CN114892091B - 一种抗co2腐蚀油套管热轧圆管坯及其生产工艺 - Google Patents

一种抗co2腐蚀油套管热轧圆管坯及其生产工艺 Download PDF

Info

Publication number
CN114892091B
CN114892091B CN202210588480.2A CN202210588480A CN114892091B CN 114892091 B CN114892091 B CN 114892091B CN 202210588480 A CN202210588480 A CN 202210588480A CN 114892091 B CN114892091 B CN 114892091B
Authority
CN
China
Prior art keywords
equal
less
percent
round tube
tube blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210588480.2A
Other languages
English (en)
Other versions
CN114892091A (zh
Inventor
轩康乐
张新文
俞杰
单文瑞
朱康宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yonggang Group Co Ltd
Original Assignee
Jiangsu Yonggang Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yonggang Group Co Ltd filed Critical Jiangsu Yonggang Group Co Ltd
Priority to CN202210588480.2A priority Critical patent/CN114892091B/zh
Publication of CN114892091A publication Critical patent/CN114892091A/zh
Application granted granted Critical
Publication of CN114892091B publication Critical patent/CN114892091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明涉及一种抗CO2腐蚀油套管热轧圆管坯及其生产工艺,热轧圆管坯的组成成分按质量百分数计为:C:0.18~0.24%、Si:0.25~0.35%、Mn:0.45~0.55%、P:≤0.015%、S:0~0.005%、Cr:2.80~3.20%、Mo:0.38~0.44%、Cu:0.20~0.30%、Ti:0.015~0.030%、Al:0.020~0.030%、V:≤0.020%、H:≤1.5ppm、O:≤40ppm、N:≤100ppm,余量为Fe和不可避免的杂质,屈服强度为758‑956Mpa,最小抗拉强度≥862MPa,伸长率≥0.6%,‑20℃冲击功≥40J,生产工艺包括依次的优化电炉炼钢、LF精炼、VD真空处理、连铸、加热、轧制和坑冷工序,A、B、C、D类夹杂在1.5级以内,DS类夹杂≤1.0级,中心疏松、一般疏松、中心偏析在1.5级以内,满足成品管的致密度和各项性能需求,适用于海洋油气钻探油套管的复杂工况,能够满足环境考验。

Description

一种抗CO2腐蚀油套管热轧圆管坯及其生产工艺
技术领域
本发明属于合金钢技术领域,具体涉及一种海洋油气钻探用抗CO2腐蚀油套管热轧圆管坯及其生产工艺。
背景技术
海洋油气钻探具有其特殊性,油套管的工作环境复杂,要求其性能要能够满足环境的考验。现有油套管钢种的关键成分控制为C:0.26~0.28%、Si:0.19~0.25%、Mn:0.67~0.77%、P≤0.012%、S:0~0.003%、Cr:0.96~1.03%、Mo:0.33~0.38%、Cu:≤0.10%、Ti:0.010~0.020%、Al:0.020~0.030%、Nb:0.016~0.020%、H:≤1.5ppm、O:≤40ppm、N:≤100ppm,余量为Fe和不可避免的杂质,其屈服强度为655-758Mpa,最小抗拉强度≥724MPa,冲击功(-20℃)≥35J,强度、韧性的力学性能和耐蚀性难以满足应用需求。同时为了满足海洋钻探的性能需求,对钢水纯净度要求苛刻,现有生产工艺的热轧圆管坯非金属夹杂物较多,圆管坯低倍质量、中心疏松、一般疏松、中心偏析难以满足海洋油气钻探用成品管的致密度和质量要求。
发明内容
本发明旨在至少在一定程度上解决上述技术问题之一,本发明提供一种抗CO2腐蚀油套管热轧圆管坯及其生产工艺,满足海洋油气钻探应用需求。
本发明解决其技术问题所采用的技术方案是:
一种抗CO2腐蚀油套管热轧圆管坯,其组成成分按质量百分数计为:C:0.18~0.24%、Si:0.25~0.35%、Mn:0.45~0.55%、P:≤0.015%、S:0~0.005%、Cr:2.80~3.20%、Mo:0.38~0.44%、Cu:0.20~0.30%、Ti:0.015~0.030%、Al:0.020~0.030%、V:≤0.020%、H:≤1.5ppm、O:≤40ppm、N:≤100ppm,余量为Fe和不可避免的杂质。
上述抗CO2腐蚀油套管热轧圆管坯,优选地,所述热轧圆管坯的屈服强度为758-956Mpa,最小抗拉强度≥862MPa,伸长率≥0.6%,-20℃冲击功≥40J。
上述抗CO2腐蚀油套管热轧圆管坯的化学成分设计原因为:
(1)C:降低C含量有利于提高塑性和热性,改善含有CO2等腐蚀环境下不锈钢的耐腐蚀性,但C含量再低会影响热轧圆管坯强度,故C含量设计为0.18~0.24%。
(2)Si:Si能溶于铁素体和奥氏体中提高钢的硬度、屈服强度和屈服比,但Si过高会降低钢的塑性和韧性,因此Si含量设计为0.25~0.35%。
(3)Mn:Mn能与Fe无限固溶,在提高钢材强度的同时,对塑性的影响相对较小,但Mn过高会降低钢的塑性,因此Mn含量设计为0.45~0.55%。
(4)Cr:Cr可提高碳钢的硬度和耐磨性而不使钢变脆,能提高碳素钢轧制状态的强度和硬度,使组织细化和均匀分布,使钢有良好的抗CO2腐蚀等耐氧化性腐蚀的作用和热强性,但Cr过高会影响热轧强度和钢的塑性,降低伸长率和断面收缩率,不利于受力,因此Cr含量设计为2.80~3.20%。
(5)Mo:Mo能提高淬透性和热强性,进一步提高耐腐蚀性,但Mo过高会出现铁素体或其他脆性相时韧性降低,因此Mo含量设计为0.38~0.44%。
(6)Cu:增加Cu含量能与P联合改善钢的抗CO2腐蚀性能、提高强度和韧性,但Cu过高会在热加工时产生热脆、影响塑性,因此Cu含量设计为0.20~0.30%。
(7)Ti:Ti是脱氧去气剂和固定氮和碳的有效元素,有细化晶粒,阻止晶粒长大、提高钢的塑性和冲击韧性的、增大屈服强度、抗拉强度和屈服比的作用,但Ti过高会降低伸长率、引起脆化效应,因此Ti含量设计为0.015~0.030%。
(8)Al:Al能细化钢的晶粒组织,阻抑低碳钢的时效,提高钢在低温下的韧性,还能与钼、铜、硅、铬等元素配合使用提高钢的抗氧化性,提高钢的耐磨性和疲劳强度,但Al过高会影响钢的热加工性能,恶化钢水的可浇性,同时会造成B类(氧化铝)夹杂物增多,因此Al含量设计为0.020~0.030%。
(9)V:V可以提高钢材强度、提高强度、韧性和抗氢腐蚀能力,降低钢的过热敏感性,但V过高会阻碍钢的脱碳,V含量设计为≤0.020%。
(10)P、S:磷易引起塑性、冲击韧性显著降低,硫易降低钢的延展性和韧性,在锻造和轧制时造成裂纹,磷和硫含量越低越好,因此P含量设计为≤0.015%,S含量设计为0~0.005%,
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,其生产工艺包括将炼钢原料依次经电炉炼钢、LF精炼、VD真空处理、连铸工序得到连铸圆坯,所述VD真空处理工序按铝线、硅钙线顺序喂线处理,控制A、B、C、D类夹杂在1.5级以内,DS类夹杂≤1.0级,将连铸圆坯依次经加热、轧制和坑冷工序得到热轧圆管坯,控制圆管坯的中心疏松、一般疏松、中心偏析在1.5级以内。
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,优选地,所述电炉炼钢工序中将炼钢原料经电炉冶炼得到钢水,电炉出钢终点C≥0.05%,目标碳0.06%≤C≤0.12%,电炉出钢目标P≤0.008%,目标温度T≥1620℃,出钢过程中,每100-110t的钢水中加入石灰600kg,促净剂200kg,出钢铝110-130kg/炉。
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,优选地,所述LF精炼工序中白渣保持时间≥20min,冶炼时间≥40min,每100-110t钢水采用碳化硅100-140kg扩散脱氧。
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,优选地,所述VD真空处理工序控制VD高真空度≤67Pa,高真空保持时间≥10min,氮气软吹时间≥15min。
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,优选地,所述连铸工序采用二冷冷却配合结晶器电磁搅拌、铸流搅拌和末端电磁搅拌,一冷水流量为4000L/min,二冷水一区水流量为40L/min,二冷水二区水流量为19L/min,结晶器电磁搅拌电流250A、频率为2Hz,铸流搅拌电流为100A、频率为8Hz,末端电磁搅拌电流为1100A、频率为8Hz,控制拉速为0.35m/min。
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,优选地,所述加热工序的加热程序为:预热段温度预热段温度<900℃,预热段目标860℃;加热I段时间>1.05h、加热I段温度900-1100℃,加热I段目标温度1000℃;加热II段时间≥1.0h、加热II段温度1200-1260℃,加热II段目标温度1230℃;均热段时间≥2h、均热段温度1200-1260℃,均热段目标温度1240℃,总加热时间≥6.0h。
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,优选地,所述轧制工序包括将连铸圆坯经开坯机后轧制成中间坯,经液压剪切头尾,采用9机架连轧机轧制,控制开轧温度950-1020℃,出连轧温度850-890℃。
上述抗CO2腐蚀油套管热轧圆管坯的生产工艺,优选地,所述坑冷工序中冷床温度>450℃入坑缓冷,缓冷至温度≤200℃出坑,缓冷时间大于24h。
与现有技术相比,本发明的有益效果是:
(1)本发明的低合金高强钢采用降低C含量、增加Cr含量、并添加一定Cu含量,配合其他有效的化学成分设计、增加其耐蚀性,具有优异的力学性能和抗CO2腐蚀性能,热轧圆管坯的屈服强度为758-956Mpa,最小抗拉强度≥862MPa,伸长率≥0.6%,-20℃冲击功≥40J。
(2)采用优化的全新冶炼、连铸生产工艺,电路炼钢+LF工序中合适的冶炼周期保证合金成分精准控制,有效提高钢水纯净度,VD后期需进行钙处理使夹杂物变性,增加钢水可浇性,A、B、C、D类夹杂稳定地控制在1.5级以内,DS类夹杂物稳定地≤1.0级,连铸工序通过二冷冷却配合结晶器电磁搅拌、铸流搅拌和末端电磁搅拌,增加柱状晶比例控制圆管坯的中心疏松、一般疏松、中心偏析稳定地控制在1.5级以内。
(3)采用优化的全新连轧生产工艺,采用优化的两段加热及一段均热加热程序和大压缩量、大下压量控轧控冷工艺,使低倍质量显著提高。
综上,满足成品管的致密度和各项性能需求,适用于海洋油气钻探油套管的复杂工况,能够满足环境考验。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例1和对比例的低倍组织对比图。
图中1(a)表示实施例1的低倍组织图;图1(b)表示对比例的低倍组织图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1:本发明所述一种抗CO2腐蚀油套管热轧圆管坯的一种较佳实施方式,所述抗CO2腐蚀油套管热轧圆管坯的组成成分按质量百分数(单位,wt%)计为:C:0.18%、Si:0.29%、Mn:0.48%、P:0.007%、S:0.005%、Cr:2.93%、Mo:0.41%、Cu:0.22%、Ti:0.018%、Al:0.03%、V:0.012%、H:1.0ppm、O:30ppm、N:50ppm,余量为Fe和不可避免的杂质。
实施例2:本发明所述一种抗CO2腐蚀油套管热轧圆管坯的一种较佳实施方式,所述抗CO2腐蚀油套管热轧圆管坯的组成成分按质量百分数(单位,wt%)计为:C:0.19%、Si:0.31%、Mn:0.5%、P:0.008%、S:0.003%、Cr:3%、Mo:0.4%、Cu:0.21%、Ti:0.016%、Al:0.029%、V:0.013%、H:1.1ppm、O:35ppm、N:60ppm,余量为Fe和不可避免的杂质。
实施例3:本发明所述一种抗CO2腐蚀油套管热轧圆管坯的一种较佳实施方式,所述抗CO2腐蚀油套管热轧圆管坯的组成成分按质量百分数(单位,wt%)计为:C:0.185%、Si:0.3%、Mn:0.51%、P:0.009%、S:0.005%、Cr:3.12%、Mo:0.4%、Cu:0.21%、Ti:0.017%、Al:0.027%、V:0.013%、H:1.1ppm、O:28.5ppm、N:55ppm,余量为Fe和不可避免的杂质。
实施例1-3所述抗CO2腐蚀油套管热轧圆管坯的生产工艺,其生产工艺包括以下工序:
S1、电炉炼钢:将炼钢原料经电炉冶炼得到钢水,控制电炉出钢终点C≥0.05%,目标碳0.06%≤C≤0.12%,防止钢水过氧化,有利于夹杂物的去除;控制电炉出钢目标P≤0.008%,目标温度T≥1620℃,控制合适的出钢温度,有效控制钢水回P;出钢过程中,每炉100-110t的钢水中加入石灰600kg,促净剂(CaO53.5%,SiO23.5%,Al2O334.3%,MgO8.5%)200kg,出钢铝110-130kg/炉,出钢造碱性渣有利于脱S;
S2、LF精炼:将经步骤S1的钢水采用沉淀脱氧结合扩散脱氧精炼,钢水进站造白渣,有效吸附钢中的夹杂物,白渣保持时间≥20min,冶炼时间≥40min,通过足够白渣时间充分脱去钢水中的氧含量,合适的冶炼周期保证合金成分精准控制,夹杂物充分上浮去除,每100-110t钢水采用碳化硅100-140kg,以保证还原性气氛、扩散脱氧,确保钢水纯净度;
S3、VD真空处理:将经步骤S2的钢水进VD站真空处理,控制VD高真空度≤67Pa,高真空保持时间≥10min,氮气软吹时间≥15min,去除钢水中的H,促进夹杂物充分上浮,每炉100-110t的钢水按铝线、硅钙线顺序喂线处理,首炉硅钙线100m,连浇炉硅钙线65m,喂铝线以调整钢水中的铝含量,VD后期钙处理使夹杂物变性球化,增加钢水可浇性,控制A、B、C、D类夹杂在1.5级以内,DS类夹杂≤1.0级;
S4、连铸:将经步骤S3的钢水全程保护浇铸防止二次氧化,采用二冷冷却配合结晶器电磁搅拌、铸流搅拌和末端电磁搅拌,一冷水流量为4000L/min,一冷水快冷增加柱状晶比例使钢坯致密性更好,二冷水一区水流量为40L/min,二冷水二区水流量为19L/min,通过二冷水水量控制了连铸坯温度回升,改善了硫化物的聚集现象,结晶器电磁搅拌电流250A、频率为2Hz,铸流搅拌电流为100A、频率为8Hz,末端电磁搅拌电流为1100A、频率为8Hz,通过电磁搅拌技术有利于钢水补缩,控制拉速为0.35m/min得到
Figure GDA0004225052550000061
连铸圆坯;
S5、加热:将步骤S4的
Figure GDA0004225052550000062
连铸圆坯送至加热炉加热,加热炉的加热程序为:预热段温度预热段温度<900℃,预热段目标860℃,钢坯预热减小钢坯开裂的风险,加热I段时间>1.05h、加热I段温度900-1100℃,加热I段目标温度1000℃,加热II段时间≥1.0h、加热II段温度1200-1260℃,加热II段目标温度1230℃,均热段时间≥2h、均热段温度1200-1260℃,均热段目标温度1240℃,总加热时间≥6.0h,通过两段加热及一段均热,使连铸圆坯内外温度均匀而又符合轧制要求的最佳温度;
S6、轧制:将经步骤S5的
Figure GDA0004225052550000063
连铸圆坯经开坯机后轧制成270mm*280mm的中间坯,经液压剪切头尾,采用9机架连轧机轧制,开轧温度950-1020℃,出连轧温度850-890℃,通过控制开轧温度和出连轧温度细化晶粒度、提高力学性能,采用大压缩量、大下压量轧制为/>
Figure GDA0004225052550000064
热轧圆管坯,控制圆管坯的中心疏松、一般疏松、中心偏析在1.5级以内,改善了内部致密性;
S7、坑冷:将经步骤S6的
Figure GDA0004225052550000065
热轧圆管入冷床空冷,在冷床温度>450℃入坑缓冷,缓冷至温度≤200℃出坑,缓冷时间大于24h得到热轧圆管坯,热轧圆管坯依次经取样、精整、探伤后入库,所述热轧圆管坯的屈服强度为758-956Mpa,最小抗拉强度≥862MPa,伸长率≥0.6%,-20℃冲击功≥40J。
对比例:通过电炉炼钢、LF精炼、VD真空处理、连铸、缓冷、加热、轧制、坑冷工艺制得的现有油套管热轧圆管坯的组成成分按质量百分数(单位,wt%)计为:C:0.26%、Si:0.22%、Mn:0.69%、P:0.009%、S:0.0015%、Cr:1%、Mo:0.35%、Cu:0.019%、Ti:0.015%、Al:0.024%、V:0.003%、Nb:0.017%、H:1.2ppm、O:28ppm、N:33ppm,余量为Fe和不可避免的杂质,以GB/T 223标准检测成分,按照《金属材料室温拉伸试验工艺》GB/T228标准检测拉伸性能,按照《金属材料弯曲试验工艺》GB/T232标准检测弯曲性能,以金属材料夏比摆锤冲击试验工艺GB T 229标准进行冲击试验,热轧圆管坯的屈服强度为655-758Mpa,最小抗拉强度≥724MPa,伸长率≥0.5%,-20℃冲击功≥35J。
将实施例1-3与对比例按照GB/T10561-2005标准进行非金属夹杂物评级,其结果如下表1:
种类 Ae A Be B Ce C De D DS
实施例1 0 0 0 0 0 0 0.5 0.5 0
实施例2 0 0 0.5 0.5 0 0 0.5 0.5 0
实施例3 0 0 0.5 0 0 0 0.5 0.5 0.5
对比例 0.5 0.5 1.0 1.0 0 0 0.5 1.0 1.0
将实施例1-4与对比例按照GBT 226标准进行低倍组织及缺陷酸蚀检验,其结果如下表2和附图1:
种类 中心疏松 一般疏松 中心偏析
实施例1 1.0 0.5 0
实施例2 1.0 1.0 0
实施例3 1.0 0.5 0
对比钢种 1.5 1.0 0
由上表1、表2和附图1的对比结果可知,本发明化学成分、非金属夹杂物、低倍均得到较好控制,本发明的低合金高强钢采用降低C含量、增加Cr含量、并添加一定Cu含量,配合其他有效的化学成分设计、增加其耐蚀性,具有优异的力学性能和抗CO2腐蚀性能,满足海洋钻探的性能需求,同时采用优化的全新冶炼、连铸和连轧生产工艺,电路炼钢+LF工序采用合适的冶炼周期保证合金成分精准控制,有效提高钢水纯净度,VD后期需进行钙处理使夹杂物变性,增加钢水可浇性,A、B、C、D类夹杂稳定地控制在1.5级以内,DS类夹杂物稳定地≤1.0级,连铸工序通过二冷冷却配合结晶器电磁搅拌、铸流搅拌和末端电磁搅拌,增加柱状晶比例控制圆管坯的中心疏松、一般疏松、中心偏析稳定地控制在1.5级以内,加热和轧制工序采用优化的两段加热及一段均热加热程序和大压缩量、大下压量控轧控冷工艺,使低倍质量显著提高,满足成品管的致密度和各项性能需求,适用于海洋油气钻探油套管的复杂工况,能够满足环境考验。
本文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (10)

1.一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,其组成成分按质量百分数计为:C:0.18~0.24%、Si:0.25~0.35%、Mn:0.45~0.55%、P:≤0.015%、S:0~0.005%、Cr:2.80~3.20%、Mo:0.38~0.44%、Cu:0.20~0.30%、Ti:0.015~0.030%、Al:0.020~0.030%、V:≤0.020%、H:≤1.5ppm、O:≤40ppm、N:≤100ppm,余量为Fe和不可避免的杂质;
其生产工艺包括将炼钢原料依次经电炉炼钢、LF精炼、VD真空处理、连铸工序得到连铸圆坯,将连铸圆坯依次经加热、轧制和坑冷工序得到热轧圆管坯;
所述电炉炼钢工序出钢过程中,每100-110t的钢水中加入石灰600kg,促净剂200kg,出钢铝110-130kg/炉;
所述LF精炼工序中每100-110t钢水采用碳化硅100-140kg扩散脱氧;
所述VD真空处理工序按铝线、硅钙线顺序喂线处理;
所述轧制工序采用9机架连轧机轧制,控制开轧温度950-1020℃,出连轧温度850-890℃。
2.根据权利要求1所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述热轧圆管坯的屈服强度为758-956Mpa,最小抗拉强度≥862MPa,伸长率≥0.6%,-20℃冲击功≥40J。
3.根据权利要求1或2所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,其生产工艺包括将炼钢原料依次经电炉炼钢、LF精炼、VD真空处理、连铸工序得到连铸圆坯,所述VD真空处理工序按铝线、硅钙线顺序喂线处理,控制A、B、C、D类夹杂在1.5级以内,DS类夹杂≤1.0级,控制圆管坯的中心疏松、一般疏松、中心偏析在1.5级以内。
4.根据权利要求3所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述电炉炼钢工序中将炼钢原料经电炉冶炼得到钢水,电炉出钢终点C≥0.05%,目标碳0.06%≤C≤0.12%,电炉出钢目标P≤0.008%,目标温度T≥1620℃。
5.根据权利要求3所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述LF精炼工序中白渣保持时间≥20min,冶炼时间≥40min。
6.根据权利要求3所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述VD真空处理工序控制VD高真空度≤67Pa,高真空保持时间≥10min,氮气软吹时间≥15min。
7.根据权利要求3所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述连铸工序采用二冷冷却配合结晶器电磁搅拌、铸流搅拌和末端电磁搅拌,一冷水流量为4000L/min,二冷水一区水流量为40L/min,二冷水二区水流量为19L/min,结晶器电磁搅拌电流250A、频率为2Hz,铸流搅拌电流为100A、频率为8Hz,末端电磁搅拌电流为1100A、频率为8Hz,控制拉速为0.35m/min。
8.根据权利要求3所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述加热工序的加热程序为:预热段温度预热段温度<900℃,预热段目标860℃;加热I段时间>1.05h、加热I段温度900-1100℃,加热I段目标温度1000℃;加热II段时间≥1.0h、加热II段温度1200-1260℃,加热II段目标温度1230℃;均热段时间≥2h、均热段温度1200-1260℃,均热段目标温度1240℃,总加热时间≥6.0h。
9.根据权利要求3所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述轧制工序包括将连铸圆坯经开坯机后轧制成中间坯,经液压剪切头尾。
10.根据权利要求3所述的一种抗CO2腐蚀油套管热轧圆管坯,其特征在于,所述坑冷工序中冷床温度>450℃入坑缓冷,缓冷至温度≤200℃出坑,缓冷时间大于24h。
CN202210588480.2A 2022-05-27 2022-05-27 一种抗co2腐蚀油套管热轧圆管坯及其生产工艺 Active CN114892091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210588480.2A CN114892091B (zh) 2022-05-27 2022-05-27 一种抗co2腐蚀油套管热轧圆管坯及其生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210588480.2A CN114892091B (zh) 2022-05-27 2022-05-27 一种抗co2腐蚀油套管热轧圆管坯及其生产工艺

Publications (2)

Publication Number Publication Date
CN114892091A CN114892091A (zh) 2022-08-12
CN114892091B true CN114892091B (zh) 2023-07-14

Family

ID=82725861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210588480.2A Active CN114892091B (zh) 2022-05-27 2022-05-27 一种抗co2腐蚀油套管热轧圆管坯及其生产工艺

Country Status (1)

Country Link
CN (1) CN114892091B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005066A (zh) * 2022-09-16 2023-04-25 南京钢铁股份有限公司 一种高纯净度油缸管用连铸圆坯及其制造方法
BE1029394B1 (fr) * 2022-09-20 2023-10-18 Univ North China Technology Un procédé de réduction de la taille des inclusions de type B dans l'acier désoxydé à l'aluminium
CN115386808B (zh) * 2022-09-28 2023-05-30 延安嘉盛石油机械有限责任公司 一种耐腐蚀油套管及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401809A (zh) * 2001-08-28 2003-03-12 宝山钢铁股份有限公司 抗二氧化碳腐蚀的低合金钢及油套管
JP2007260715A (ja) * 2006-03-28 2007-10-11 Jfe Steel Kk 超高強度溶接鋼管の製造方法
JP2008274405A (ja) * 2007-03-30 2008-11-13 Jfe Steel Kk 耐sr特性および変形性能に優れた高強度鋼板およびその製造方法
CN103343294A (zh) * 2013-05-09 2013-10-09 内蒙古包钢钢联股份有限公司 一种含稀土耐co2/h2s腐蚀的c90钢级油井管及其生产方法
CN103820708A (zh) * 2014-03-05 2014-05-28 江苏常宝钢管股份有限公司 海洋油气开采用含硼无缝管线管的制备方法
CN105256243A (zh) * 2015-10-23 2016-01-20 北大方正集团有限公司 一种油井用耐腐蚀钢及其生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899621B (zh) * 2010-07-20 2012-07-04 攀钢集团钢铁钒钛股份有限公司 3Cr无缝钢管及其制造方法
CN102268602B (zh) * 2011-07-14 2013-04-03 无锡西姆莱斯石油专用管制造有限公司 3Cr油井管及其生产方法
CN103320705B (zh) * 2013-06-03 2015-05-27 南京钢铁股份有限公司 地面集输用耐co2腐蚀管线钢的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401809A (zh) * 2001-08-28 2003-03-12 宝山钢铁股份有限公司 抗二氧化碳腐蚀的低合金钢及油套管
JP2007260715A (ja) * 2006-03-28 2007-10-11 Jfe Steel Kk 超高強度溶接鋼管の製造方法
JP2008274405A (ja) * 2007-03-30 2008-11-13 Jfe Steel Kk 耐sr特性および変形性能に優れた高強度鋼板およびその製造方法
CN103343294A (zh) * 2013-05-09 2013-10-09 内蒙古包钢钢联股份有限公司 一种含稀土耐co2/h2s腐蚀的c90钢级油井管及其生产方法
CN103820708A (zh) * 2014-03-05 2014-05-28 江苏常宝钢管股份有限公司 海洋油气开采用含硼无缝管线管的制备方法
CN105256243A (zh) * 2015-10-23 2016-01-20 北大方正集团有限公司 一种油井用耐腐蚀钢及其生产方法

Also Published As

Publication number Publication date
CN114892091A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN114892091B (zh) 一种抗co2腐蚀油套管热轧圆管坯及其生产工艺
CN101417296B (zh) 直径为Ф219.0~460.0mm大口径高钢级耐腐蚀无缝钢管的制造方法
CN109252097B (zh) 一种高强度胀断连杆的非调质钢及其连铸生产工艺
JP6229640B2 (ja) 継目無鋼管およびその製造方法
CN111441000A (zh) 一种屈服强度690MPa级低屈强比高强钢板及其制造方法
CN107177797A (zh) 油气田用130ksi、135ksi级别耐蚀钻具钢及其制造方法
CN113025867A (zh) 一种高纯净度齿轮用钢20CrMnAl的制造方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN110983187A (zh) 一种新型高强耐候管线钢x80钢板及其生产方法
CN111926236B (zh) 一种小压缩比条件下采用连铸坯生产z向性能优异的焊接结构用钢板的方法
CN108677084B (zh) 一种低夹杂洁净钢的生产方法
CN114561593B (zh) 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法
CN114480975B (zh) 一种经济型x65级耐酸管线钢板卷及其制造方法
CN114921727A (zh) 一种抗酸管线钢x65ms的生产方法
CN109930064B (zh) 一种耐腐蚀高压锅炉管用耐热钢及其生产方法
CN115572905B (zh) 一种690MPa级耐回火低温调质钢及其制造方法
CN115094307B (zh) 一种电渣重熔用热作模具钢连铸圆坯及其生产工艺
CN108315645B (zh) 一种耐磨钢及其生产工艺
CN115044823B (zh) 一种超超临界高压锅炉钢p92连铸大圆坯的生产工艺
CN114807773B (zh) 一种高力学性能风力发电机轴用钢及其制备工艺
CN115418553A (zh) 高耐蚀型耐候钢及制备方法
CN114855060A (zh) 一种管线钢x80及其生产方法
CN114807558B (zh) 一种矿山钻头用ex50v圆钢的生产方法
CN115058646B (zh) 一种高强度、耐低温、耐腐蚀车载气瓶用钢及其制造方法
JPWO2019131036A1 (ja) 油井用低合金高強度継目無鋼管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant