CN114686987B - 一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途 - Google Patents

一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途 Download PDF

Info

Publication number
CN114686987B
CN114686987B CN202210280517.5A CN202210280517A CN114686987B CN 114686987 B CN114686987 B CN 114686987B CN 202210280517 A CN202210280517 A CN 202210280517A CN 114686987 B CN114686987 B CN 114686987B
Authority
CN
China
Prior art keywords
organic
inorganic hybrid
double perovskite
hybrid double
perovskite semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210280517.5A
Other languages
English (en)
Other versions
CN114686987A (zh
Inventor
罗军华
许�鹏
姬成敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN202210280517.5A priority Critical patent/CN114686987B/zh
Publication of CN114686987A publication Critical patent/CN114686987A/zh
Application granted granted Critical
Publication of CN114686987B publication Critical patent/CN114686987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/08Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by cooling of the solution
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种二维有机‑无机杂化双钙钛矿半导体晶体及其制备方法和用途。一种有机‑无机杂化双钙钛矿半导体晶体,所述的无机‑有机杂化半导体材料的化学式为(C6H5CH2NH3)4AgBiBr8。本发明制备了一种有机‑无机杂化双钙钛矿半导体晶体,本发明的有机‑无机杂化双钙钛矿半导体晶体制备成平面光电导探测器可实现对本征吸收光谱的高灵敏度探测。利用波长为405nm的激光照射该单晶晶体探测器件,测试其光电响应。当入射光的功率密度为50.9mW/cm2时,该晶体器件表现出明显的光电导效应,光电流和暗电流的比值可以达到1.8×103。该结果表明该材料用作光电导探测器件具有潜在的应用价值。

Description

一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法 和用途
技术领域
本发明属于功能晶体材料领域中的人工晶体材料领域,具体涉及一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途。
背景技术
近年来,以铅碘甲胺(CH3NH3PbI3)为代表的有机-无机杂化钙钛矿材料,具有诸多优异的光电物理性能,成为光电功能材料领域的研究热点。其中,体块有机-无机杂化钙钛矿半导体由于载流子迁移率高,载流子扩散距离长,以及可采用低成本的溶液法生长,在光电二极管(LED),太阳能电池,光电探测器等光电器件中展现了巨大潜力。然而,稳定性较差以及铅元素的毒性等问题制约了这类三维杂化钙钛矿材料大规模的生产和应用。因此合成绿色、稳定的有机-无机杂化钙钛矿化合物是目前光电材料研究领域重要的研究课题。以铅卤素钙钛矿材料为骨架模型,采用异价离子取代的方法,如选择一价金属和三价金属离子取代Pb2+,构筑有机-无机杂化双钙钛矿化合物是一个设计新型绿色、稳定杂化钙钛矿材料的可行方案。与此同时,引入大尺寸芳香胺阳离子,利用降维策略,组装二维有机-无机杂化双钙钛矿,提高其稳定性,并且二维层状的结构具有独特的量子阱效应,可提高材料的激子结合能,促进光生电子和空穴的快速分离。
因此基于芳香胺构筑稳定性高和光电性能优异的有机-无机杂化双钙钛矿半导体材料,并基于其高质量单晶光电器件具有重要的理论和实际价值。
发明内容
本发明的第一个目的在于提供一种二维有机-无机杂化双钙钛矿半导体晶体。
本发明的第二个目的在于提供一种有机-无机杂化双钙钛矿半导体晶体的制备方法。
本发明的第三个目的在于提供一种有机-无机杂化双钙钛矿半导体晶体的用途。
本发明的技术方案如下:
方案一)
一种有机-无机杂化双钙钛矿半导体晶体,所述的无机-有机杂化半导体材料的化学式为(C6H5CH2NH3)4AgBiBr8
进一步地,所述的有机-无机杂化双钙钛矿半导体晶体属于单斜晶系,空间群为P21/c。
进一步地,所述晶体的晶胞参数为: α=90°,β=90.052(3)°,γ=90°,/>Z=2。
方案二)
一种有机-无机杂化双钙钛矿半导体晶体的制备方法,包括以下步骤:
称取苄胺、Ag2O和Bi2O3并置于烧杯中,再向烧杯中加入HBr水溶液,加热到126~130℃并搅拌至得到黄色澄清溶液;
然后将得到的溶液密封放入55℃-60℃的烘箱中,以0.8~1(℃/天的速率冷却至室温,即得到所述的有机-无机杂化双钙钛矿半导体;
所述的苄胺、Ag2O和Bi2O3的摩尔比为(4~8):(1~2):1;
所述的Ag2O与HBr的摩尔比为1:(8~20)。
进一步地,所述的HBr水溶液中HBr的质量分数为47~48%。
方案三)
一种有机-无机杂化双钙钛矿半导体的用途,所述的有机-无机杂化双钙钛矿半导体(C6H5CH2NH3)4AgBiBr8能应用在光电导探测器领域。
X射线单晶衍射的结果表明:该化合物的分子式为C28H40AgBiBr8N4,结构简式为(C6H5CH2NH3)4AgBiBr8。其中,C6H5CH2NH3代表苄铵离子。在室温下(C6H5CH2NH3)4AgBiBr8晶体属于单斜晶系,空间群为P21/c。该化合物的晶胞参数为α=90°,β=90.052(3)°,γ=90°,Z=2,单胞体积为/>
较之前的现有技术,本发明具有以下有益效果:本发明制备了一种有机-无机杂化双钙钛矿半导体晶体,本发明的有机-无机杂化双钙钛矿半导体晶体制备成平面光电导探测器可实现对本征吸收光谱的高灵敏度探测。利用波长为405nm的激光照射该单晶晶体探测器件,测试其光电响应。当入射光的功率密度为50.9mW/cm2时,该晶体器件表现出明显的光电导效应,光电流和暗电流的比值(Iph/Idark)可以达到1.8×103。该结果表明该材料用作光电导探测器件具有潜在的应用价值。
附图说明
图1是本发明中实施例2(C6H5CH2NH3)4AgBiBr8晶体的照片
图2是本发明中(C6H5CH2NH3)4AgBiBr8晶体的晶体结构堆积图
图3是本发明中(C6H5CH2NH3)4AgBiBr8的紫外可见吸收光谱
图4是本发明中(C6H5CH2NH3)4AgBiBr8晶体的光电导性能
具体实施方式
下面结合具体实施例对本发明进一步阐述
实施例1
制备有机-无机杂化双钙钛矿半导体晶体(C6H5CH2NH3)4AgBiBr8
采用降温结晶法合成晶体(C6H5CH2NH3)4AgBiBr8,化学反应式为
8C6H5CH2NH2+Ag2O+Bi2O3+8HBr→
2(C6H5CH2NH3)4AgBiBr8+4H2O
称取苄胺(2×10-3mol)、氧化银(0.5×10-3mol)、氧化铋(0.5×10-3mol)溶于10mL的氢溴酸(质量分数为48%)中,加热到126℃并搅拌至得到黄色澄清溶液。然后将得到的溶液自然冷却至室温,得到黄色片状微晶,过滤、烘干,即得到所述的有机-无机杂化双钙钛矿半导体晶体(C6H5CH2NH3)4AgBiBr8
实施例2
有机-无机杂化双钙钛矿半导体晶体(C6H5CH2NH3)4AgBiBr8的制备
将苄胺(4×10-3mol)、氧化银(1×10-3mol)、氧化铋(1×10-3mol)溶于30mL的氢溴酸(质量分数为48%)中,加热搅拌到130℃并搅拌至得到黄色澄清溶液。将得到的溶液密封好置于60℃的烘箱中,设定降温速率1℃/天。待烘箱温度降到30℃时,溶液析出尺寸为8×4×1mm3的黄色片状晶体(如图1所示),即(C6H5CH2NH3)4AgBiBr8晶体。
经X射线单晶衍射分析,本实施例制备的(C6H5CH2NH3)4AgBiBr8晶体室温下属于单斜晶系P21/c空间群,晶胞参数为 α=90°,β=90.052(3)°,γ=90°,/>Z=2。
从图2中可以看出,(C6H5CH2NH3)4AgBiBr8采用如下的结构:有机阳离子层(C6H5CH2NH3 +)和无机层交错堆积构成二维杂化钙钛矿结构。而且有机层部分和无机层部分构成天然的量子阱。(C6H5CH2NH3)4AgBiBr8中含有两种八面体:AgBr6和BiBr6八面体。AgBr6和BiBr6八面体有序排列,相互连接形成二维无机层。对于有机部分,C6H5CH2NH3 +的N-H与邻近八面体上的卤素阴离子Br-会形成N-H···Br氢键。
实施例3
将苄胺(4×10-3mol)、氧化银(0.5×10-3mol)、氧化铋(0.5×10-3mol)溶于30mL的氢溴酸(质量分数为47%)中,加热搅拌至到127℃并搅拌至得到黄色澄清溶液。将得到的溶液密封好置于55℃的烘箱中,设定降温速率1℃/天。待烘箱温度降到30℃时,溶液析出晶体。
将实施例2制得的有机-无机杂化双钙钛矿半导体晶体(C6H5CH2NH3)4AgBiBr8通过紫外可见吸收光谱对(C6H5CH2NH3)4AgBiBr8的光学吸收进行分析。如图3所示,(C6H5CH2NH3)4AgBiBr8的吸收截止边为538nm。根据Tauc公式可以推导出该化合物的光学带隙值为2.25eV。
基于(C6H5CH2NH3)4AgBiBr8单晶制成的平面电极采用405nm激光为激发光源研究了其光电导行为。图4显示了(C6H5CH2NH3)4AgBiBr8在黑暗中和光照下的电流-电压(I-V)曲线。结果表明,在10V偏压下,(C6H5CH2NH3)4AgBiBr8的暗电流(Idark)为2.1×10-13A,说明其单晶的结晶质量高,固有载流子密度低。当光照强度为50.9mW/cm2时,(C6H5CH2NH3)4AgBiBr8的光电流(Iph)急剧增加至3.8×10-10A,得到Iph/Idark的值为1.8×103。该结果不仅揭示了(C6H5CH2NH3)4AgBiBr8晶体的半导体性能,而且表明该材料能够用于制作光电导探测器件,表明材料在集成光电功能器件领域具有潜在的应用价值。
本发明不仅限于上述实施例,凡是依据本发明上述实施例所作出的替换和变更,都在本发明保护范围之内。

Claims (2)

1.一种有机-无机杂化双钙钛矿半导体晶体的制备方法,其特征在于:包括以下步骤:
称取苄胺、Ag2O和Bi2O3并置于烧杯中,再向烧杯中加入HBr 水溶液,加热到126~130℃并搅拌至得到黄色澄清溶液;
然后将得到的溶液密封放入55℃-60℃的烘箱中,以0.8~1(℃/天的速率冷却至室温,即得到所述的有机-无机杂化双钙钛矿半导体;
所述的苄胺、Ag2O和Bi2O3的摩尔比为 (4~8):(1~2):1;
所述的Ag2O与HBr的摩尔比为1:(8~20);
所述的无机-有机杂化半导体材料的化学式为(C6H5CH2NH3)4AgBiBr8;所述的有机-无机杂化双钙钛矿半导体晶体属于单斜晶系,空间群为 P21/c;所述晶体的晶胞参数为:a =8.0614(6) Å,b = 32.683(3) Å,c = 8.1092(7) Å,α = 90 °,β = 90.052(3) °,γ = 90°,V = 2136.5(3) Å3Z = 2。
2.根据权利要求1所述的有机-无机杂化双钙钛矿半导体晶体的制备方法,其特征在于:所述的HBr水溶液中HBr的质量分数为47~48%。
CN202210280517.5A 2022-03-21 2022-03-21 一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途 Active CN114686987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210280517.5A CN114686987B (zh) 2022-03-21 2022-03-21 一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210280517.5A CN114686987B (zh) 2022-03-21 2022-03-21 一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN114686987A CN114686987A (zh) 2022-07-01
CN114686987B true CN114686987B (zh) 2023-12-19

Family

ID=82139082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210280517.5A Active CN114686987B (zh) 2022-03-21 2022-03-21 一种二维有机-无机杂化双钙钛矿半导体晶体及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN114686987B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248538A (zh) * 2017-05-25 2017-10-13 华中科技大学 一种双钙钛矿晶体的后处理方法及应用
US20180290897A1 (en) * 2015-09-02 2018-10-11 Oxford University Innovation Limited Double perovskite
CN109369725A (zh) * 2018-09-20 2019-02-22 西安交通大学 一种无铅杂化二维双钙钛矿材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180290897A1 (en) * 2015-09-02 2018-10-11 Oxford University Innovation Limited Double perovskite
CN107248538A (zh) * 2017-05-25 2017-10-13 华中科技大学 一种双钙钛矿晶体的后处理方法及应用
CN109369725A (zh) * 2018-09-20 2019-02-22 西安交通大学 一种无铅杂化二维双钙钛矿材料及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
2D/3D Hybrid Cs2AgBiBr6 Double Perovskite Solar Cells:Improved Energy Level Alignment for Higher Contact-Selectivity and Large Open Circuit Voltage;Maximilian T. Sirtl et al.;《Adcanced Energy Materials》;参见第2103215-3页图2 *
Exploring Unprecedented Room-Temperature Ferroelectric of Two-Dimensional Metal Halide Double Perovskite with X-ray-Sensitive Merits;Wuqian Guo et al.;《RESEARCH ARTICLE》;20201231;第1-6页 *
Maximilian T. Sirtl et al..2D/3D Hybrid Cs2AgBiBr6 Double Perovskite Solar Cells:Improved Energy Level Alignment for Higher Contact-Selectivity and Large Open Circuit Voltage.《Adcanced Energy Materials》.2022,参见第2103215-3页图2. *
高稳定苄胺溴铜钙钛矿光吸收材料及其光伏器件研究;李勃超;《万方数据库》;20190118;参见摘要部分第1段 *

Also Published As

Publication number Publication date
CN114686987A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
Zhang et al. Rational chemical doping of metal halide perovskites
Vargas et al. The emergence of halide layered double perovskites
Wu et al. From Pb to Bi: A promising family of Pb‐free optoelectronic materials and devices
Sun et al. 0D perovskites: unique properties, synthesis, and their applications
Cheng et al. Lead-free, two-dimensional mixed germanium and tin perovskites
Chen et al. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications
Bibi et al. Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices
Hoffman et al. From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer
Wu et al. Ultrafast study of exciton transfer in Sb (III)-doped two-dimensional [NH3 (CH2) 4NH3] CdBr4 perovskite
CN105218594B (zh) 钙钛矿材料及太阳电池
Ghasemi et al. Lead-free metal-halide double perovskites: from optoelectronic properties to applications
Chen et al. An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices
Yadav et al. Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite
ES2969577T3 (es) Procedimiento de fabricación de materiales A/M/X
US20220029114A1 (en) Organic-inorganic hybrid perovskite compounds
Dong et al. Halide perovskite materials as light harvesters for solar energy conversion
Bahmani Jalali et al. Cesium manganese bromide nanocrystal sensitizers for broadband Vis-to-NIR downshifting
CN109155366A (zh) 高效率大面积钙钛矿太阳能电池及其生产工艺
CN113571645A (zh) Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法
Wang et al. Metal halide semiconductors beyond lead-based perovskites for promising optoelectronic applications
CN111285797A (zh) 一种铋基钙钛矿材料及其制备方法
Liu et al. Structurally dimensional engineering in perovskite photovoltaics
Kim et al. Bandgap modulation of Cs2AgInX6 (X= Cl and Br) double perovskite nano-and microcrystals via Cu2+ doping
Meng et al. Facile fabrication of highly stable and wavelength-tunable tin based perovskite materials with enhanced quantum yield via the cation transformation reaction
Pradhan et al. Two-dimensional hybrid organohalide perovskites from ultrathin PbS nanocrystals as template

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant