CN114907276B - α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用 - Google Patents

α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用 Download PDF

Info

Publication number
CN114907276B
CN114907276B CN202210498051.6A CN202210498051A CN114907276B CN 114907276 B CN114907276 B CN 114907276B CN 202210498051 A CN202210498051 A CN 202210498051A CN 114907276 B CN114907276 B CN 114907276B
Authority
CN
China
Prior art keywords
acid
pyrazineacetamide
substituted amino
reaction
phh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210498051.6A
Other languages
English (en)
Other versions
CN114907276A (zh
Inventor
展鹏
魏文秀
刘新泳
荆兰兰
安娜·维科夫斯卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210498051.6A priority Critical patent/CN114907276B/zh
Publication of CN114907276A publication Critical patent/CN114907276A/zh
Application granted granted Critical
Publication of CN114907276B publication Critical patent/CN114907276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/12Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Psychiatry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及α‑取代氨基‑吡嗪乙酰胺衍生物及其制备方法和应用。所述化合物具有式I所示的结构。本发明还涉及含有式I结构化合物的药物组合物。本发明还提供上述化合物以及含有一个或多个此类化合物的组合物在制备抗阿尔茨海默病药物中的应用。

Description

α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用
技术领域
本发明属于有机化合物合成与医药应用技术领域,具体涉及一种α-取代氨基-吡嗪乙酰胺衍生物及其制备方法和应用。
背景技术
阿尔茨海默症(Alzheimer disease,AD)是一种由多种因素共同作用导致的神经退行性疾病,致病机理复杂,是一项亟需解决的世界卫生难题。目前治疗AD的上市药物数量稀少并且大多是单靶点药物,无法停止或反转疾病进程。多靶点药物理论上具有更强的调控效果与治疗潜力,可能成为人类最终战胜AD的重要策略。氧化应激在AD的复杂病理进程中发挥着重要作用,它可以与Aβ沉积、Tau蛋白过度磷酸化和线粒体功能障碍等形成恶性循环。因此,基于氧化应激过程开发的抗氧化剂可能作用于氧化应激循环过程发挥多靶点抗AD作用,有助于多功能抗AD小分子的发现。
多功能小分子可以通过连接两种或多种与所需靶标相互作用的活性药物或其药效团片段得到。多组分反应(Multicomponent reactions,MCRs)是快速构建结构复杂多样的化合物库的有效方法,它们可以允许更多的支架多样性来更好地适应各个靶标对结构的要求,非常适用于多功能药物的研发。研究表明一些天然的抗氧化片段除了抗氧化活性外,还表现出抑制Aβ聚集、抑制神经炎症、螯合金属离子等与AD相关的多种活性。因此,通过多组分反应将天然抗氧化剂优势结构连接在一起,有望获得具有更好的抗氧化活性、更多种相关抗AD活性的多功能小分子。
发明内容
针对现有技术的不足,本发明提供了一种α-取代氨基-吡嗪乙酰胺衍生物及其制备方法,本发明还提供上述化合物作为针对AD的多功能小分子的活性筛选结果及其应用。
本发明的技术方案如下:
一、α-取代氨基-吡嗪乙酰胺衍生物
一种α-取代氨基-吡嗪乙酰胺衍生物,或其药学上可接受的盐,具有通式I所示的结构:
其中,
R1为硫辛酸除羧基外的其他结构以及酚酸除羧基外的其他结构;
R2为环烷烃、叔丁基、苯基、取代苯基、苄基、乙酸甲酯;
R3取代苯基;所述取代基选自羟基、卤素、甲基、甲氧基、乙烯基、醛基、氰基、硝基、氨基、炔基、羧基。
根据本发明优选的,所述酚酸选自没食子酸、迷迭香酸、阿魏酸、咖啡酸、原儿茶酸、绿原酸、芥子酸或香草酸。
根据本发明进一步优选的,α-取代氨基-吡嗪乙酰胺衍生物是下列化合物之一:
本发明中所述的“药学上可接受的盐”是指在可靠的医药评价范围内,化合物的盐类适于与人或较低等动物的组织相接触而无不适当的毒性、刺激及过敏反应等,具有相当合理的收益与风险比例,通常是水或油可溶的或可分散的,并可有效地用于其预期的用途。包括药学上可接受的酸加成盐和药学上可接受的碱加成盐,在这里是可做预期的用途并与式I化合物的化学性质相容的。适宜的盐的列表参见S.M.Birge等,J.Pharm.Sci.,1977,66,1-19页。
二、α-取代氨基-吡嗪乙酰胺衍生物的制备方法
α-取代氨基-吡嗪乙酰胺衍生物的制备方法,步骤包括:化合物以四甲基吡嗪1作为起始原料,经过单氮氧化得到中间体2,中间体2与乙酸酐发生重排反应后得酯化产物3,经碱性在碱性条件下水解获得中间体4,再然后经通过二氧化锰不完全氧化,获得中间体5,中间体5通过Ugi反应与相应羧酸、异腈生成相应目标产物Ⅰ;
反应路线如下:
试剂及条件:(i)H2O2,CH3COOH,90℃,6h;(ii)Ac2O,140℃,2h;(iii)NaOH;室温(iv)MnO2,EtOH,75℃,10h;(v)CH3OH,66℃,12h;
其中,R1,R2,R3同上述通式I所示;本发明所述的室温为20-30℃。
三、α-取代氨基-吡嗪乙酰胺衍生物的相关生物活性及应用
1.DPPH·、ABTS+·、清除活性
本发明对按照上述方法合成的α-取代氨基-吡嗪乙酰胺衍生物分别进行了自由基清除活性测试,选择自由基清除剂Trolox为阳性对照。
从表1可知,大多数目标化合物都具有微摩尔水平的DPPH·、ABTS+·的清除活性,其中,A3B2C1、A3B3C1、A3B2C2、A3B3C2与A3B2C3对两种自由基的清除活性都相当或优于阳性对照Trolox,因此,对上述5个化合物进行了后续抑制Aβ1-42聚集、促进Aβ1-42解聚集、抑制BACE-1、螯合金属离子、保护SH-SY5Y细胞免受H2O2诱导的氧化损伤的活性测试。
2.抑制Aβ1-42聚集作用研究
本发明对按照上述方法合成的α-取代氨基-吡嗪乙酰胺衍生物分别进行了Aβ1-42自聚集抑制活性测试,以白藜芦醇为阳性对照。
从表2可知,筛选出的5个化合物中,A3B2C3表现出最强的Aβ1-42自聚集抑制作用,抑制率达到65.57%;A3B2C1、A3B3C1对Aβ1-42的自聚集有较好的抑制作用,与阳性药物白藜芦醇(58.19%)相当;A3B2C2表现中等抑制Aβ1-42自聚集的作用(39.82%)。
3.促进Aβ1-42解聚集作用研究
本发明对按照上述方法合成的α-取代氨基-吡嗪乙酰胺衍生物分别进行了促进Aβ1-42解聚集活性测试,以白藜芦醇为阳性对照。
从表3可知,所有化合物均表现出中等的促进自聚集的Aβ1-42解聚集的作用(12.45%~31.68%),其中A3B2C3作用效果最好,与白藜芦醇(37.40%)相当。
4.抑制BACE-1活性研究
本发明对按照上述方法合成的α-取代氨基-吡嗪乙酰胺衍生物分别进行了抑制BACE-1活性测试,以BACE-1抑制剂IV作为阳性对照。
从表4可知,所有化合物对hBACE-1的抑制活性较川芎嗪、咖啡酸、没食子酸片段有所提升,活性最好的化合物A3B3C1在50μM浓度下对hBACE-1的抑制活性是川芎嗪的7.67倍,是咖啡酸的5.75倍。
5.细胞毒性
本发明对按照上述方法合成的α-取代氨基-吡嗪乙酰胺衍生物分别测定了化合物对SH-SY5Y细胞的毒性,结果见表5。
从表5可知,所有化合物对SH-SY5Y细胞的生长均未表现出明显的抑制作用,即无明显细胞毒性;其中A3B3C2还对细胞生长起到了一定的促进作用。
6.神经保护活性
本发明对按照上述方法合成的α-取代氨基-吡嗪乙酰胺衍生物分别进行了神经保护活性测试,以白藜芦醇为阳性对照。
实验结果如图1所示,以正常生长的细胞作为100%标准对照,H2O2损伤的细胞增殖率为42.98%,大多数化合物在20μM浓度下均对H2O2损伤的SH-SY5Y细胞表现出了较好的保护作用(62.75%~95.41%),其中A3B3C1的保护作用最强(EC50=5.69μM),细胞生存率达到95.41%,基本接近正常细胞水平。
以上结果表明,本发明优选的化合物能够有效清除DPPH·和ABTS+·两种自由基,促进Aβ的解聚集(12.45%~31.68%),A3B2C3、A3B2C1、A3B3C1和A3B2C2表现出中等的抑制Aβ1-42自聚集的作用(39.82%~65.57%),并且所有化合物在50μM时对hBACE-1的抑制率均大于35%;细胞毒性实验表明,所有化合物在80μM均未对SH-SY5Y细胞的生长表现出明显的抑制作用,其中A3B3C2还对细胞生长起到了一定的促进作用;另外,本系列所有优选化合物在20μM条件下均对受H2O2氧化损伤的SH-SY5Y细胞表现出较强的保护作用(62.75%~95.41%),其中A3B3C1的作用最强,细胞生存率达到95.41%,基本接近正常细胞水平,EC50为5.69μM,远优于阳性对照白藜芦醇(EC50=19.43μM)。
因此该类化合物具有进一步研发的价值,可作为抗阿尔茨海默病的先导化合物加以利用。
本发明的α-取代氨基-吡嗪乙酰胺衍生物可应用于制备抗阿尔茨海默病药物。
一种抗阿尔茨海默病药物组合物,包括本发明的α-取代氨基-吡嗪乙酰胺衍生物和一种或多种药学上可接受载体或赋形剂。
本发明提供了结构全新的α-取代氨基-吡嗪乙酰胺衍生物及其制备方法,本发明还提供了化合物自由基清除活性、Aβ聚集活性、BACE-1抑制活性神经保护活性结果及其在抗阿尔茨海默病领域中的首次应用。经实验证明,本发明的α-取代氨基-吡嗪乙酰胺衍生物可作为多功能抗AD小分子应用并具有较高的应用价值。
附图说明
图1是20μM化合物对H2O2损伤的SH-SY5Y细胞的保护作用图。
具体实施方式
通过下述实施例有助于理解本发明,但是不能限制本发明的内容。
实施例中所涉及的合成路线如下:
实施例1:部分关键中间体的制备
3,5,6-三甲基-哌嗪-2-甲醇(4)的合成
称取四甲基吡嗪(6.80g,50mmol),置于圆底烧瓶中,加入30mL冰醋酸溶解,再加入30%(v/v)过氧化氢溶液(11.25mL,100mmol),于90℃回流反应6h后再加入等量过氧化氢,回流反应至完全,将反应液倒入烧杯中,冷却至室温,加入氢氧化钠溶液将pH调至10,二氯甲烷萃取三次,合并二氯甲烷,用无水硫酸钠干燥过夜,过滤二氯甲烷溶液,用旋转蒸发仪蒸干,得到白色固体化合物1粗品。取7.61g川芎嗪单氮氧化物倒入圆底烧瓶中,加入乙酸酐,140℃加热回流2h,TLC监测至反应完全后,减压蒸除溶剂,得深褐色油状物,用氢氧化钠溶液将pH调至14,于室温搅拌过夜,经硅藻土过滤,再用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥过夜,过滤溶液,蒸干得到淡黄色固体,Flash柱层析分离(乙酸乙酯:石油醚(v/v)=1:3),得淡黄色针状结晶,即为4纯品(4.89g,66%),mp:88~89℃。
3,5,6-三甲基吡嗪-2-甲醛(5)的制备
将化合物4(3.04g,20mmol)置于圆底烧瓶中,溶解于50mL无水乙醇,再加入二氧化锰粉末(3.48g,40mmol),于75℃下回流10h,经硅藻土过滤,拌样,Flash柱层析分离(乙酸乙酯:石油醚(v/v)=1:10),得淡黄色固体,即为5纯品,2.70g,产率为90%。mp:84~85℃。
实施例2:目标化合物A2B2C1、A2B3C1的制备
将中间体5(1.0eq)、邻氨基苯酚(1.2eq)、阿魏酸(1.2eq)、叔丁基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A2B2C1。
白色固体,78mg,产率43%,mp:127-129℃。ESI-MS:m/z 519.2(M+1)+,C29H34N4O5(518.3).1H NMR(400MHz,DMSO-d6)δ9.43(s,2H,2×PhOH),7.55(s,1H,CONH),7.40(d,J=15.5Hz,1H,-C=CH),6.90(d,J=1.9Hz,1H,PhH),6.82–6.76(m,1H,PhH),6.76(s,1H,PhH),6.73(s,1H,PhH),6.71(s,1H,PhH),6.57(s,2H,2×PhH),6.40(s,1H,COCH),6.08(d,J=15.5Hz,1H,-C=CH),3.70(s,3H,PhOCH3),2.36(s,3H,pyrazine-CH3),2.33(s,3H,pyrazine-CH3),2.27(s,3H,pyrazine-CH3),1.19(s,9H,3×CH3).13C NMR(100MHz,DMSO-d6)δ168.61,164.21,155.69,150.42,149.05,148.21,147.89,147.57,141.53,131.01,126.82,121.31,115.98,116.14,115.26,113.77,61.87,56.64,51.79,29.21,21.40,20.89,20.32.
将中间体5(1.0eq)、邻氨基苯酚(1.2eq)、阿魏酸(1.2eq)、环己基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A2B3C1。
白色固体,120mg,产率67%,mp:143-145℃。ESI-MS:m/z 545.0(M+1)+,C31H36N4O5(544.3).1H NMR(400MHz,DMSO-d6)δ9.70(s,1H,PhOH),8.40(s,1H,CONH),7.48(d,J=15.5Hz,1H,-C=CH),7.31–7.25(m,1H,PhH),7.09–7.01(m,1H,PhH),6.82(d,J=13.1Hz,2H,2×PhH),6.75–6.70(m,3H,3×PhH),6.48(s,1H,PhH),6.43(s,1H,COCH),5.90(d,J=18.0Hz,1H,-C=CH),3.67(s,3H,PhOCH3),3.30(s,1H,NCH),2.44(d,J=7.1Hz,3H,pyrazine-CH3),2.30(s,3H,pyrazine-CH3),2.13(s,3H,pyrazine-CH3),1.71–1.53(m,4H,2×CH2),1.18(dtd,J=39.9,16.7,16.2,9.1Hz,6H,3×CH2).13C NMR(100MHz,DMSO-d6)δ166.83,164.72,156.48,150.95,150.62,149.97,149.55,148.83,148.52,148.20,147.03,146.73,130.95,130.55,126.51,126.26,121.35,118.91,117.69,116.37,55.97,48.99,48.23,32.41,25.58,24.91,24.75,21.56,21.38,21.13,20.85.
实施例3:目标化合物A2B2C2、A2B3C2的制备
将中间体5(1.0eq)、对氨基苯酚(1.2eq)、阿魏酸(1.2eq)、叔丁基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A2B3C2。
白色固体,90mg,产率52%,mp:137-139℃。ESI-MS:m/z 519.1(M+1)+,C29H34N4O5(518.3).1H NMR(400MHz,DMSO-d6)δ9.43(s,2H,2×PhOH),7.55(s,1H,CONH),7.40(d,J=15.5Hz,1H,-C=CH),6.90(d,J=1.9Hz,1H,PhH),6.82–6.76(m,1H,PhH),6.76(s,1H,PhH),6.73(s,1H,PhH),6.71(s,1H,PhH),6.57(s,2H,2×PhH),6.40(s,1H,COCH),6.08(d,J=15.5Hz,1H,-C=CH),3.70(s,3H,PhOCH3),2.36(s,3H,pyrazine-CH3),2.33(s,3H,pyrazine-CH3),2.27(s,3H,pyrazine-CH3),1.19(s,9H,3×CH3).13C NMR(100MHz,DMSO-d6)δ167.67,166.01,156.79,149.37,148.95,148.12,147.80,147.22,141.63,130.89,126.80,121.01,116.53,116.34,115.12,112.67,62.78,56.04,50.76,28.96,21.45,21.39,20.62.
将中间体5(1.0eq)、邻氨基苯酚(1.2eq)、阿魏酸(1.2eq)、环己基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A2B3C2。
白色固体,90mg,产率52%,mp:137-139℃。ESI-MS:m/z 519.1(M+1)+,C29H34N4O5(518.3).1H NMR(400MHz,DMSO-d6)δ9.43(s,2H,2×PhOH),7.55(s,1H,CONH),7.40(d,J=15.5Hz,1H,-C=CH),6.90(d,J=1.9Hz,1H,PhH),6.82–6.76(m,1H,PhH),6.76(s,1H,PhH),6.73(s,1H,PhH),6.71(s,1H,PhH),6.57(s,2H,2×PhH),6.40(s,1H,COCH),6.08(d,J=15.5Hz,1H,-C=CH),3.70(s,3H,PhOCH3),2.36(s,3H,pyrazine-CH3),2.33(s,3H,pyrazine-CH3),2.27(s,3H,pyrazine-CH3),1.19(s,9H,3×CH3).13C NMR(100MHz,DMSO-d6)δ167.67,166.01,156.79,149.37,148.95,148.12,147.80,147.22,141.63,130.89,126.80,121.01,116.53,116.34,115.12,112.67,62.78,56.04,50.76,28.96,21.45,21.39,20.62.
实施例4:目标化合物A2B2C3、A2B3C3的制备
将中间体5(1.0eq)、间氨基苯酚(1.2eq)、阿魏酸(1.2eq)、叔丁基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A2B2C3。
白色固体,85mg,产率42%,mp:167-168℃。ESI-MS:m/z 519.1(M+1)+,C29H34N4O5(518.3).1H NMR(400MHz,DMSO-d6)δ9.45(s,2H,2×PhOH),7.60(s,1H,CONH),7.41(d,J=15.5Hz,1H,-C=CH),6.99(s,2H,PhH),6.90(d,J=1.9Hz,1H,PhH),6.78(dd,J=8.2,1.9Hz,1H,PhH),6.73(d,J=8.2Hz,1H,PhH),6.62–6.55(m,1H,PhH),6.41(s,1H,COCH),6.11(d,J=15.5Hz,1H,-C=CH),3.70(s,3H,PhOCH3),2.36(s,3H,pyrazine-CH3),2.33(s,3H,pyrazine-CH3),2.28(s,3H,pyrazine-CH3),1.19(s,9H,3×CH3).13C NMR(150MHz,DMSO-d6)δ167.42,165.60,157.54,149.35,149.32,149.06,148.19,147.75,147.05,141.64,140.76,129.02,126.81,121.24,116.66,116.38,115.07,112.62,62.82,56.10,50.78,28.95,21.43,21.36,20.66.
将中间体5(1.0eq)、间氨基苯酚(1.2eq)、阿魏酸(1.2eq)、环己基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A2B3C3。
白色固体,130mg,产率68%,mp:191-193℃。ESI-MS:m/z 543.2(M-1)-,C31H36N4O5(544.3).1H NMR(400MHz,DMSO-d6)δ9.43(s,1H,PhOH),9.41(s,1H,PhOH),7.72(d,J=8.1Hz,1H,CONH),7.43(d,J=15.5Hz,1H,-C=CH),6.96(s,2H,2×PhH),6.90(d,J=1.9Hz,1H,PhH),6.78(dd,J=8.3,1.9Hz,1H,PhH),6.72(d,J=8.2Hz,1H,PhH),6.56(dd,J=8.5,2.4Hz,1H,PhH),6.47(s,1H,COCH),6.11(d,J=15.5Hz,1H,-C=CH),4.03(q,J=7.1Hz,1H,NCH),3.70(s,3H,PhCH3),2.36(s,3H,pyrazine-CH3),2.32(s,3H,pyrazine-CH3),2.24(s,3H,pyrazine-CH3),1.66(td,J=28.5,27.3,12.4Hz,4H,2×CH2),1.28–1.01(m,6H,3×CH2).13C NMR(100MHz,DMSO-d6)δ165.72,157.53,149.57,149.06,148.17,147.87,146.65,141.80,140.54,129.05,126.74,121.25,116.47,116.35,115.11,112.59,56.06,48.24,32.84,32.58,25.71,24.98,24.83,21.47,21.25,20.63,14.55.
实施例5:目标化合物A3B2C1、A3B3C1的制备
将中间体5(1.0eq)、邻氨基苯酚(1.2eq)、咖啡酸(1.2eq)、叔丁基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A3B2C1。
白色固体,79mg,产率46%,mp:184-187℃。ESI-MS:m/z 503.3(M-1)-,1H NMR(400MHz,DMSO-d6)δ11.85(s,1H,PhOH),9.34(s,2H,2×PhOH),8.13(s,1H,CONH),7.41(d,J=15.5Hz,1H,-C=CH),7.11–7.04(m,1H,PhH),6.75(dd,J=8.2,1.4Hz,1H,PhH),6.67(s,1H,PhH),6.63(d,J=5.2Hz,2H,2×PhH),6.53–6.46(m,1H,PhH),6.38(s,1H,NCH),5.82(d,J=15.4Hz,1H,-C=CH),1.26(s,9H,3×pyrazine-CH3),1.03(s,9H,3×CH3).13C NMR(100MHz,DMSO-d6)δ171.63,164.65,156.62,150.46,149.97,148.45,147.12,145.99,145.65,143.30,132.89,130.96,126.37,125.95,121.67,119.02,117.64,116.22,114.17,113.81,62.31,51.58,28.80,28.33,21.53,21.14,20.54.
将中间体5(1.0eq)、邻氨基苯酚(1.2eq)、咖啡酸(1.2eq)、环己基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A3B3C1。
白色固体,65mg,产率43%,mp:178-181℃。ESI-MS:m/z 529.6(M-1)-,C30H34N4O5(530.3).C28H32N4O5(504.2).1H NMR(400MHz,DMSO-d6)δ11.82(s,1H,PhOH),9.28(s,2H,2×PhOH),8.38(d,J=7.8Hz,1H,CONH),7.41(d,J=15.4Hz,1H,-C=CH),7.28(d,J=5.7Hz,1H,PhH),7.11–7.05(m,1H,PhH),6.76(d,J=8.2Hz,1H,PhH),6.70–6.61(m,4H,4×PhH),6.42(s,1H,COCH),5.83(d,J=15.5Hz,1H,-C=CH),3.70–3.63(m,1H,NCH),2.46(s,3H,pyrazine-CH3),2.30(s,3H,pyrazine-CH3),2.13(s,3H,pyrazine-CH3),1.56(dt,J=34.1,15.4Hz,4H,2×CH2),1.30–1.06(m,6H,3×CH2).13C NMR(150MHz,DMSO-d6)δ171.29,166.82,156.72,150.60,149.94,148.49,146.02,145.36,143.32,130.96,130.62,126.39,125.88,121.63,119.04,117.67,116.24,114.17,113.90,61.92,49.03,32.39,25.59,24.88,24.72,21.53,21.07,20.86.
实施例6:目标化合物A3B2C2、A3B3C2的制备
将中间体5(1.0eq)、对氨基苯酚(1.2eq)、咖啡酸(1.2eq)、叔丁基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A3B2C2。
白色固体,130mg,产率71%,mp:199-201℃。ESI-MS:m/z 503.5(M-1)-,C28H32N4O5(504.2).1H NMR(400MHz,DMSO-d6)δ9.46(s,1H,PhOH),9.31(s,1H,PhOH),9.14(s,1H,PhOH),7.54(s,1H,CONH),7.31(d,J=15.5Hz,1H,-C=CH),6.85(s,1H,PhH),6.68(s,3H,3×PhH),6.56(s,3H,3×PhH),6.39(s,1H,COCH),6.01(d,J=15.5Hz,1H,-C=CH),2.36(s,3H,pyrazine-CH3),2.33(s,3H,pyrazine-CH3),2.26(s,3H,pyrazine-CH3),1.19(s,9H,3×CH3).13C NMR(150MHz,DMSO-d6)δ167.64,166.00,156.80,149.38,149.31,148.16,147.74,147.25,146.01,141.85,130.98,126.73,121.47,116.24,115.81,115.20,113.73,62.82,50.77,28.98,21.44,21.36,20.64.
将中间体5(1.0eq)、对氨基苯酚(1.2eq)、咖啡酸(1.2eq)、环己基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A3B3C2。
白色固体,102mg,产率56%,mp:171-173℃。ESI-MS:m/z 531.0(M+1)+,C30H34N4O5(530.3).1H NMR(400MHz,DMSO-d6)δ9.45(s,1H,PhOH),9.29(s,1H,PhOH),9.12(s,1H,PhOH),7.69(d,J=8.0Hz,1H,PhH),7.57(s,1H,CONH),7.33(d,J=15.4Hz,1H,-C=CH),6.68(s,4H,4×PhH),6.64–6.48(m,2H,2×PhH),6.45(s,1H,COCH),6.01(d,J=15.4Hz,1H,-C=CH),3.58(d,J=10.0Hz,1H,NCH),2.35(s,3H,pyrazine-CH3),2.33(s,3H,pyrazine-CH3),2.24(s,3H,pyrazine-CH3),1.64(ddt,J=27.3,13.4,4.1Hz,4H,2×CH2),1.37–0.89(m,6H,3×CH2).13C NMR(100MHz,DMSO-d6)δ167.58,166.12,156.80,149.54,149.52,148.20,147.90,146.86,146.00,141.99,130.76,126.65,121.55,116.22,115.61,115.20,113.67,62.29,48.21,32.81,32.59,25.71,24.99,24.83,21.48,21.28,20.61.
实施例7:目标化合物A3B2C3、A3B3C3的制备
将中间体5(1.0eq)、间氨基苯酚(1.2eq)、咖啡酸(1.2eq)、叔丁基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A3B2C3。
白色固体,115mg,产率49%,mp:174-176℃。ESI-MS:m/z 505.1(M+1)+,C28H32N4O5(504.2).1H NMR(400MHz,DMSO-d6)δ9.47(s,1H,PhOH),9.32(s,1H,PhOH),9.16(s,1H,PhOH),7.59(s,1H,CONH),7.33(d,J=15.4Hz,1H,-C=CH),7.00(s,3H,3×PhH),6.68(s,3H,3×PhH),6.65–6.44(m,2H,2×PhH),6.40(s,1H,COCH),6.03(d,J=15.5Hz,1H,-C=CH),2.36(s,3H,pyrazine-CH3),2.33(s,3H,pyrazine-CH3),2.28(s,3H,pyrazine-CH3),1.19(s,9H,3×CH3).13C NMR(100MHz,DMSO-d6)δ165.55,157.53,149.37,148.23,147.78,147.05,146.01,141.95,140.73,129.13,126.60,121.57,116.22,115.74,115.18,113.69,62.76,50.76,28.94,21.45,21.39,20.67.
将中间体5(1.0eq)、间氨基苯酚(1.2eq)、咖啡酸(1.2eq)、环己基异腈(1.2eq)依次加入到5mL的无水甲醇中,66℃回流反应12h。TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到目标化合物A3B3C3。
白色固体,30mg,产率67%,mp:157-159℃。ESI-MS:m/z 531.1(M+1)+,C30H34N4O5(530.3).1H NMR(400MHz,DMSO-d6)δ9.42(s,1H,PhOH),9.30(s,1H,PhOH),9.11(s,1H,PhOH),7.70(d,J=8.1Hz,1H,CONH),7.34(d,J=15.4Hz,1H,-C=CH),7.13–6.82(m,2H,2×PhH),6.68(s,3H,3×PhH),6.58(dd,J=8.6,2.4Hz,1H,PhH),6.45(s,1H,COCH),6.38-6.19(m,1H,PhH),6.03(d,J=15.5Hz,1H,-C=CH),4.03(q,J=7.1Hz,1H,NCH),2.36(s,3H,pyrazine-CH3),2.32(s,3H,pyrazine-CH3),2.24(s,3H,pyrazine-CH3),1.69(dd,J=23.3,10.4Hz,2H,CH2),1.55(dd,J=31.0,12.4Hz,2H,CH2),1.31–1.21(m,2H,CH2),1.17(t,J=7.1Hz,2H,CH2),1.05(ddd,J=21.7,15.1,9.4Hz,2H,CH2).13C NMR(100MHz,DMSO-d6)δ165.68,149.56,148.24,147.86,146.65,146.01,142.06,140.56,129.12,126.59,121.57,116.22,115.64,115.20,113.73,48.24,32.84,32.58,25.71,24.98,24.83,21.48,21.26,20.64.
实施例8:目标化合物自由基清除活性测试
测试原理:
目标化合物的自由基清除活性通过分光光度法进行测定,分别测试化合物对DPPH·和ABTS+·的清除活性。
DPPH在甲醇溶液中会形成稳定的DPPH·溶液,该自由基具有能够接受一个电子或氢离子的单电子,在517nm波长处具有最大吸收值。加入具有自由基清除活性的待测物时,能捕捉DPPH·的单电子而使溶液在517nm波长处的吸收值下降,并且下降程度与自由基清除能力呈线性关系。
2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)溶液可以与K2S2O8溶液形成稳定的ABTS自由基(ABTS+·),该自由基同样具有能够接受一个电子或氢离子的单电子,在734nm波长处具有最大吸收值。加入具有自由基清除活性的待测物时,能捕捉ABTS+·的单电子而使溶液在734nm波长处的吸收值下降,并且下降程度与自由基清除能力呈线性关系。
测试材料:
待测化合物、DPPH、ABTS、无水甲醇、过硫酸钾、pH=7.4磷酸盐缓冲液、超纯水、阳性对照Trolox、不同规格EP管、不同规格的微量加样器、分析天平、多通道移液器、九十六孔板、微量滴定板震动筛、酶标仪。
测试方法:
(1)DPPH自由基清除活性测试方法
配制0.2mmol/L DPPH自由基储备液,在暗处静置30min备用。首先,在96孔板中加入40μL待测样品,终浓度分别为5、10、20、40μM,加入160μL DPPH自由基储备液,黑暗条件下振荡30min后,用酶标仪在517nm波长处测定其吸光值。每次测试都需设置标准对照(无抑制剂,有DPPH自由基)和空白对照(无抑制剂,无DPPH自由基)。每次测试均至少重复三次。
(2)ABTS自由基清除活性测试方法
配制2.5mmol/L过硫酸钾溶液,并用其溶解ABTS,配制7mmol/L DPPH自由基储备液。在暗处静置12h后,用pH=7.4的磷酸盐缓冲液将ABTS储备液稀释至在734nm波长下吸光度值为0.700±0.020,作为ABTS自由基阳离子测定液。首先,在96孔板中加入40μL待测样品,终浓度分别为5、10、20、40μM,加入160μL ABTS自由基测定液,黑暗条件下振荡6min后,用酶标仪在734nm波长处测定其吸光值。每次测试都需设置标准对照(无抑制剂,有ABTS自由基)和空白对照(无抑制剂,无ABTS自由基)。每次测试均至少重复三次。
结果计算:
清除率(%)=[1-(A-A空白)/(A标准-A空白)]×100%
根据上述公式,选择化合物的四个浓度测定自由基清除率(5、10、20、40μM),结合GraphPad Prism 5软件处理得到IC50值。每个实验重复三次,实验结果表达为平均值±SEM。
按照上述实验方法对合成的针对阿尔兹海默症的多功能小分子进行了DPPH、ABTS自由基清除活性的测试,结果如表1所示。
表1 目标化合物的自由基清除活性测试结果
实施例9:目标化合物的Aβ1-42自聚集抑制作用测试
测试原理:
目标化合物抑制Aβ1-42自聚集的活性通过荧光分光光度法进行测定。硫磺素T(ThT)是一种能够与聚集的Aβ1-42选择性结合的荧光染料,它与淀粉样蛋白的结合产物可以在450nm激发光照射下发射出荧光,该荧光可以在485nm处被检测到,该荧光的强度只与结合产物的浓度有关,即与淀粉样蛋白的所存量呈正比。
测试材料:
待测化合物、ThT、Aβ1-42、DMSO、HFIP、pH=7.4磷酸盐缓冲液、超纯水、阳性对照白藜芦醇、不同规格EP管、不同规格的微量加样器、多通道移液器、96孔板、涡旋混合器、酶标仪、分析天平、恒温摇床、台式高速冷冻离心机。
测试方法:
(1)硫磺素T(ThT)母液的制备:准确称取ThT粉末固体(购自麦克林试剂),以PBS缓冲液为溶剂,配制成4mmol/L ThT母液,避光保存(锡箔纸)。
(2)Aβ1-42单体化处理:Amyloidβ-Peptide(1-42,human)购自ApexBio,于-20℃冰箱保存。在室温静置0.5小时后,在通风橱中向Aβ中加入HFIP(1,1,1,3,3,3-六氟丙-2-醇)(1mg/mL),完全溶解后,分装至1.5mL EP管中(每管0.1mg),减压浓缩,直至HFIP完全挥发,于-80℃冰箱保存。
(3)将Aβ1-42用PBS缓冲液溶解至80μM(充分溶解,必要时可超声);将待测化合物的DMSO溶液稀释至20μM;随后向0.2mL的EP管中依次加入10μL的待测化合物和10μL的Aβ1-42,加完后振摇均匀,放置37℃的孵箱内孵育24h。(需设置标准对照,仅含Aβ1-42,不加入抑制剂)。
(4)将4mmol/L ThT母液稀释至20μM,向每个EP管中加入60μL的ThT溶液,将所有的溶液移至96孔板中,用酶标仪在450nm激发光照射下,于485nm检测其荧光吸收。结果计算:
抑制率(%)=(1-IFi/IFc)×100%
IFi为化合物的荧光吸收值;IFc为仅含Aβ的荧光吸收值。
按照上述实验方法对合成的目标化合物进行了Aβ1-42自聚集抑制作用实验,选择白藜芦醇作为阳性对照,结果如表2所示
表2 目标化合物的Aβ1-42自聚集抑制作用实验结果
实施例10:目标化合物的Aβ1-42解聚集促进作用测试
测试原理:
如实施例9所述。
测试材料:
如实施例9所述。
测试方法:
ThT母液的制备及Aβ1-42的单体化处理步骤如实施例5所述。
首先,在0.5mL EP管中加入10μL浓度为80μM的Aβ1-42单体溶液;于37℃孵育箱中孵育12h之后,向孔中加入10μL浓度为20μM的待测化合物或阳性对照溶液后于37℃孵育箱中继续孵育12h。另外,以相同体积pH=7.4的缓冲溶液代替化合物溶液作为标准对照组,以相同体积pH=7.4的缓冲溶液代替化合物溶液和Aβ1-42单体溶液作为空白对照组。12h后,向所有EP管中加入60μL浓度为20μM的ThT溶液,随后将所有溶液转移至全黑96孔板中,以450nm为激发光波长,检测混合溶液于485nm处的荧光吸收值。每次实验设置至少三个复孔。
结果计算:
抑制率(%)=(1-IFi/IFc)×100%
IFi为化合物的荧光吸收值;IFc为仅含Aβ的荧光吸收值。
按照上述实验方法对目标化合物进行了Aβ1-42解聚集促进作用实验,选择白藜芦醇作为阳性对照,结果如表3所示。
表3 目标化合物进自聚集的Aβ1-42解聚集的活性结果
实施例11:目标化合物的BACE-1抑制实验
测试原理:
BACE-1是天冬氨酸蛋白酶,与γ-分泌酶一起切割APP产生Aβ,因此测试化合物对BACE-的抑制活性是十分必要的。采用荧光共振能量转移试剂盒测定化合物对人重组BACE-1(hBACE-1)的抑制活性。
测试材料:
待测化合物、NaAc、冰醋酸、川芎嗪、咖啡酸、没食子酸、超纯水、阳性对照BACE1抑制剂IV、BACE-1检测试剂盒、不同规格EP管、不同规格的微量加样器、多通道移液器、pH计、涡旋混合器、酶标仪、分析天平、恒温摇床、台式高速冷冻离心机。
测试方法:
(1)50mM pH=4.5的NaAc缓冲溶液的配制:分别称取4.10g NaAc和量取5mL冰醋酸溶解于1L水中,pH计调节pH=4.5。
(2)10mM阳性对照母液的配制:称取抑制剂IV用DMSO充分溶解,于4℃保存备用,使用时用NaAc缓冲溶液稀释至200μM使在孔中的终浓度为50μM。
(3)10mM待测化合物母液的配制:分别称取适量待测化合物用DMSO充分溶解,于4℃保存备用,使用时用稀释至200μM使在孔中的终浓度为50μM。
(4)将10μL BACE-1底NaAc缓冲溶液物、10μL目标化合物和10μL BACE-1酶(1U/mL)加入384孔黑色微孔板中,在25℃孵育60min后加入10μL终止液终止反应,在576nm处读取荧光信号。另外,以相同体积NaAc缓冲溶液代替化合物溶液作为空白对照组。每次实验设置至少三个复孔。
结果计算:
其中S0是测试样品(酶、底物、目标化合物)开始时的荧光强度,S60是孵育60min后的荧光强度,而C0和C60分别是空白样品(酶、底物、缓冲液)在开始时和孵育60min后的荧光强度。
按照上述公式计算待测化合物在50μM浓度下对hBACE-1的抑制活性。对于在50μM时对hBACE-1的抑制率超过45%的化合物,重新设置浓度梯度重复上面测定方法并通过GraphPad Prism 5软件确定IC50值,结果如表4所示。
表4 目标化合物的hBACE-1抑制活性结果
实施例12:目标化合物的细胞毒性实验
测试原理:
采用MTT法测定化合物对SH-SY5Y细胞的细胞毒性。MTT(3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐),即噻唑蓝,是一种黄颜色的染料,可以应用于检测细胞的存活和生长。活细胞的线粒体中存在能够将外源性的MTT还原为甲瓒(Formazan)的琥珀酸脱氢酶,甲瓒是一种不溶于水的蓝紫色结晶,在细胞内形成后可以在细胞中沉积,而死细胞中的琥珀酸脱氢酶失去活力而无法生成甲瓒,DMSO可以使沉积在细胞中的甲瓒溶解。因此,可以用酶标仪测定溶液在490nm波长处的吸收值来间接计算活细胞的数量。
测试材料:
待测化合物、DMSO、MTT、RPMI 1640培养基、青链霉素混合液(100×)、胎牛血清、没食子酸、超纯水、阳性对照Trolox、SH-SY5Y细胞、不同规格EP管、不同规格的微量加样器、多通道移液器、pH计、涡旋混合器、酶标仪、分析天平、恒温摇床、台式高速冷冻离心机、细胞计数仪、细胞培养箱。
测试方法:
(1)细胞培养:SH-SY5Y细胞用含10%胎牛血清、1%双抗的1640培养基,在37℃饱和湿度、含5%CO2的培养箱中培养。
(2)细胞铺板及处理:取对数生长期细胞用0.25%胰酶消化后计数;将细胞接种到96孔板中,密度为5000个细胞/孔,培养24h;在细胞培养24h后,加入抑制剂,终浓度分别为10、20、40、80μM,继续培养24h后进行MTT检测;每孔加1/10体积MTT溶液(5mg/ml),在37℃、5%CO2培养箱中培养4小时;小心吸弃孔内培养上清液,避免吸去紫色结晶,每孔加150μlDMSO,振荡10分钟,使结晶物充分溶解,用酶标仪在490nm波长处测定其吸光值。每次测试都需设置标准对照(无抑制剂,有细胞)和空白对照(无抑制剂,无细胞)。每次测试均至少重复三次。
结果计算:
存活率(%)=[(A-A空白)/(A标准-A空白)]×100%
根据上述公式,选择化合物的四个浓度测定细胞毒性(10、20、40、80μM)。每个实验重复三次,实验结果表达为平均值±SEM。
按照上述实验方法对目标化合物进行了细胞毒性测试,结果如表5所示。
表5 目标化合物对SH-SY5Y细胞生长的抑制活性结果
实施例13:目标化合物的神经细胞保护活性实验
测试原理:
如实施例12所述。
测试材料:
如实施例12所述。
测试方法:
细胞培养方法如实施例12所述。
(1)细胞铺板及处理:取对数生长期细胞用0.25%胰酶消化后计数;将细胞接种到96孔板中,密度为5000个细胞/孔,培养24h;在细胞培养24h后,进行药物处理(Blank、H2O2、1.25μM+H2O2、2.5μM+H2O2、5μM+H2O2、10μM+H2O2、20μM+H2O2、40μM+H2O2)培养24h;培养完成后每孔加1/10体积MTT溶液(5mg/ml),在37℃、5%CO2培养箱中培养4h;小心吸弃孔内培养上清液,避免吸去紫色结晶,每孔加150μL DMSO,振荡10分钟,使结晶物充分溶解,用酶标仪在490nm波长处测定其吸光值。每次测试均至少重复三次。
结果计算:
存活率(%)=[(A-A空白)/(A标准-A空白)]×100%
根据上述公式,选择化合物的六个浓度测定神经细胞保护活性(1.25、2.5、5、10、20、40μM)。结合GraphPad Prism 5软件处理得到EC50值。每个实验重复三次,实验结果表达为平均值±SEM。
按照上述实验方法对合成的针对阿尔兹海默症的多功能小分子进行了神经细胞保护活性测试,化合物在20μM浓度下均对H2O2损伤的SH-SY5Y细胞的保护作用结果如图1所示。

Claims (7)

1.一种α-取代氨基-吡嗪乙酰胺衍生物,或其药学上可接受的盐,具有通式I所示的结构:
其中,
R1为没食子酸、阿魏酸、咖啡酸、原儿茶酸、芥子酸或香草酸结构中除羧基外的其他部分;
R2为环己烷、环戊烷、环丁烷、环丙烷或叔丁基;
R3为单羟基取代苯基,取代位置为邻位、间位或对位。
2.如权利要求1所述的α-取代氨基-吡嗪乙酰胺衍生物,其特征在于,
R1部分选自阿魏酸或咖啡酸中除羧基外的其他部分。
3.如权利要求2所述的α-取代氨基-吡嗪乙酰胺衍生物,其特征在于,是下列化合物之一:
4.如权利要求1所述的α-取代氨基-吡嗪乙酰胺衍生物的制备方法,步骤包括:化合物以四甲基吡嗪川芎嗪1作为起始原料,经过单氮氧化得到中间体2,中间体2与乙酸酐发生重排反应后得酯化产物3,经碱性在碱性条件下水解获得中间体4,再然后经通过二氧化锰不完全氧化,得中间体5,5通过Ugi反应与相应胺、羧酸、异腈生成相应目标产物Ⅰ;
反应路线如下:
试剂及条件:(i)H2O2,CH3COOH,90℃,6h;(ii)Ac2O,140℃,2h;(iii)NaOH;室温;(iv)MnO2,EtOH,75℃,10h;(v)CH3OH,66℃,12h;
R1,R2,R3同权利要求1中通式I所示。
5.如权利要求4所述的α-取代氨基-吡嗪乙酰胺衍生物的制备方法,步骤如下:
(1)称取四甲基吡嗪1,置于圆底烧瓶中,加入冰醋酸溶解,再加入30%(v/v)过氧化氢溶液,于90℃回流反应6h后再加入等量过氧化氢,回流反应至完全,将反应液倒入烧杯中,冷却至室温,加入氢氧化钠溶液将pH调至10,二氯甲烷萃取3次,合并二氯甲烷,用无水硫酸钠干燥过夜,过滤,用旋转蒸发仪蒸干,得到中间体2;
(2)将中间体2置于圆底烧瓶中,加入乙酸酐,140℃加热回流2h,TLC监测至反应完全后,减压蒸除溶剂,得深褐色油状物,即为中间体3粗品;
(3)用氢氧化钠溶液将上述深褐色油状物pH调至14,于室温搅拌过夜,经硅藻土过滤,再用二氯甲烷萃取,合并有机相,无水硫酸钠干燥过夜,过滤,减压蒸干溶剂,硅胶柱色谱分离得到中间体4;
(4)将中间体4置于圆底烧瓶中,加入无水乙醇溶解,再加入二氧化锰粉末,于75℃下回流10h,经硅藻土过滤,拌样,硅胶柱色谱分离得到中间体5;
(5)将中间体5加入胺的甲醇溶液中,66℃反应15min,加入羧酸继续反应30min后,加入异腈于66℃回流反应12h;TLC检测反应完全,减压蒸干溶剂,硅胶柱色谱分离,得到通式Ⅰ目标化合物。
6.如权利要求1-3任一项所述α-取代氨基-吡嗪乙酰胺衍生物在制备抗阿尔茨海默病药物中的应用。
7.一种抗阿尔茨海默病的药物组合物,包含权利要求1-3任一项所述α-取代氨基-吡嗪乙酰胺衍生物和一种或多种药学上可接受的载体或赋形剂。
CN202210498051.6A 2022-05-09 2022-05-09 α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用 Active CN114907276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210498051.6A CN114907276B (zh) 2022-05-09 2022-05-09 α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210498051.6A CN114907276B (zh) 2022-05-09 2022-05-09 α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114907276A CN114907276A (zh) 2022-08-16
CN114907276B true CN114907276B (zh) 2024-01-26

Family

ID=82767098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210498051.6A Active CN114907276B (zh) 2022-05-09 2022-05-09 α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114907276B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017165A (zh) * 2015-07-07 2015-11-04 广州喜鹊医药有限公司 一种新的吡嗪衍生物及其制备方法和医药应用
CN108929280A (zh) * 2017-05-24 2018-12-04 中国医学科学院药物研究所 吡嗪类衍生物及其制法和药物组合物与用途
CN111592530A (zh) * 2020-05-18 2020-08-28 山东大学 含醛肟的他克林衍生物类选择性丁酰胆碱酯酶抑制剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017165A (zh) * 2015-07-07 2015-11-04 广州喜鹊医药有限公司 一种新的吡嗪衍生物及其制备方法和医药应用
CN108929280A (zh) * 2017-05-24 2018-12-04 中国医学科学院药物研究所 吡嗪类衍生物及其制法和药物组合物与用途
CN111592530A (zh) * 2020-05-18 2020-08-28 山东大学 含醛肟的他克林衍生物类选择性丁酰胆碱酯酶抑制剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
防治阿尔茨海默病多靶点药物研究进展;雷曦;王健辉;程肖蕊;周文霞;;国际药学研究杂志(02);205-215 *
雷曦 ; 王健辉 ; 程肖蕊 ; 周文霞 ; .防治阿尔茨海默病多靶点药物研究进展.国际药学研究杂志.2016,(02),205-215. *

Also Published As

Publication number Publication date
CN114907276A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
Sang et al. Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease
CN105481706B (zh) 一类2‑羟基查尔酮类化合物、其制备方法和用途
Perković et al. Novel NSAID 1-acyl-4-cycloalkyl/arylsemicarbazides and 1-acyl-5-benzyloxy/hydroxy carbamoylcarbazides as potential anticancer agents and antioxidants
CN111423396B (zh) 一种sEH抑制剂及其制备方法和应用
CN107176927B (zh) 组蛋白去甲基化酶lsd1抑制剂
Pagoni et al. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation
Shang et al. Design, synthesis and anti-inflammatory evaluation of aloe-emodin derivatives as potential modulators of Akt, NF-κB and JNK signaling pathways
CN114907276B (zh) α-取代氨基-吡嗪乙酰胺衍生物及其制备方法与应用
CN113264859B (zh) 萘磺胺异硫氰酸酯类双功能小分子及其制备方法和应用
Mateev et al. Design, synthesis, biological evaluation and molecular docking of pyrrole-based compounds as antioxidant and MAO-B inhibitory agents
CN114920731B (zh) α-乙酰氧基吡嗪乙酰胺类化合物及其制备方法和应用
Sang et al. Development of genistein-O-alkylamines derivatives as multifunctional agents for the treatment of Alzheimer’s disease
Liu et al. Rational design, synthesis and activities of hydroxylated chalcones as highly potent dual functional agents against Alzheimer's disease
CN110698445B (zh) 一类3-胺烷基苯酞类化合物、其制备方法和用途
JP6685546B2 (ja) ドーパミン検出用蛍光物質
CN113999136B (zh) 大黄酰胺衍生物及其制备方法和应用、recql4特异性表达的肝癌抑制剂
Das et al. ‘Chiron’approach to stereoselective synthesis of sphinganine and unnatural safingol, an antineoplastic and antipsoriatic agent
CN105085220B (zh) 类查尔酮衍生物、其制备方法及其在医药上的应用
Bhat et al. Synthesis, Cytotoxic and Antihyperlipidemic Activities of Some New coumarinyl 4-Thiazolidinone Derivatives
Yu et al. Discovery of a novel GRPR antagonist for protection against cisplatin-induced acute kidney injury
CN108358853B (zh) 一种抗神经炎症的二苯乙烯类似物及其制备方法和应用
JP2018521067A (ja) カルボニルストレス及び酸化ストレスに対して活性な、金属及び/又はフリーラジカルキレート化モチーフと会合する近接第1級ジアミン、並びにその使用
CN111440068B (zh) 肉桂酸酯衍生物及其作为酪氨酸酶抑制剂和凝胶剂的应用
A Abdul et al. Microwave-assisted Synthesis of Some New N, N-Bis-[(2-hydroxynapthalene-1-yl) Substituted Phenyl-methyl] 4, 4-diaminodiphenylSulphone
JP2007131558A (ja) アセトキシキャビコールアセテート類縁体化合物、その製造方法、および抗アレルギー剤

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant