CN114884326B - 模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法 - Google Patents

模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法 Download PDF

Info

Publication number
CN114884326B
CN114884326B CN202210809387.XA CN202210809387A CN114884326B CN 114884326 B CN114884326 B CN 114884326B CN 202210809387 A CN202210809387 A CN 202210809387A CN 114884326 B CN114884326 B CN 114884326B
Authority
CN
China
Prior art keywords
frequency
component
triple
current
quadruple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210809387.XA
Other languages
English (en)
Other versions
CN114884326A (zh
Inventor
张亮
管益涛
水恒华
杜长青
蔡晖
谢珍建
张丹
余鹏
范舟
李强
任必兴
黄俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202210809387.XA priority Critical patent/CN114884326B/zh
Publication of CN114884326A publication Critical patent/CN114884326A/zh
Application granted granted Critical
Publication of CN114884326B publication Critical patent/CN114884326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明公开了模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法。本发明针对模块化多电平换流器三相环流中的二倍频负序和四倍频正序分量,经正序基频旋转坐标变换后对应为负序和正序的三倍频谐波分量,将二者统一化处理,设计一套三倍频准比例谐振控制器,实现了模块化多电平换流器环流二、四倍频分量的统一抑制。相较于传统的环流抑制方法对于二、四倍频环流分量的抑制分别设计多个不同谐振频率的准比例谐振控制器,本发明所提方法更加简便。本发明所提方法对环流的二、四倍频分量进行统一抑制,在保证抑制效果的前提下,实现了控制器数量和控制参数设计的简化。

Description

模块化多电平变换器环流二倍频四倍频分量的统一化抑制 方法
技术领域
本发明涉及柔性直流输电功率变换领域,具体的说是涉及一种模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法。
背景技术
模块化多电平换流器(Modular Multilevel Converter,MMC)最早由R.Marquardt教授于2001年提出,它由多个结构相同的子模块(Sub-module,SM)级联构成。子模块的结构可以分为半H桥型、全H桥型和箝位双子模块型三种。由于MMC拓扑的桥臂子模块IGBT并不需要在同一时刻一起导通,而是随着正弦波的变化依次导通以构成正弦电压波形,因此避免了多个IGBT直接串联所带来的动态均压问题。因此模块化多电平换流器成为了在第三代直流输电技术中得到推广应用。
模块化多电平换流器各桥臂由多个子模块串联组成,比如CN104901570B就公开了一种模块化多电平换流器,包括至少一个相单元,所述相单元包括第一桥臂和第二桥臂;所述第一桥臂一端为第一直流端点P,另一端用于连接交流端点;所述第二桥臂一端为第二直流端点N,另一端也用于连接交流端点;所述第一桥臂包括至少两个储能子模块和至少一个电抗器,所述储能子模块和电抗器相串联;所述第二桥臂包括至少两个储能子模块和至少一个电抗器,所述储能子模块和电抗器相串联。
现有的模块化多电平换流器,在其正常工作时,由于其子模块电容电压波动,其桥臂间产生了环流。环流叠加在上、下桥臂之间,一方面提高了功率开关器件额定电流容量,增大了系统成本;另一方面增加了损耗,影响装置使用寿命。环流中存在二、四、六次等偶次谐波,随着谐波次数的增加,谐波含量逐渐减少,环流中仅二次和四次谐波分量占据主要成分。在设计环流抑制方法时,其它更高次谐波分量占比较少,可忽略不计。
发明内容
本发明目的是提供一种模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法,方法更加简便,亦具有良好抑制效果,对改善MMC运行与输出特性具有重要意义。
一种模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法,包括以下步骤:
提取模块化多电平换流器各相桥臂环流,将其中二倍频负序和四倍频正序分量的三相环流经过正序基频旋转坐标变换后分别转化为三倍频负序和三倍频正序分量;
将转换后的三倍频负序和三倍频正序分量再统一化处理,经过谐振频率为
Figure 266781DEST_PATH_IMAGE001
的准比例谐振控制器,三倍频谐波将获得较高的增益;
进一步获得高增益的三倍频谐波信号,再将获得高增益的三倍频谐波信号通过正序基频旋转坐标反变换得到两种能够同时抑制二倍频环流分量和四倍频环流分量的修正信号,并将修正信号叠加在调制波上,从而对模块化多电平换流器各相桥臂环流的二倍频负序和四倍频正序分量的有效同时抑制。
优先的是,本发明提取模块化多电平换流器各相桥臂环流,桥臂环流
Figure 511818DEST_PATH_IMAGE002
的表达式 为:
Figure 25976DEST_PATH_IMAGE003
Figure 749081DEST_PATH_IMAGE004
Figure 32295DEST_PATH_IMAGE005
分别为i(i=A、B、C)相上、下桥臂电流瞬时值。
优先的是,本发明提取模块化多电平换流器各相桥臂环流,先通过低通滤波器来滤除环流中的直流分量,将环流中占据主导的二倍频负序和四倍频正序分量经过旋转坐标系的变换后分别转化为三倍频的负序和正序分量,其中旋转坐标系的变换矩阵T为:
Figure 448233DEST_PATH_IMAGE006
其中,
Figure 184107DEST_PATH_IMAGE007
为基波角频率,t表征为时间量。
具体变换过程为:
Figure 477948DEST_PATH_IMAGE008
其中,
Figure 615668DEST_PATH_IMAGE009
为谐振频率,
Figure 202507DEST_PATH_IMAGE010
为二倍频负序环流成分,
Figure 425678DEST_PATH_IMAGE011
为转换后的三倍 频负序环流成分,
Figure 490586DEST_PATH_IMAGE012
为四倍频正序环流成分,
Figure 607447DEST_PATH_IMAGE013
为转换后的三倍频正序环流成 分。
优先的是,本发明经过旋转坐标系的变换矩阵T变换后的环流交流信号在谐振频 率为
Figure 506132DEST_PATH_IMAGE014
的准比例谐振控制器后在三倍频处获得较高增益,该控制器的传递函数为:
Figure 842698DEST_PATH_IMAGE015
其中,k p 为比例系数,K r 为积分系数,w c 为截止频率,w 0 为基波角频率。
优先的是,本发明最终将获得高增益的信号,该信号中含有大量的
Figure 586663DEST_PATH_IMAGE016
Figure 558030DEST_PATH_IMAGE017
成分,经过旋转坐标反变换
Figure 362038DEST_PATH_IMAGE018
后得到迭加在模块化多电平换流器各相桥臂调制 电压上的能够同时抑制二、四倍频环流的修正信号
Figure 684435DEST_PATH_IMAGE019
Figure 232091DEST_PATH_IMAGE020
Figure 57965DEST_PATH_IMAGE021
;其中旋转坐标 系反变换
Figure 564032DEST_PATH_IMAGE022
为:
Figure 609611DEST_PATH_IMAGE023
具体反变换过程为:
Figure 820013DEST_PATH_IMAGE024
其中,
Figure 641338DEST_PATH_IMAGE025
为二倍频负序环流修正信号,
Figure 177362DEST_PATH_IMAGE026
为经过基频旋转坐标转换后 的三倍频负序环流成分,
Figure 84138DEST_PATH_IMAGE027
为四倍频正序环流修正信号,
Figure 98230DEST_PATH_IMAGE028
为经过基频旋转坐 标转换后的三倍频正序环流成分。
传统的基于准比例谐振控制的二、四倍频环流抑制方法控制框图如图2所示,需分别针对各相环流的二倍频和四倍频分量分别设计准比例谐振控制器进行环流抑制,设计准比例谐振控制器时需考虑系统稳定性、抑制效果等因素并进行定量分析,较为繁琐。本发明根据MMC桥臂环流中占据主导成分的负序二倍频和正序四倍频分量可经过基频旋转坐标变换得到两种不同相序的三倍频分量的特性,统一通过三倍频的准比例谐振控制器进行抑制。实现了环流中二、四倍频分量的统一抑制。相较于传统的环流抑制方法对于二、四倍频环流分量的抑制需分别设计多个不同谐振频率的准比例谐振控制器,本发明所提方法更加简便,并且在保证抑制效果的前提下,实现了控制器数量和控制参数设计的简化。
附图说明
图1为本发明MMC二、四倍频环流分量的统一化抑制方法控制框图。
图2为传统基于准比例谐振控制的二、四倍频环流分量抑制方法控制框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明专利的具体实施方案做更加明确完整地描述。
运用基尔霍夫定律分析MMC各桥臂回路,可得MMC数学模型为:
Figure 39641DEST_PATH_IMAGE029
其中
Figure 982452DEST_PATH_IMAGE030
为i相桥臂环流值,
Figure 376524DEST_PATH_IMAGE031
Figure 194307DEST_PATH_IMAGE032
分别为i相上、下桥臂所有子模块电压瞬时 值总和,
Figure 724646DEST_PATH_IMAGE033
MMC系统i相交流输出侧相电压;
Figure 602472DEST_PATH_IMAGE034
为MMC系统i相交流输出侧线电流;
Figure 342895DEST_PATH_IMAGE035
分别为MMC各相桥臂电阻与桥臂电抗;
Figure 839735DEST_PATH_IMAGE036
为直流侧母线电压,
Figure 116258DEST_PATH_IMAGE037
表示x的微分形式。
从能量理论且以A相为例分析,MMC桥臂电压和电流正序分量表达式为:
Figure 774773DEST_PATH_IMAGE038
Figure 268071DEST_PATH_IMAGE039
式中,
Figure 303023DEST_PATH_IMAGE040
Figure 198167DEST_PATH_IMAGE041
分别为上、下桥臂电压的正序形式,
Figure 27582DEST_PATH_IMAGE042
Figure 8177DEST_PATH_IMAGE043
分别为 上、下桥臂电流的正序形式,
Figure 846820DEST_PATH_IMAGE044
为直流侧母线电流的正序形式 ,电压调制比的正序形式 为
Figure 566776DEST_PATH_IMAGE045
,电流调制比的正序形式为
Figure 691727DEST_PATH_IMAGE046
Figure 769404DEST_PATH_IMAGE047
表示换流器交流侧A相输出电压峰值的正序 形式,
Figure 536372DEST_PATH_IMAGE048
表示换流器交流侧A相输出电流峰值的正序形式,
Figure 15895DEST_PATH_IMAGE049
表示为电流超前电压角 度的正序形式。
A相上、下桥臂的瞬时功率为:
Figure 577326DEST_PATH_IMAGE050
将A相上、下桥臂瞬时功率求和,即可得A相桥臂瞬时总功率表示为:
Figure 142300DEST_PATH_IMAGE051
上式桥臂瞬时总功率表达式中的
Figure 948844DEST_PATH_IMAGE052
一项,说明各 相桥臂子模块功率将以二倍频的形式波动,所以MMC子模块电容电压亦会随之波动且呈现 二倍频波动的形式。
从MMC系统运行稳定性着手分析,其桥臂瞬时功率中的直流分量必须恒为零。A相桥臂总能量表达式为:
Figure 282874DEST_PATH_IMAGE053
同理可推得各相桥臂总能量表达式为:
Figure 749627DEST_PATH_IMAGE054
由以上分析可知,MMC的三相各桥臂能量波动呈现二倍频且为负序分布特性,MMC各相桥臂能量的波动将引起电容电压的波动,三相电容电压的波动分量表示为:
Figure 801897DEST_PATH_IMAGE055
同理可知,当环流计算时计及四倍频分量时,即在推导桥臂能量函数时保留四阶项,亦可知环流中的四倍频分量呈现正序特性。综上以上分析可知,模块化多电平换流器在正常运行过程中,由于调制所造成的子模块电容电压一直处于波动状态,继而在各相桥臂中产生了环流。环流中存在2、4、6······等偶次谐波,随着谐波次数的增加,谐波含量逐渐减少。
在设计环流抑制方法时,环流中仅二次和四次谐波分量占据主要成分,需重点考虑,由于其它更高次谐波分量占比较少,可忽略不计。
针对以上环流特性,提出一种模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法,本发明将A相环流经过低通滤波器处理,滤除环流中的直流分量,将环流中占据主导的二倍频负序和四倍频正序分量统一经过旋转坐标系的变换后分别转化为三倍频的负序和正序分量,其中旋转坐标系的变换矩阵T为:
Figure 645088DEST_PATH_IMAGE056
.
其中,
Figure 99203DEST_PATH_IMAGE057
为基波角频率,t表征为时间量。
具体变换过程为:
Figure 2437DEST_PATH_IMAGE058
其中,
Figure 542002DEST_PATH_IMAGE059
为谐振频率,
Figure 678631DEST_PATH_IMAGE060
为二倍频负序环流成分,
Figure 846307DEST_PATH_IMAGE061
为转换后的三倍 频负序环流成分,
Figure 795808DEST_PATH_IMAGE062
为四倍频正序环流成分,
Figure 681725DEST_PATH_IMAGE063
为转换后的三倍频正序环流成 分。
经过正序基频旋转坐标系的变换矩阵T变换后的两种相序不同的三倍频环流谐波 分量在谐振频率为
Figure 7664DEST_PATH_IMAGE064
的准比例谐振控制器后在三倍频处可获得较高增益,该准比例谐 振控制器的传递函数为:
Figure 295426DEST_PATH_IMAGE065
其中,k p 为比例系数,K r 为积分系数,w c 为谐振频率,w 0 为截止频率。
最终将获得高增益的信号,该信号中含有大量的
Figure 150249DEST_PATH_IMAGE066
Figure 290506DEST_PATH_IMAGE067
成分,经过旋 转坐标反变换
Figure 154557DEST_PATH_IMAGE068
后得到迭加在MMC各相调制电压上的针对环流二、四倍频分量抑制的修 正信号
Figure 296825DEST_PATH_IMAGE069
Figure 712763DEST_PATH_IMAGE070
Figure 448638DEST_PATH_IMAGE071
,最后。其中旋转坐标系反变换
Figure 241013DEST_PATH_IMAGE072
为:
Figure 113154DEST_PATH_IMAGE073
具体反变换过程为:
Figure 467037DEST_PATH_IMAGE074
其中,
Figure 690208DEST_PATH_IMAGE075
为二倍频负序环流修正信号,
Figure 755116DEST_PATH_IMAGE076
为经过基频旋转坐标转换后 的三倍频负序环流成分,
Figure 747343DEST_PATH_IMAGE077
为四倍频正序环流修正信号,
Figure 770663DEST_PATH_IMAGE078
为经过基频旋转坐 标转换后的三倍频正序环流成分。
传统的基于准比例谐振控制的二、四倍频环流抑制方法控制框图如图2所示,需分别针对各相环流的二倍频和四倍频分量分别设计准比例谐振控制器进行环流抑制,设计准比例谐振控制器时需考虑系统稳定性、抑制效果等因素并进行定量分析,较为繁琐。本发明实现了环流中二、四倍频分量的统一抑制。相较于传统的环流抑制方法对于二、四倍频环流分量的抑制需分别设计多个不同谐振频率的准比例谐振控制器,本发明所提方法更加简便,并且在保证抑制效果的前提下,实现了控制器数量和控制参数设计简化。

Claims (5)

1.模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法,其特征在于,包括以下步骤:
提取模块化多电平换流器各相桥臂环流,将其中二倍频负序和四倍频正序分量的三相环流经过正序基频旋转坐标变换后分别转化为三倍频负序和三倍频正序分量;
将转换后的三倍频负序和三倍频正序分量再统一化处理,经过谐振频率为3ω0的准比例谐振控制器,三倍频谐波获得较高的增益;
进一步获得高增益的三倍频谐波信号,再将获得高增益的三倍频谐波信号通过正序基频旋转坐标反变换得到两种能够同时抑制二倍频环流分量和四倍频环流分量的修正信号,并将修正信号叠加在调制波上,从而对模块化多电平换流器各相桥臂环流的二倍频负序和四倍频正序分量的有效同时抑制。
2.根据权利要求1所述的统一化抑制方法,其特征在于,上述提取模块化多电平换流器各相桥臂环流,桥臂环流iiz的表达式为:
Figure FDA0003800047950000011
ip_i、in_i分别为i(i=a、b、c)相上、下桥臂电流瞬时值。
3.根据权利要求2所述的统一化抑制方法,其特征在于,提取模块化多电平换流器各相桥臂环流,先通过低通滤波器来滤除环流中的直流分量,将环流中占据主导的二倍频负序和四倍频正序分量经过旋转坐标系的变换后分别转化为三倍频的负序和正序分量,其中旋转坐标系的变换矩阵T为:
Figure FDA0003800047950000012
其中,ω0为基波角频率,t表征为时间量;
具体变换过程为:
Figure FDA0003800047950000013
其中,ω0为谐振频率,IZ_2f -为二倍频负序环流成分,IZ_3f -为转换后的三倍频负序环流成分,IZ_4f +为四倍频正序环流成分,IZ_3f +为转换后的三倍频正序环流成分。
4.根据权利要求3所述的统一化抑制方法,其特征在于,经过旋转坐标系的变换矩阵T变换后的环流交流信号在谐振频率为3ω0的准比例谐振控制器后在三倍频处获得较高增益,该控制器的传递函数为:
Figure FDA0003800047950000021
其中,kp为比例系数,Kr为积分系数,wc为截止频率,w0为基波角频率。
5.根据权利要求4所述的统一化抑制方法,其特征在于,最终将获得高增益的信号,该信号中含有大量的IZ_3f’ -和IZ_3f' +成分,经过旋转坐标反变换T-1后得到迭加在模块化多电平换流器各相桥臂调制电压上的能够同时抑制二、四倍频环流的修正信号uA_m、uB_m、uC_m;其中旋转坐标系反变换T-1为:
Figure FDA0003800047950000022
具体反变换过程为:
Figure FDA0003800047950000023
其中,IZ_2f' -为二倍频负序环流修正信号,IZ_3f' -为经过基频旋转坐标转换后的三倍频负序环流成分,IZ_4f' +为四倍频正序环流修正信号,IZ_3f' +为经过基频旋转坐标转换后的三倍频正序环流成分。
CN202210809387.XA 2022-07-11 2022-07-11 模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法 Active CN114884326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210809387.XA CN114884326B (zh) 2022-07-11 2022-07-11 模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210809387.XA CN114884326B (zh) 2022-07-11 2022-07-11 模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法

Publications (2)

Publication Number Publication Date
CN114884326A CN114884326A (zh) 2022-08-09
CN114884326B true CN114884326B (zh) 2022-09-20

Family

ID=82683459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210809387.XA Active CN114884326B (zh) 2022-07-11 2022-07-11 模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法

Country Status (1)

Country Link
CN (1) CN114884326B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115589170B (zh) * 2022-12-13 2023-03-10 麦田能源有限公司 两相逆变器系统及两相逆变器控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135176B (zh) * 2014-07-16 2016-06-29 南方电网科学研究院有限责任公司 一种三角形连接链式换流器的三倍频环流抑制方法
CN106712477A (zh) * 2017-03-09 2017-05-24 山东大学 适用于mmc的同时抑制二倍频与四倍频的环流抑制方法
CN113690889A (zh) * 2021-08-23 2021-11-23 国家电网有限公司 一种以新型多电平变流器改进有源电力滤波器的电力谐波治理方法

Also Published As

Publication number Publication date
CN114884326A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Huang et al. Step by step design of a high order power filter for three-phase three-wire grid-connected inverter in renewable energy system
CN112217225B (zh) 直流微电网自适应虚拟阻容控制方法
CN112134472A (zh) 基于mmc换流器的双端系统直流侧谐振控制方法及系统
CN111740455A (zh) 一种交流不平衡电压与直流脉动电压统一补偿的母线接口变换器控制方法
CN108879775B (zh) 一种考虑电流限值的电网不平衡光伏逆变器协调控制方法
CN109245165B (zh) 三相级联h桥光伏逆变器直流侧电压波动抑制方法
CN112290567B (zh) 一种基于半桥变换器的三相电能质量补偿装置及方法
CN111555300A (zh) 一种三电平有源电力滤波器主电路参数的计算方法
CN114884326B (zh) 模块化多电平变换器环流二倍频四倍频分量的统一化抑制方法
CN111740454A (zh) 一种基于母线接口变换器的混合微电网交直流电压统一控制方法
CN109600064B (zh) 模块化多电平换流器交流不对称故障主回路计算方法、系统
CN113612398B (zh) 电网畸变工况下高频链矩阵变换器非线性控制方法及系统
CN112217238B (zh) 一种无刷双馈发电机系统及其控制方法
CN113629763A (zh) 非理想电网下中压直挂储能变流器电流控制方法及系统
CN113489397A (zh) 数字变电站中电子式变压器自适应控制与校正方法
CN111049201B (zh) 一种交直流电网混合式大功率接口变流器协调控制方法
CN112564170A (zh) 一种级联h桥光伏并网逆变器的功率均衡控制方法
CN112510759B (zh) 共直流母线级联型光伏逆变器的功率不平衡控制方法
CN113765428B (zh) 一种有源中点钳位型三电平变流器及其调控方法
CN110854905B (zh) 开绕组双逆变器光伏发电系统的功率均分控制方法
CN113206504A (zh) 基于链式电力电子变流器的供电网电压综合补偿控制方法
Chang et al. Single-phase voltage source inverter with power decoupling and reactive power control
CN112398361A (zh) 一种抑制mmc互联变换器相间环流的方法
CN112510760B (zh) 扩大三相级联h桥逆变器运行范围的控制方法
CN112600258B (zh) 光伏固态变压器在低电压穿越条件下的功率回流控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant