶胞参数为α=90°,β=92.619°,γ=38.4523°,Z=2,/>
2.如权利要求1所述的一种手性有机无机杂化共生钙钛矿单晶的生长方法,其特征在于:包括如下步骤,
室温下,将2~3克三水合醋酸铅和0.5~0.7克醋酸甲脒加入20~30mL氢碘酸水溶液中,然后滴入0.05~0.7克左旋(4-氯苯基)乙胺,接着加热至120~130℃并搅拌20~30分钟之后于1小时内降温至20℃~30℃,然后以0.5~1℃/h的速率降温到5~10℃,即得所述的手性有机无机杂化共生钙钛矿单晶。
3.如权利要求2所述的一种手性有机无机杂化共生钙钛矿单晶的生长方法,其特征在于:所述的氢碘酸水溶液中氢碘酸的质量份数为47~48%。
4.如权利要求1所述的一种手性有机无机杂化共生钙钛矿单晶的应用,其特征在于:所述的一种手性有机无机杂化共生钙钛矿单晶能用于制备可见-近红外圆偏振探测器。
CN202210658153.XA 2022-06-10 2022-06-10 一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用 Active CN114907398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210658153.XA CN114907398B (zh) 2022-06-10 2022-06-10 一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210658153.XA CN114907398B (zh) 2022-06-10 2022-06-10 一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用

Publications (2)

Publication Number Publication Date
CN114907398A CN114907398A (zh) 2022-08-16
CN114907398B true CN114907398B (zh) 2023-12-05

Family

ID=82770211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210658153.XA Active CN114907398B (zh) 2022-06-10 2022-06-10 一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用

Country Status (1)

Country Link
CN (1) CN114907398B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863246A (zh) * 2019-11-21 2020-03-06 南开大学 一种杂化有机-无机手性钙钛矿单晶及其合成方法
CN111944515A (zh) * 2020-08-25 2020-11-17 中国科学院化学研究所 一种圆偏振发光材料及其制备方法与应用
CN113308734A (zh) * 2021-04-09 2021-08-27 北京交通大学 一种手性二维钙钛矿单晶及其制备方法和应用
CN114316952A (zh) * 2021-12-24 2022-04-12 山西大学 芳香胺构筑的双层dj型铅碘钙钛矿及制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863246A (zh) * 2019-11-21 2020-03-06 南开大学 一种杂化有机-无机手性钙钛矿单晶及其合成方法
CN111944515A (zh) * 2020-08-25 2020-11-17 中国科学院化学研究所 一种圆偏振发光材料及其制备方法与应用
CN113308734A (zh) * 2021-04-09 2021-08-27 北京交通大学 一种手性二维钙钛矿单晶及其制备方法和应用
CN114316952A (zh) * 2021-12-24 2022-04-12 山西大学 芳香胺构筑的双层dj型铅碘钙钛矿及制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Layered Metal-Halide Perovskite Single-Crystalline Microwire Arrays for Anisotropic Nonlinear Optics;Jinjin Zhao等;《Adv. Funct. Mater.》;第31卷;第2105855页 *

Also Published As

Publication number Publication date
CN114907398A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
Piveteau et al. Solid-state NMR and NQR spectroscopy of lead-halide perovskite materials
Green et al. Optical properties of photovoltaic organic–inorganic lead halide perovskites
Zhang et al. Exploring anisotropy on oriented wafers of MAPbBr3 crystals grown by controlled antisolvent diffusion
Ran et al. Facet-dependent control of PbI2 colloids for over 20% efficient perovskite solar cells
Nandi et al. CH3NH3PbI3, a potential solar cell candidate: structural and spectroscopic investigations
CN107829138A (zh) 一种基于混合阳离子的立方相有机无机钙钛矿单晶材料、制备方法及其应用
Zheng et al. Induction of chiral hybrid metal halides from achiral building blocks
Wu et al. A study on the effects of mixed organic cations on the structure and properties in lead halide perovskites
Anelli et al. Investigation of dimethylammonium solubility in MAPbBr3 hybrid perovskite: synthesis, crystal structure, and optical properties
CN104882543A (zh) 一种具有梯度能带结构的有机-无机杂化钙钛矿MAPbBr3材料及其制备方法
CN103496744B (zh) 还原态铵钨青铜纳米粒子的制备方法
CN110194718B (zh) 一种高度稳定铅基有机-无机杂化钙钛矿纳米片制备方法
CN113571645A (zh) Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法
CN113383436A (zh) 将卤化物钙钛矿表面转化为不溶性宽带隙铅氧盐以增强太阳能电池的稳定性
Pradhan et al. Two-dimensional hybrid organohalide perovskites from ultrathin PbS nanocrystals as template
CN113130769A (zh) 二维层状钙钛矿单晶、宽光谱光电探测器及其制备方法
CN111211233B (zh) 一种dj型二维双层杂化钙钛矿材料及制备方法和应用
Wang et al. Strain Modulation for High Brightness Blue Luminescence of Pr3+-Doped Perovskite Nanocrystals via Siloxane Passivation
Sala et al. Compositional investigation for bandgap engineering of wide bandgap triple cation perovskite
Zhang et al. Revealing the role of bifunctional molecules in crystallizing methylammonium lead iodide through geometric isomers
CN114907398B (zh) 一种手性有机无机杂化共生钙钛矿单晶、生长方法及其应用
Bonadio et al. Comparing the cubic and tetragonal phases of mapbi3 at room temperature
Rostan et al. Optoelectronic and morphology properties of perovskite/silicon interface layer for tandem solar cell application
Gao et al. Facet engineering: a promising pathway toward highly efficient and stable perovskite photovoltaics
Tian et al. Towards fluorinated Ruddlesden–Popper perovskites with enhanced physical properties: a study on (3-FC 6 H 4 CH 2 CH 2 NH 3) 2 PbI 4 single crystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant