CN111063751B - 一种超薄无机窄带异质结光电探测器及其制备方法 - Google Patents

一种超薄无机窄带异质结光电探测器及其制备方法 Download PDF

Info

Publication number
CN111063751B
CN111063751B CN201910742807.5A CN201910742807A CN111063751B CN 111063751 B CN111063751 B CN 111063751B CN 201910742807 A CN201910742807 A CN 201910742807A CN 111063751 B CN111063751 B CN 111063751B
Authority
CN
China
Prior art keywords
gallium
type silicon
silicon wafer
copper
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910742807.5A
Other languages
English (en)
Other versions
CN111063751A (zh
Inventor
王莉
李振
范琦
罗和昊
杨小平
罗林保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201910742807.5A priority Critical patent/CN111063751B/zh
Publication of CN111063751A publication Critical patent/CN111063751A/zh
Application granted granted Critical
Publication of CN111063751B publication Critical patent/CN111063751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种超薄无机窄带异质结光电探测器及其制备方法,该光电探测器是基于单晶硅和铜镓碲薄膜形成的异质结而构成的光电转化机构。本发明的探测器在铜镓碲薄膜的厚度达到20nm以上时即可获得在近红外区域的窄带光谱响应(半峰宽≈110nm),且该探测器具有制作工艺简单、光谱选择性好、性能优越且稳定等特点。

Description

一种超薄无机窄带异质结光电探测器及其制备方法
技术领域
本发明属于新型光电探测器领域,具体涉及一种超薄无机窄带异质结光电探测器及其制备方法。
背景技术
光电探测器在军事和国民经济的各个领域都有广泛的用途,如射线测量和探测、工业自动控制、光度计量、导弹制导、红外热成像及红外遥感等方面。按照光谱响应度窗口大小,其可分为窄带探测器与宽带探测器。目前,大多数光电探测器都是宽波段的光电探测器。但是在实际应用中往往需要对特定波长的光进行探测,常规解决方法是在一个宽波段的探测器前面添加滤波装置。这无疑导致光电系统成本及系统复杂性增加,且不利于器件的集成。
目前已有的非滤波窄带探测器多采用有机材料如钙钛矿等实现。这些有机材料在空气中稳定性较差,性能会随着放置时间而逐渐下降,而且为实现窄带效果往往需要活性层的厚度在微米甚至毫米以上,这一方面造成器件体积过大,不利于光电集成,另一方面也使得相当一部分载流子在如此长的扩散长度中被逐渐复合而猝灭,从而使探测器光电响应减弱,响应速度降低。
发明内容
本发明是为避免上述现有技术所存在的不足之处,提供一种超薄无机窄带异质结光电探测器及其制备方法,旨在以简单的工艺来实现良好的光谱选择性、优异的器件性能、出色的稳定性。
本发明解决技术问题采用如下技术方案:
一种超薄无机窄带异质结光电探测器,其特点在于:是以N型硅片作为基底,在所述N型硅片上表面的局部区域设置有绝缘层;在所述N型硅片上表面还设置有铜镓碲薄膜;所述铜镓碲薄膜的部分区域与N型硅片接触形成异质结,剩余部分位于所述绝缘层上方;在所述铜镓碲薄膜上设置有顶电极,且所述顶电极位于所述绝缘层上方;在所述N型硅片的下表面设置有底电极。
进一步地,所述N型硅片的电阻率为1-10Ω·cm。
进一步地,所述绝缘层为SiO2绝缘层、HfO2绝缘层或Al2O3绝缘层。
进一步地,所述铜镓碲薄膜的厚度在20-126nm。
进一步地,所述底电极为涂抹于N型硅片下表面的镓铟合金电极。
进一步地,所述顶电极为银浆电极。
本发明所得超薄无机窄带异质结光电探测器的光谱响应峰值在1050nm、半峰宽约为110nm。
本发明还公开了上述超薄无机窄带异质结光电探测器的制备方法,是按如下步骤进行:
a、将局部区域设置有绝缘层的N型硅片依次放在丙酮、酒精和去离子水中进行超声清洗,然后用纯度高于99%的氮气吹干备用;
b、打开脉冲激光沉积室,放上铜镓碲靶材,将基底与靶材平行放置,靶材与基底间距为7cm,关闭沉积室;抽真空至生长室压强小于10-4Pa,打开激光源,调整激光能量密度为90J、频率为3Hz、激光源对靶材烧蚀面积为0.02cm2,沉积时间为10-60min;取出后,即在N型硅片上表面形成铜镓碲薄膜;
c、在N型硅片底部涂抹镓铟合金作为底电极,在铜镓碲薄膜上点银浆作为顶电极,且顶电极位于绝缘层上方,即获得超薄无机窄带异质结光电探测器。
与已有技术相比,本发明的有益效果体现在:
1、本发明的光电探测器采用铜镓碲薄膜与硅形成异质结,构成光电转化机构。铜镓碲材料禁带宽度略大于硅,且对于能量大于禁带宽度光子的吸收系数可达到106cm-1以上,对于能量大于禁带宽度光子的吸收系数则急剧减小,使得其对下面的硅具有有效的滤波作用。同时铜镓碲薄膜的载流子扩散长度短,这使得其吸收能量大于禁带宽度光子产生的光生载流子很难到达铜镓碲与硅的pn结区被分离收集。在这两种因素的共同作用下,即使铜镓碲薄膜厚度仅为纳米级(如20nm),铜镓碲材料与硅形成的异质结也可产生近红外区域的窄带光谱响应特性(峰值1050nm,半峰宽≈110nm)。
2、本发明的光电探测器具有制备成本低廉、工艺简单、易于实现的特点。
3、与有机材料相比,本发明采用无机单晶硅和铜镓碲薄膜作为材料构建的光电探测器,具有更高的稳定性。
附图说明
图1为本发明超薄无机窄带异质结光电探测器的结构示意图;
图2为本发明实施例1所得光电探测器(h=50nm)在暗场下的电流-电压特性曲线;
图3为本发明实施例1所得光电探测器(h=50nm)的光谱响应曲线;
图4为本发明实施例1所得光电探测器(h=50nm)在1064nm光照下的电流-时间曲线;
图5为本发明实施例1所得光电探测器(h=50nm)在1064nm光照下的开关比-光强曲线;
图6为本发明实施例1所得光电探测器(h=50nm)在1064nm光照下响应率-光强和探测率-光强曲线;
图7为本发明实施例1所得各光电探测器的光谱响应半峰宽和铜镓碲薄膜厚度关系曲线;
图8为本发明实施例1所得各光电探测器的光谱响应大小和铜镓碲薄膜厚度关系曲线。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例的超薄无机窄带异质结光电探测器,是以N型硅片2作为基底,在N型硅片2上表面的局部区域设置有绝缘层3;在N型硅片2上表面还设置有铜镓碲薄膜4;铜镓碲薄膜4的部分区域与N型硅片2接触形成异质结,剩余部分位于绝缘层3上方;在铜镓碲薄膜4上设置有顶电极5,且顶电极位于绝缘层3上方;在N型硅片2的下表面设置有底电极1。
具体的:本实施例所用N型硅片的电阻率为1-10Ω·cm;所用绝缘层为厚度300nm的SiO2;所用底电极为涂抹于N型硅片下表面的镓铟合金电极,所用顶电极为点在铜镓碲薄膜上方并自然凝固的银浆电极。
本实施例超薄无机窄带异质结光电探测器的制备方法,是按如下步骤进行:
a、将局部区域设置有SiO2绝缘层的N型硅片依次放在丙酮、酒精和去离子水中进行超声清洗,然后用纯度高于99%的氮气吹干备用;
b、打开脉冲激光沉积室,放上铜镓碲靶材,将基底与靶材平行放置,靶材与基底间距为7cm,关闭沉积室;抽真空至生长室压强小于10-4Pa,打开激光源,调整激光能量密度为90J、频率为3Hz、激光源对靶材烧蚀面积为0.02cm2,沉积时间为4-60min;取出后,即在N型硅片上表面形成铜镓碲薄膜;
c、在N型硅片底部涂抹镓铟合金作为底电极,在铜镓碲薄膜上点银浆作为顶电极,且顶电极位于绝缘层上方,即获得超薄无机窄带异质结光电探测器。
通过调整沉积时间,可获得不同厚度的铜镓碲薄膜。为进行对比,本实施例在沉积时间分别为4min、10min、23min、60min的条件下,分别获得厚度为10nm、20nm、50nm、126nm的铜镓碲薄膜,基于其的光电探测器依次标记为:光电探测器(h=10nm)、光电探测器(h=20nm)、光电探测器(h=50nm)、光电探测器(h=126nm)。
图2为本实施例所得光电探测器(h=50nm)在暗场下的电流-电压特性曲线,从图中可以看出曲线表现出明显的整流特性,这说明铜镓碲薄膜与硅形成了pn结。
图3为本实施例所得光电探测器(h=50nm)的光谱响应曲线,从图中可以看出该探测器光谱响应具有很好的选择性,其半高宽为110,光谱响应最高点在1050nm处。
图4为本实施例所得光电探测器(h=50nm)在1064nm光照下的电流-时间曲线,从图中可以看出该探测器具有很好的开关性能。
图5为本实施例所得光电探测器(h=50nm)在1064nm光照下的开关比-光强曲线,从图中可以看出其开关比随着光强的增大而增大。
图6为本实施例所得光电探测器(h=50nm)在1064nm光照下响应率-光强和探测率-光强曲线,从图中可以看出其响应率和探测率皆随着光强的增大而减小。
图7为本实施例所得各光电探测器的光谱响应半峰宽和铜镓碲薄膜厚度的关系曲线,从图中可以看出其光谱响应半峰宽随着铜镓碲薄膜厚度的增大而减小,在铜镓碲薄膜厚度大于20nm以后,其半峰宽变化较为平缓。
图8为本实施例所得各光电探测器的光谱响应大小和铜镓碲薄膜厚度关系曲线,从图中可以看出其光谱响应大小随着铜镓碲薄膜厚度的增大而减小。
以上所述仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种超薄无机窄带异质结光电探测器,其特征在于:是以N型硅片(2)作为基底,在所述N型硅片(2)上表面的局部区域设置有绝缘层(3);在所述N型硅片(2)上表面还设置有铜镓碲薄膜(4);所述铜镓碲薄膜(4)的部分区域与N型硅片(2)接触形成异质结,剩余部分位于所述绝缘层(3)上方;在所述铜镓碲薄膜(4)上设置有顶电极(5),且所述顶电极位于所述绝缘层(3)上方;在所述N型硅片(2)的下表面设置有底电极(1);
所述光电探测器的光谱响应峰值在1050nm、半高宽为110nm。
2.根据权利要求1所述的超薄无机窄带异质结光电探测器,其特征在于:所述N型硅片的电阻率为1-10Ω·cm。
3.根据权利要求1所述的超薄无机窄带异质结光电探测器,其特征在于:所述绝缘层为SiO2绝缘层、HfO2绝缘层或Al2O3绝缘层。
4.根据权利要求1所述的超薄无机窄带异质结光电探测器,其特征在于:所述铜镓碲薄膜的厚度在20-126nm。
5.根据权利要求1所述的超薄无机窄带异质结光电探测器,其特征在于:所述底电极为涂抹于N型硅片下表面的镓铟合金电极。
6.根据权利要求1所述的超薄无机窄带异质结光电探测器,其特征在于:所述顶电极为银浆电极。
7.一种权利要求1~6中任意一项所述超薄无机窄带异质结光电探测器的制备方法,其特征在于,按如下步骤进行:
a、将局部区域设置有绝缘层的N型硅片依次放在丙酮、酒精和去离子水中进行超声清洗,然后用纯度高于99%的氮气吹干备用;
b、打开脉冲激光沉积室,放上铜镓碲靶材,将基底与靶材平行放置,靶材与基底间距为7cm,关闭沉积室;抽真空至生长室压强小于10-4Pa,打开激光源,调整激光能量密度为90J、频率为3Hz、激光源对靶材烧蚀面积为0.02cm2,沉积时间为10-60min;取出后,即在N型硅片上表面形成铜镓碲薄膜;
c、在N型硅片底部涂抹镓铟合金作为底电极,在铜镓碲薄膜上点银浆作为顶电极,且顶电极位于绝缘层上方,即获得超薄无机窄带异质结光电探测器。
CN201910742807.5A 2019-08-13 2019-08-13 一种超薄无机窄带异质结光电探测器及其制备方法 Active CN111063751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910742807.5A CN111063751B (zh) 2019-08-13 2019-08-13 一种超薄无机窄带异质结光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910742807.5A CN111063751B (zh) 2019-08-13 2019-08-13 一种超薄无机窄带异质结光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111063751A CN111063751A (zh) 2020-04-24
CN111063751B true CN111063751B (zh) 2022-02-08

Family

ID=70297482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910742807.5A Active CN111063751B (zh) 2019-08-13 2019-08-13 一种超薄无机窄带异质结光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111063751B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652719B (zh) * 2020-12-07 2022-07-19 杭州电子科技大学 高eqe和低fwhm的钙钛矿光电探测器及其制作方法
CN114300555A (zh) * 2021-12-08 2022-04-08 华南师范大学 一种基于TaIrTe4/Si异质结的光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621084A (zh) * 2009-08-03 2010-01-06 苏州阿特斯阳光电力科技有限公司 基于n型硅片的黄铜矿类半导体薄膜异质结太阳电池
CN103043629A (zh) * 2012-12-19 2013-04-17 中国科学院合肥物质科学研究院 一种CuGaX2(X=S, Se, Te)系列化合物的低温合成方法
CN109256471A (zh) * 2018-12-10 2019-01-22 合肥工业大学 一种无铅全无机钙钛矿铯铋碘薄膜/n-型硅异质结光电探测器及其制备方法
CN109449225A (zh) * 2018-10-29 2019-03-08 合肥工业大学 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69734183T8 (de) * 1996-10-15 2007-03-29 Matsushita Electric Industrial Co., Ltd., Kadoma Sonnenzelle und Herstellungsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621084A (zh) * 2009-08-03 2010-01-06 苏州阿特斯阳光电力科技有限公司 基于n型硅片的黄铜矿类半导体薄膜异质结太阳电池
CN103043629A (zh) * 2012-12-19 2013-04-17 中国科学院合肥物质科学研究院 一种CuGaX2(X=S, Se, Te)系列化合物的低温合成方法
CN109449225A (zh) * 2018-10-29 2019-03-08 合肥工业大学 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
CN109256471A (zh) * 2018-12-10 2019-01-22 合肥工业大学 一种无铅全无机钙钛矿铯铋碘薄膜/n-型硅异质结光电探测器及其制备方法

Also Published As

Publication number Publication date
CN111063751A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN108470675B (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
Hernandez-Como et al. Ultraviolet photodetectors based on low temperature processed ZnO/PEDOT: PSS Schottky barrier diodes
US20150287871A1 (en) Solution-processed ultraviolet light detector based on p-n junctions of metal oxides
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN111063751B (zh) 一种超薄无机窄带异质结光电探测器及其制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN104300027A (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN107611215B (zh) 硅/二维半导体异质结型光电探测器及制备方法
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN111952403B (zh) 一种基于二硒化铂/n-型超薄硅肖特基结的颜色探测器及其制备方法
Tut et al. Solar-blind AlxGa1− xN-based avalanche photodiodes
Gao et al. Large area self-powered Al-ZnO/(n) Si hetero-junction photodetectors with high responsivity
CN109326659A (zh) 一种高响应度低暗电流PIN结构的4H-SiC紫外探测器及其制备方法
Agrawal et al. Electron depleted ZnO nanowalls-based broadband photodetector
CN110611010B (zh) 一种硅纳米晶/石墨烯宽光谱光电探测器及其制备方法
CN102569486B (zh) 一种肖特基栅场效应紫外探测器及其制备方法
Yadav et al. Development of visible-blind UV photodetector using solution processed Ag-ZnO nanostructures
Hwang et al. High Performance Solar-Blind p-NiO/n-ZnO/p-Si Ultraviolet Heterojunction Bipolar Phototransistors with High Optical Gain
CN111952401B (zh) 一种基于范德瓦尔斯异质结的颜色探测器及其制备方法
Zumuukhorol et al. Effect of a SiO₂ Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors
CN114695430A (zh) 双极性响应双色探测器、其制备方法及应用
CN209418523U (zh) 一种倒装型可见光增敏硅基雪崩光电二极管阵列
Dwivedi et al. PEDOT: PSS/Yb-doped ZnO heterojunction based flexible UV photodetector
Ko et al. AlGaN/GaN Schottky-barrier UV-B bandpass photodetectors with ITO contacts and LT-GaN cap layers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant