CN114883434A - 自供电MSM型ZnO基紫外光电探测器及制备方法 - Google Patents

自供电MSM型ZnO基紫外光电探测器及制备方法 Download PDF

Info

Publication number
CN114883434A
CN114883434A CN202210364667.4A CN202210364667A CN114883434A CN 114883434 A CN114883434 A CN 114883434A CN 202210364667 A CN202210364667 A CN 202210364667A CN 114883434 A CN114883434 A CN 114883434A
Authority
CN
China
Prior art keywords
active layer
type
type active
layer
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210364667.4A
Other languages
English (en)
Other versions
CN114883434B (zh
Inventor
卢振亚
林银华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202210364667.4A priority Critical patent/CN114883434B/zh
Publication of CN114883434A publication Critical patent/CN114883434A/zh
Application granted granted Critical
Publication of CN114883434B publication Critical patent/CN114883434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及半导体技术领域,为自供电MSM型ZnO基紫外光电探测器及制备方法,该探测器包括衬底、n型缓冲层、p型有源层、n型有源层以及两个电极;n型缓冲层沉积在衬底上;p型有源层只覆盖在部分n型缓冲层上,形成n型缓冲层过渡到p型有源层的台阶;n型有源层作为连续的顶层,一部分覆盖在p型有源层上,另一部分覆盖在n型缓冲层上,使两部分n型有源层产生不相等的电子浓度,在台阶处产生分离光生载流子的空间电荷区;两个电极分别分布在台阶两边,两个电极之间的肖特基接触势垒形成的空间电荷区进一步分离光生电子‑空穴对。与现有技术相比,所述器件具有器件结构简单、背入射带通响应、光响应度高、响应速度快以及无需外加偏压的优点。

Description

自供电MSM型ZnO基紫外光电探测器及制备方法
技术领域
本发明涉及半导体技术领域,具体涉及具有带通滤波功能的自供电MSM型ZnO基紫外光电探测器及制备方法。
背景技术
紫外探测技术在光电电路、火灾探测、大气环境监测和光通信等各种实际应用中有着广阔的应用前景。当前,基于第三代宽禁带半导体的紫外光探测器因不受可见光干扰、无需滤波片、稳定性高、抗辐射能力强等优点而受到人们的广泛关注。ZnO作为直接带隙半导体,具有3.37eV的禁带宽度,在可见光波段的透过率高达90%以上,是极具潜力的高效、高速紫外光探测器制作材料。同样具有直接能隙的GaN,其禁带宽度略大于ZnO(3.42eV),由于其优异的物理和化学性能使得它制备的器件具有较高的稳定性,是目前最适用于工业集成的材料之一。
自供电是指在环境中获取可用形式的能量,从而驱动低功耗设备的运行。自供电探测器件可以实现从入射光辐射到可测量电信号的转换,以独立、可持续和免维护的方式监测环境光,被认为是未来光电器件的发展趋势之一。迄今为止,包括肖特基势垒、p-n结等自供电紫外光光电探测器已被研究开发出来。目前被广泛研究的是p-n结型自供电器件,基于肖特基势垒自供电紫外探测器件往往存在由于表面电极遮盖效应、响应度低,响应时间较长等缺点。
在许多紫外光的光电探测中,器件往往对某大范围波段的紫外光响应,而紫外光探测应用领域往往需要器件对特定紫外光响应,这需要光探测器件具有带通特性。而目前紫外光探测器要想实现带通特性则需要配置紫外带通滤波片,这将大大增加器件体积。因此,为了保证器件的微型化应用,设计具有带通特性的器件结构,是实现高效、多功能光电探测器的一个关键因素。
发明内容
本发明提供具有带通滤波功能的自供电MSM型ZnO基紫外光电探测器及制备方法,用于解决MSM型紫外探测器响应度低、需外置电源,不能满足带通响应等问题。
本发明探测器所采取的技术方案是:自供电MSM型ZnO基紫外光电探测器,包括衬底、n型缓冲层、p型有源层、n型有源层以及两个电极;
n型缓冲层沉积在衬底上;p型有源层只覆盖在部分n型缓冲层上,形成n型缓冲层过渡到p型有源层的台阶;n型有源层作为连续的顶层,一部分覆盖在p型有源层上,另一部分覆盖在n型缓冲层上,使两部分n型有源层产生不相等的电子浓度,在台阶处产生分离光生载流子的空间电荷区;两个电极分别分布在台阶两边,两个电极之间的肖特基接触势垒形成的空间电荷区进一步分离光生电子-空穴对。
在优选的实施例中,所述台阶采用刻蚀的方法制备而成,通过刻蚀部分p型有源层,产生有p型有源层的上台面,和无p型有源层的下台面。
在优选的实施例中,刻蚀深度的要求为刻蚀到n型缓冲层。
优选地,刻蚀深度最小值为p型有源层的厚度,刻蚀深度还需小于p型有源层的厚度与n型缓冲层的厚度之和。
优选地,n型缓冲层为n型GaN或本征未掺杂GaN,厚度范围为0.3~4μm。p型有源层为p型GaN或p型Al0.1Ga0.9N,厚度范围为50nm~100nm。电极采用Pt、Au、Ag、Ni、Pd、Cr、Ru中任意一种金属。
本发明自供电MSM型ZnO基紫外光电探测器的制备方法,包括以下步骤:
清洗衬底;
在衬底上沉积、生长n型缓冲层及p型有源层,其中p型有源层位于n型缓冲层上面;
对p型有源层进行刻蚀,产生部分有p型有源层、部分无p型有源层的台阶;
在所刻蚀的台阶上生长连续的n型有源层,形成均匀致密的连续薄膜,并在台阶处形成空间电荷区;
在所刻蚀的台阶两边沉积金属电极。
优选地,对p型有源层进行刻蚀时,刻蚀面积占p型有源层总面积的30%~70%,刻蚀深度为p型有源层厚度的1~1.5倍;所生长的n型有源层厚度为刻蚀深度的0.9~1.2倍。
从以上技术方案可知,本发明探测器通过金属有机物化学气相沉积法(MOCVD)在衬底表面沉积制得,通过台面刻蚀去除部分有源层后形成台阶型结构,在刻蚀了部分有源层的表面沉积n型ZnO有源层,将金属电极沉积于n型ZnO有源层表面完成整体器件结构设计。与现有技术相比,本发明的有益效果包括:
1、本发明的器件结构中,p型GaN有源层只覆盖下方部分n型GaN缓冲层,形成n型GaN缓冲层过渡到p型GaN有源层的台阶;n型ZnO有源层作为连续的顶层,一部分覆盖在p型GaN有源层上,另一部分覆盖在n型GaN缓冲层上;两部分的n型ZnO受到下方GaN层的影响产生不相等的电子浓度,覆盖在p型GaN有源层上的n型ZnO有源层电子浓度低,而覆盖在n型GaN缓冲层上的n型ZnO有源层电子浓度高,即产生不对称的ZnO能带;台阶两边由于这种能带不对称产生可以分离光生载流子的空间电荷区,从而在0压下实现紫外光电探测。
2、沉积在n型ZnO有源层上的金属电极为肖特基接触,能与n型ZnO有源层形成接触势垒,有利于进一步分离光生电子-空穴对,提高器件响应度。
3、本发明利用GaN、Al0.1Ga0.9N禁带宽度可调节的特点,同时利用其与ZnO的吸收边不同以及两者晶格结构适配程度高的特点,设计了一种通过ZnO作为吸光层的背入式带通紫外探测器(362~372nm),器件具有结构简单、响应度高、响应时间快等优点,更重要的,器件无需外加偏压即可工作。另外,采用正入射工作方式时,器件同样可以作为紫外光波段(≤380nm)的光探测器,同样具有响应度高、响应速度快等特点。
附图说明
本发明的说明书附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图中描述的位置关系仅用于示意说明,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸,对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
图1为本发明自供电MSM型ZnO基紫外光电探测器的结构示意图;图中各标号为:11-衬底;12-缓冲层;13-有源层;14-n型ZnO有源层;15-肖特基接触电极。
图2为本发明实施例1中紫外光探测器件背入射工作方式的IT曲线。
图3为本发明实施例1中紫外光探测器件背入射工作方式的光谱响应度。
图4为本发明实施例1中紫外光探测器件正入射工作方式的IT曲线。
具体实施方式
本发明紫外探测器的工作方式可以是背入射式带通(362~372nm)紫外光探测或者正入射紫外光(≤380nm)探测方式之一。
下面结合实施例和说明书附图对本发明的技术方案做进一步详细的描述,但本发明的实施方式不限于此。
实施例1
如图1所示,本实施例为一种具有带通滤波功能的自供电MSM型ZnO基紫外光电探测器,器件结构采用金属有机化学气相沉积和射频磁控溅射的方法生长,包括蓝宝石衬底11、n型GaN缓冲层12、p型GaN有源层13、n型ZnO有源层14以及Pt电极(即肖特基接触电极)15。
在上述器件结构中,n型GaN缓冲层12沉积在衬底11上;p型GaN有源层13只覆盖在部分n型GaN缓冲层12上,形成n型GaN缓冲层过渡到p型GaN有源层的台阶;而n型ZnO有源层作为连续的顶层,一部分覆盖在p型GaN有源层13上,另一部分覆盖在n型GaN缓冲层12上,从而使得两部分的n型ZnO有源层14受到下方GaN层的影响产生不相等的电子浓度,在台阶处产生可以分离光生载流子的空间电荷区;且两个电极15分别分布在该台阶两边,两个电极之间的肖特基接触势垒形成的空间电荷区能进一步分离光生电子-空穴对,从而实现高响应度的紫外光电探测。
上述台阶采用刻蚀的方法制备而成。通过刻蚀部分p型GaN有源层,产生有p型GaN有源层的上台面,和无p型GaN有源层的下台面,上台面的n型ZnO有源层能带被下方p型GaN有源层抬高,电子浓度降低,下台面的n型ZnO有源层电子浓度高,因此纵向的n型ZnO有源层能带不对称,在台阶处产生空间电荷区。刻蚀深度的要求为保证刻蚀到n型GaN缓冲层,刻蚀深度最小值为p型GaN有源层的厚度,刻蚀深度还需小于p型GaN有源层的厚度与n型GaN缓冲层的厚度之和。
另外,有源层13的禁带宽度需大于有源层14的禁带宽度,起到特定波段紫外光滤波的作用。当波长小于有源层13截止边波长的光背入射时,将优先到达有源层13被吸收,在有源层13内产生的光生载流子不能被肖特基电极所收集,从而实现有源层13和有源层14响应截止边波长差波段的紫外光带通响应。另外,需有源层13与有源层14这两层材料的晶格适配度高以保证器件性能。
优选地,缓冲层可以为n型GaN或本征未掺杂GaN,厚度范围为0.3~4μm;有源层13可以为p型GaN,厚度范围为50nm~100nm;金属电极可以采用Pt、Au、Ag、Ni、Pd、Cr、Ru任意一种金属,电极可以是长方形、叉指形、圆形等任一形状,且电极分布在刻蚀台阶的两边。
基于以上的器件结构,本实施例还提供了一种该结构的制备方法,具体包括以下步骤:
S1、清洗衬底:将衬底进行无机和有机清洗,以去除表面氧化物及杂质。
本实施例中,首先将衬底放入HCl:去离子水=1:1的溶液中浸泡10min以去除表面氧化物,然后依次放入丙酮、异丙醇超声清洗5min,并用去离子水冲洗5遍样品,最后用氮气吹干直至表面无水珠。
S2、生长缓冲层12及有源层13:通过金属有机物化学气相沉积法在蓝宝石衬底11上沉积700nm厚度的n型GaN作为缓冲层12及75nm厚度的p型GaN作为有源层13,其中p型有源层位于n型缓冲层上面。
实际上,缓冲层12的厚度为0.3~4μm,有源层13的厚度为50nm~100nm,都是可以实现本发明目的的。
S3、刻蚀台面:刻蚀的面积占有源层13总面积的30%~70%,深度为有源层13厚度的1~1.5倍,刻蚀部分集中于样品的一边,与未刻蚀的有源层13部分形成台阶。
具体来说,在p型GaN缓冲层上涂胶,前烘10min后用光刻机进行光刻,然后将样品放入显影液振荡25s后,用去离子水冲洗和氮气枪吹干,使样品图形化,露出需要刻蚀的p型GaN,后烘30min后再用电感耦合等离子体干法刻蚀出台阶,刻蚀气体为BCl3与Cl2,刻蚀时间90s,得到深度为90nm的台阶。
本步骤刻蚀p型GaN有源层是为了产生部分有p型GaN层、部分无p型GaN层的台阶,有p型GaN层的台阶部分对将要沉积的n型ZnO有源层起到能带抬高的作用,降低电子浓度,无p型GaN层的台阶部分(即被刻蚀掉的那部分)对沉积在其上的n型ZnO有源层没有抬高能带的作用,因此纵向n型ZnO有源层中产生不对称的能带,从而在台阶处形成空间电荷区。
由于刻蚀的目的是产生不对称能带,因此刻蚀深度的要求为保证刻蚀到n型GaN缓冲层,刻蚀深度最小值为p型GaN有源层的厚度,刻蚀深度还需小于p型GaN有源层的厚度与n型GaN缓冲层的厚度之和。
刻蚀办法可以是干法刻蚀或者湿法刻蚀其中之一。
S4、恢复刻蚀损伤:通过盐酸处理样品的表面10min,再使用快速热退火技术将样品在750℃的N2氛围中退火2min。
S5、生长n型ZnO有源层14:通过射频磁控溅射沉积n型ZnO薄膜,以形成n型ZnO有源层14,以Ar和O2作为溅射气体,其中气体流量分别控制在75sccm和25sccm,溅射压强保持在0.9Pa,溅射功率设置为80W,溅射时间为18min。
本步骤是为了在步骤S3所刻蚀的台阶上产生一个连续的n型ZnO薄膜有源层14,有源层14的厚度需要满足在有这个台阶的前提下,形成均匀致密的连续薄膜。
其中,有源层13的禁带宽度大于有源层14的禁带宽度,从而能够起到对紫外滤波的作用,在背入射情况下,器件只对362~372nm波段的紫外光响应。另外,有源层13与有源层14这两层材料的晶格适配度高。
n型ZnO薄膜有源层的制备方法可以是金属有机物化学气相沉积、射频磁控溅射、分子束外延、原子层沉积任一方法,其厚度为刻蚀深度的0.9~1.2倍。
S6、沉积金属电极15:两端的电极之间距离为20μm~150μm,分布于所刻蚀台阶的两边。
电极的沉积方法可以是射频磁控溅射、电子束蒸发、热蒸发其中一种。
本实施例中,在显微镜下找到样品表面的刻蚀台阶,并在显微镜下固定特制掩膜版使得电极分布在刻蚀台阶两边;通过射频磁控溅射沉积Pt电极15,其中溅射气体为Ar,溅射压强为0.9Pa,溅射功率为70W,溅射时间为180s。
电极的分布在台阶两边是为了在不对称能带中的空间电荷区两边收集载流子。
至此,具有带通滤波功能的自供电MSM型ZnO基紫外光电探测器的制作完成。图2为该器件在背入射工作方式下在370nm(87.8μW/cm2)的紫外光照射下的IT曲线,器件在具有50nA的光电流;图3为该器件在紫外光背入射工作方式下的光谱响应度,可见器件具有362nm~372nm的带通响应特性。如图4所示,器件在260nm紫外光(368.0μW/cm2)正入射的工作方式下,具有高达0.4μA的光电流,重要的是,以上性能均是在器件外加偏压为0V的条件下测得。器件的优良性能得益于p型GaN有源层13对部分n型ZnO有源层14抬高能带而形成的能带势垒;以及p型GaN与n型ZnO的响应截止边波长差产生的滤波作用,即p型GaN有源层13的禁带宽度大于n型ZnO有源层14的禁带宽度。
实施例2
本实施例与实施例1的紫外光探测器件在结构上基本相同,不同之处是有源层13采用p型Al0.1Ga0.9N,肖特基接触电极15采用Au电极。
本实施例探测器的制备方法,具体包括以下步骤:
S1、清洗衬底:首先将衬底放入HCl:去离子水=1:1的溶液中浸泡10min以去除表面氧化物,然后依次放入丙酮、异丙醇超声清洗5min,并用去离子水冲洗5遍样品,用氮气吹干直至表面无水珠。
S2、生长缓冲层及有源层:通过金属有机物化学气相沉积法在蓝宝石衬底11上沉积700nm厚度的n型GaN作为缓冲层12及80nm厚度的p型Al0.1Ga0.9N作为有源层13。
S3、刻蚀台面:在p型Al0.1Ga0.9N上涂胶,烘胶10min后用光刻机进行光刻,然后将样品放入显影液25s后,用去离子水冲洗和氮气枪吹干,使样品图形化,露出需要刻蚀的p型Al0.1Ga0.9N,再用电感耦合等离子体干法刻蚀出台阶,刻蚀气体为BCl3与Cl2,刻蚀时间90s。
S4、恢复刻蚀损伤:通过盐酸处理样品的表面10min,再使用快速热退火技术将样品在750℃的N2氛围中退火2min。
S5、生长n型ZnO有源层:通过射频磁控溅射沉积n型ZnO薄膜,以Ar和O2作为溅射气体,其中气体流量分别控制在75sccm和25sccm,溅射压强保持在0.9Pa,溅射功率设置为80W,溅射时间为18min。
S6、制作电极:在显微镜下找到样品表面的刻蚀台阶,并在显微镜下固定特制掩膜版使得电极分布在刻蚀台阶两边;通过射频磁控溅射沉积Au电极,其中溅射气体为Ar,溅射压强为0.9Pa,溅射功率为50W,溅射时间为250s。
本实施例的制备方法各步骤中,所需满足的工艺条件与实施例1基本相同,刻蚀的深度、面积参照实施例1,所生长的n型有源层的厚度参照实施例1,两个电极的位置及相对距离也参照实施例1。
显然,以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (10)

1.自供电MSM型ZnO基紫外光电探测器,其特征在于,包括衬底、n型缓冲层、p型有源层、n型有源层以及两个电极;
n型缓冲层沉积在衬底上;p型有源层只覆盖在部分n型缓冲层上,形成n型缓冲层过渡到p型有源层的台阶;n型有源层作为连续的顶层,一部分覆盖在p型有源层上,另一部分覆盖在n型缓冲层上,使两部分n型有源层产生不相等的电子浓度,在台阶处产生分离光生载流子的空间电荷区;两个电极分别分布在台阶两边,两个电极之间的肖特基接触势垒形成的空间电荷区进一步分离光生电子-空穴对。
2.根据权利要求1所述的紫外光电探测器,其特征在于,所述台阶采用刻蚀的方法制备而成,通过刻蚀部分p型有源层,产生有p型有源层的上台面,和无p型有源层的下台面。
3.根据权利要求2所述的紫外光电探测器,其特征在于,刻蚀深度的要求为刻蚀到n型缓冲层。
4.根据权利要求2所述的紫外光电探测器,其特征在于,刻蚀深度最小值为p型有源层的厚度,刻蚀深度还需小于p型有源层的厚度与n型缓冲层的厚度之和。
5.根据权利要求1所述的紫外光电探测器,其特征在于,p型有源层的禁带宽度大于n型有源层的禁带宽度。
6.根据权利要求1-5中任一项所述的紫外光电探测器,其特征在于,n型缓冲层为n型GaN或本征未掺杂GaN,厚度范围为0.3~4μm。
7.根据权利要求1-5中任一项所述的紫外光电探测器,其特征在于,p型有源层为p型GaN或p型Al0.1Ga0.9N,厚度范围为50nm~100nm。
8.根据权利要求1-5中任一项所述的紫外光电探测器,其特征在于,电极采用Pt、Au、Ag、Ni、Pd、Cr、Ru中任意一种金属。
9.权利要求1-5中任一项所述自供电MSM型ZnO基紫外光电探测器的制备方法,其特征在于,包括以下步骤:
清洗衬底;
在衬底上沉积、生长n型缓冲层及p型有源层,其中p型有源层位于n型缓冲层上面;
对p型有源层进行刻蚀,产生部分有p型有源层、部分无p型有源层的台阶;
在所刻蚀的台阶上生长连续的n型有源层,形成均匀致密的连续薄膜,并在台阶处形成空间电荷区;
在所刻蚀的台阶两边沉积金属电极。
10.根据权利要求9所述的制备方法,其特征在于:
对p型有源层进行刻蚀时,刻蚀面积占p型有源层总面积的30%~70%,刻蚀深度为p型有源层厚度的1~1.5倍;
所生长的n型有源层厚度为刻蚀深度的0.9~1.2倍。
CN202210364667.4A 2022-04-08 2022-04-08 自供电MSM型ZnO基紫外光电探测器及制备方法 Active CN114883434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210364667.4A CN114883434B (zh) 2022-04-08 2022-04-08 自供电MSM型ZnO基紫外光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210364667.4A CN114883434B (zh) 2022-04-08 2022-04-08 自供电MSM型ZnO基紫外光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN114883434A true CN114883434A (zh) 2022-08-09
CN114883434B CN114883434B (zh) 2024-04-16

Family

ID=82670430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210364667.4A Active CN114883434B (zh) 2022-04-08 2022-04-08 自供电MSM型ZnO基紫外光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN114883434B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780916A (en) * 1995-10-10 1998-07-14 University Of Delaware Asymmetric contacted metal-semiconductor-metal photodetectors
CN105720148A (zh) * 2016-05-03 2016-06-29 金华吉大光电技术研究所有限公司 Cu掺杂ZnO为有源层的ZnO-GaN组合紫外发光管及其制备方法
US20170077356A1 (en) * 2015-09-15 2017-03-16 The Regents Of The University Of California Multistep deposition of zinc oxide on gallium nitride
CN107863413A (zh) * 2017-11-02 2018-03-30 中山大学 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
US20190140120A1 (en) * 2017-11-08 2019-05-09 Wisconsin Alumni Research Foundation High performance, high electron mobility transistors with graphene hole extraction contacts
CN110164993A (zh) * 2019-06-05 2019-08-23 中国科学院长春光学精密机械与物理研究所 一种紫外波段多波长探测器及其制备方法
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法
US20220077334A1 (en) * 2019-01-17 2022-03-10 King Abdullah University Of Science And Technology Deep ultra-violet devices using ultra-violet nanoparticles with p-type conductivity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780916A (en) * 1995-10-10 1998-07-14 University Of Delaware Asymmetric contacted metal-semiconductor-metal photodetectors
US20170077356A1 (en) * 2015-09-15 2017-03-16 The Regents Of The University Of California Multistep deposition of zinc oxide on gallium nitride
CN105720148A (zh) * 2016-05-03 2016-06-29 金华吉大光电技术研究所有限公司 Cu掺杂ZnO为有源层的ZnO-GaN组合紫外发光管及其制备方法
CN107863413A (zh) * 2017-11-02 2018-03-30 中山大学 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
US20190140120A1 (en) * 2017-11-08 2019-05-09 Wisconsin Alumni Research Foundation High performance, high electron mobility transistors with graphene hole extraction contacts
US20220077334A1 (en) * 2019-01-17 2022-03-10 King Abdullah University Of Science And Technology Deep ultra-violet devices using ultra-violet nanoparticles with p-type conductivity
CN110164993A (zh) * 2019-06-05 2019-08-23 中国科学院长春光学精密机械与物理研究所 一种紫外波段多波长探测器及其制备方法
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄丹宇: "Si基ZnO纳米结构异质结光伏器件的光电性能研究", 制造业自动化, vol. 34, no. 1, 31 December 2012 (2012-12-31) *

Also Published As

Publication number Publication date
CN114883434B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN110335908B (zh) 异质结分波段探测器及其制备方法与应用
CN105405916A (zh) 硅基宽光谱探测器及制备方法
CN111725338A (zh) 一种微米线阵列异质结紫外光探测器及其制备方法
CN111628035A (zh) 一种光电探测器及其制备方法
CN103227230B (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
CN112635614A (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法
WO2022126933A1 (zh) 波长选择性响应的光电探测器的制备方法
CN111081792A (zh) 一种背照射紫外红外双色光电探测器及其制备方法
US11469336B2 (en) Photodiode, method for preparing the same, and electronic device
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN110676272A (zh) 一种半导体紫外光电探测器
KR100788834B1 (ko) 가시광 및 자외선 감지용 센서
JP2001203376A (ja) 太陽電池
JP5779005B2 (ja) 紫外線受光素子及びそれらの製造方法
CN111063751B (zh) 一种超薄无机窄带异质结光电探测器及其制备方法
CN114883434B (zh) 自供电MSM型ZnO基紫外光电探测器及制备方法
CN114530519B (zh) 一种自驱动msm紫外探测器及其制备方法
CN114709279A (zh) 一种倒装结构的紫外探测器芯片
CN108615782A (zh) 一种紫外探测器及其制造方法
CN114678439A (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN114300551A (zh) 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
CN111524973A (zh) 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法
TWI390749B (zh) 透明光檢測器及其製造方法
CN110444615B (zh) 一种AlGaN基垂直结MSM紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant