CN114878562A - 基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法 - Google Patents

基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法 Download PDF

Info

Publication number
CN114878562A
CN114878562A CN202210591554.8A CN202210591554A CN114878562A CN 114878562 A CN114878562 A CN 114878562A CN 202210591554 A CN202210591554 A CN 202210591554A CN 114878562 A CN114878562 A CN 114878562A
Authority
CN
China
Prior art keywords
profenofos
fluorescence
colorimetric
cys
carbon quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210591554.8A
Other languages
English (en)
Inventor
陈丽琼
刘飞燕
韩培刚
赵笙良
赖璇迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Technology University
Original Assignee
Shenzhen Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Technology University filed Critical Shenzhen Technology University
Priority to CN202210591554.8A priority Critical patent/CN114878562A/zh
Publication of CN114878562A publication Critical patent/CN114878562A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/29Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using visual detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及纳米材料技术领域,具体是一种纳米金和碳量子点的丙溴磷比色荧光双信号检测方法。本发明首先制备纳米金复合物Au‑cys溶液和碳量子点CDs溶液,利用丙溴磷可与Au‑cys特异性结合而使纳米金发生聚集,通过肉眼观察Au‑cys溶液的颜色变化可对丙溴磷进行半定量检测,通过Au‑cys吸光度变化值对丙溴磷进行定量检测;而后在反应体系中加入CDs,利用聚集的Au‑cys使CDs的荧光恢复,可通过CDs荧光信号的变化值对丙溴磷进行定量检测。本发明建立的检测方法操作简单、快速、成本较低、灵敏度高、抗干扰性强,无需复杂的大型仪器,实用性强,在丙溴磷的裸眼筛查和快速检测领域具有广阔的应用前景。

Description

基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法
技术领域
本发明属于纳米材料技术领域,特别涉及一种基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法。
背景技术
丙溴磷是一种中等毒性的非内吸性广谱有机磷酸酯类农药,具有触杀和胃毒作用,广泛用于农产品生产过程中害虫的有效控制。近年来,随着一批高毒农药被逐步禁止或限制使用,丙溴磷逐渐成为一些农产品的重要杀虫剂。然而,随着丙溴磷的使用量日益增多,容易造成水资源、土壤和农产品的残留污染,对人类健康造成很大的风险。虽然少量的农药残留不会引起人体急性中毒,但长期食用丙溴磷残留超标的食品,体内会沉积一定量的残留农药,可能诱发长期慢性疾病,引起肝脏病变,甚至诱发癌症、畸形和基因突变。《食品安全国家标准食品中农药最大残留限量》(GB2763-2019)对丙溴磷含量做出了严格规定,规定丙溴磷在谷物和蔬菜中的最大残留限量分别为0.02和0.05mg/kg。因此,建立一种对丙溴磷准确可行的检测方法对环境监测和人类健康维护具有重要意义。
丙溴磷是一种频繁在食品安全抽检中被发现残留超标的农药,传统检测丙溴磷的方法是主要是气相色谱法、高效液相色谱法、气质联用法、液质联用法,这些检测方法流程较多,仪器大型且昂贵,在实际应用和推广中具有一定的难度。而目前针对其快速检测方法的研究较少,且现有文献报导的丙溴磷快速检测方法的选择性和灵敏度不高或者在复杂基体中干扰严重,其检出限大多不能满足食品安全国家标准对农药残留的限量要求,实际应用受限。因此,为了强化食品的质量安全监管,针对丙溴磷的农药残留问题,迫切需要开发简单、快速、灵敏、低成本的丙溴磷农药残留的检测技术。光学传感器法具有快速响应、操作简单、灵敏度较高的特点,但单一的光学响应信号易受复杂系统中光学背景的干扰,影响检测结果的稳定性。将荧光法和比色法相结合的多信号检测策略可以避免复杂系统中背景的干扰影响,提高方法的灵敏度,使分析结果更加可靠,以实现实际应用中的实时快速筛查与检测。基于比色荧光双信号光学传感法对丙溴磷进行检测的分析中,对丙溴磷能特异性识别的配体经过与比色荧光材料的合理修饰,使其与丙溴磷结合时能转化成易与检测的比色和荧光信号,从而实现丙溴磷的分析与检测。目前,常用的检测丙溴磷的配体主要是核酸适配体。虽然核酸适配体理论上可特异性地识别丙溴磷,但实际操作中,核酸适配体结合到材料表面后,其构象容易发生改变,使其不能像在溶液中一样正确识别靶标分子。查阅相关文献,利用纳米金和碳量子点的比色荧光双信号光学传感检测丙溴磷的方法还未见报道。
发明内容
本发明的目的是提供基于一种纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,具有操作简单、灵敏度高、并能快速裸眼筛查和定量丙溴磷的特点。
本发明的技术解决方案是撰述基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特殊之处在于,包括以下步骤:
S1.制备纳米金复合物Au-cys和碳量子点CDs;
S2.建立纳米金复合物Au-cys和碳量子点CDs比色荧光双信号法检测丙溴磷;
S3.比色荧光双信号法检测丙溴磷的选择性;
S4.实际样品中丙溴磷的检测。
作为优选:所述步骤S1进一步包括:
⑴将半胱氨酸和硼氢化钠加入到氯金酸溶液中,在搅拌器上搅拌一段时间后,得到纳米金复合物Au-cys溶液;
⑵将碳源和钝化剂加入圆底烧瓶中,超声后,置于微波合成反应器中进行反应,设置微波合成反应器的一定的温度、功率和反应时间,反应结束后,在反应体系中加入超纯水超声分散,得到的溶液于滤膜过滤后,在烘箱中烘干,得到碳量子点CDs固体,通过称量,用超纯水将碳量子点CDs重新溶解,得到碳量子点CDs溶液;
所述碳源为叶酸、柠檬酸或水杨酸等的一种,碳源的含量为0.005~0.05mmol,所述钝化剂为乙二胺、三聚氰胺、半胱氨酸或氨水等的一种,钝化剂的含量为0.005~0.05mmol,所述超声时间均为5~30min,所述微波反应器的温度为80~180℃,功率为500~1000W,反应时间为10~100min,所述滤膜为0.22μm规格,所述烘箱温度为60℃,所述碳量子点CDs颜色为黄色。
作为优选:所述步骤⑴中,所述半胱氨酸含量为0.01~0.1mmol,硼氢化钠含量为0.01~0.05mmol,氯金酸含量为0.05~0.5mmol,搅拌器转速为400~1200rpm,搅拌时间为10~100min,所述纳米金复合物Au-cys溶液颜色为酒红色。
作为优选:所述步骤S2进一步包括:
⑴配置不同浓度梯度的丙溴磷标准溶液,所述丙溴磷标准溶液的浓度范围为0.02~2.4mg/L;
⑵比色法检测丙溴磷;
(2.1)将纳米金复合物Au-cys与丙溴磷标准溶液混合,所述纳米金复合物Au-cys与丙溴磷标准溶液的体积比为1:3,所述反应时间为3~10min;
(2.2)反应后测量溶液的比色和吸光度信号,以丙溴磷浓度值为横坐标,吸光度差值:A520-A800为纵坐标,式中:A520表示520nm处的吸光度,A800表示800nm处的吸光度,得到加入含丙溴磷的纳米金复合物Au-cys比色探针溶液的吸光度差值与丙溴磷浓度之间的线性关系,建立吸光度标准曲线;
⑶荧光法检测丙溴磷;
(3.1)在进行纳米金复合物Au-cys比色信号的采集后,加入碳量子点CDs,反应后测量荧光强度;
(3.2)以丙溴磷浓度值为横坐标,荧光强度恢复量:△F=FL-FL0为纵坐标,式中:FL和FL0分别表示存在和不存在丙溴磷时Au-cys-CDs的荧光强度,得到加入含丙溴磷的Au-cys-CDs溶液的荧光恢复量与丙溴磷浓度之间的线性关系,所述碳量子点CDs的浓度为2~20mg/L,所述碳量子点CDs与加入丙溴磷后纳米金复合物Au-cys溶液的体积比为1:40,所述反应时间为3~10min,所述激发波长为350nm,所述荧光发射峰为425nm;建立荧光标准曲线。
作为优选:所述步骤S3进一步包括:所述干扰物为不同种类的无机物和农药有机物,浓度为0.2~20mg/L,所述丙溴磷浓度为0.2~1.2mg/L;选择不同干扰物,所述干扰物含丙溴磷或不含丙溴磷,按照步骤S2的⑵和⑶中比色法和荧光法分别得到吸光度和荧光强度。
作为优选:所述步骤S4进一步包括:将实际样品预处理后,加入不同含量的丙溴磷,以配制成不同丙溴磷加标浓度的样品待测液;按照步骤S2的⑵和⑶中比色法和荧光法分别得到吸光度和荧光强度,对照比色标准曲线和荧光标准曲线,即可确定待测样中丙溴磷的含量,并计算加标回收率和相对标准偏差;为验证基于纳米金和碳量子点比色荧光双信号法检测丙溴磷的可靠性,也采用常用的传统的液质联用方法检测实际样品中的丙溴磷浓度,并将结果与荧光法进行比对。
作为优选:所述丙溴磷的加标浓度为0.02~1.2mg/L,待测物预处理的步骤具体为:农产品:取1~10g农产品,研磨成浆状或粉状,加入100mL超纯水,然后超声处理30min;土壤样品:取1g土壤溶解在100mL超纯水,然后超声处理30min;水样品:取水样煮沸,而后冷却至室温;然后将所有样品溶液以13000rpm的转速离心30min,将得到的上清液用0.45μm的滤膜过滤得到处理后的实际样品溶液。
与现有技术相比,本发明的有益效果:
⑴本发明将碳量子点的高荧光稳定性和纳米金的比色和淬灭荧光特性的优势结合起来,选择成本低廉的半胱氨酸作为识别丙溴磷的配体,构建的比色荧光光学传感器检测丙溴磷的方法的线性范围宽、选择性高、灵敏度好,可达到国标中规定的丙溴磷限量的检测水平。《食品安全国家标准食品中农药最大残留限量》(GB2763-2019)规定丙溴磷在谷物和蔬菜中的最大残留限量分别为0.02和0.05mg/kg。
⑵本发明的检测方法操作简单、快速、成本较低,无需复杂的大型仪器,实用性强,在丙溴磷的裸眼筛查和快速检测领域具有广阔的应用前景。
⑶本发明使用微波合成仪制备的碳量子点具有高荧光性能,合成条件的控制更加精准,降低碳量子点的合成差异性,进而提高方法的稳定性、抗干扰性和灵敏度。
附图说明
图1是本发明比色荧光双响应传感法检测丙溴磷的原理图;
图2A是本发明加入不同丙溴磷含量后Au-cys的吸光度图;
图2B是本发明加入不同丙溴磷含量后Au-cys的吸光度标准曲线图;
图3A是本发明加入不同丙溴磷含量后Au-cys-CDs的荧光强度图;
图3B是本发明加入不同丙溴磷含量后Au-cys-CDs的荧光标准曲线图;
图4A是本发明加入不同干扰物对比色法的选择性图;
图4B是本发明加入不同干扰物对荧光法的选择性图。
具体实施方式
本发明下面将结合附图作进一步详述:
【实施例1】:
纳米金复合物Au-cys的制备方法,具体步骤如下:
将0.04mmol半胱氨酸和0.03mmol硼氢化钠加入到0.1mmol氯金酸溶液中,在搅拌器上以800rpm的转速搅拌15min后,最终得到酒红色的Au-cys溶液。
【实施例2】:
纳米金复合物Au-cys的制备方法,具体步骤如下:
将0.03mmol半胱氨酸和0.02mmol硼氢化钠加入到0.07mmol氯金酸溶液中,在搅拌器上以600rpm的转速搅拌20min后,最终得到酒红色的Au-cys溶液。
【实施例3】:
碳量子点CDs的制备方法,具体步骤如下:
将0.015mmol柠檬酸和0.01mmol半胱氨酸加入圆底烧瓶中,超声10min后置于微波合成反应器中进行反应,设置温度为110℃,功率为700W,反应时间为40min,反应结束后,在反应体系中加入20mL的超纯水,超声分散10min,得到的黄色溶液于0.22μm的滤膜过滤后于60℃烘箱中烘干,得到CDs固体,通过称量,用超纯水将CDs重新溶解,最终得到黄色的CDs溶液。
【实施例4】:
碳量子点CDs的制备方法,具体步骤如下:
将0.01mmol叶酸和0.08mmol三聚氰胺加入圆底烧瓶中,超声10min后置于微波合成反应器中进行反应,设置温度为120℃,功率为700W,反应时间为30min,反应结束后,在反应体系中加入20mL的超纯水,超声分散10min,得到的黄色溶液于0.22μm的滤膜过滤后于60℃烘箱中烘干,得到CDs固体,通过称量,用超纯水将CDs重新溶解,最终得到黄色的CDs溶液。
【实施例5】:
建立纳米金复合物Au-cys和碳量子点CDs比色荧光双信号法检测丙溴磷比色荧光双信号检测丙溴磷的原理:
金纳米粒子修饰半胱氨酸形成分散稳定的纳米金复合物Au-cys复合物,由于纳米金复合物Au-cys的表面等离子体效应使其具有强烈的粒子间光学效应,当体系中加入丙溴磷时,丙溴磷可与纳米金复合物Au-cys特异性结合而使纳米金发生聚集,其吸收峰发生红移,纳米金复合物Au-cys溶液颜色由红变蓝,这一变色是比色法的关键信号,此时通过肉眼观察溶液的颜色变化可对丙溴磷进行半定量检测,通过纳米金复合物Au-cys的吸光度信号的变化值对丙溴磷进行定量检测。当体系中不存在丙溴磷时,分散的纳米金复合物Au-cys的吸收光谱和碳量子点CDs荧光发射光谱发生部分重叠,产生内滤效应,使碳量子点CDs的荧光发生淬灭;当体系中存在丙溴磷时,聚集的纳米金复合物Au-cys的吸收光谱与碳量子点CDs荧光发射光谱重叠减小,因此聚集的纳米金复合物Au-cys对碳量子点CDs的淬灭影响降低,此时通过碳量子点CDs荧光信号的变化值对丙溴磷进行定量检测。检测原理图如图1所示。
丙溴磷的检测方法,具体步骤如下:
用乙醇配制1g/L丙溴磷,用超纯水稀释得到不同浓度的丙溴磷标准溶液;然后将100μL的纳米金复合物Au-cys直接与300μL的丙溴磷标准溶液混合,反应7min后测量溶液在520nm和800nm处的吸光度;以丙溴磷浓度值为横坐标,吸光度差值(A520-A800)为纵坐标,式中:A520表示520nm处的吸光度,A800表示800nm处的吸光度,得到加入不同浓度丙溴磷的纳米金复合物Au-cys比色探针溶液的吸光度差值与丙溴磷浓度之间的线性关系图,结果如图2所示。
建立比色法标准曲线方程为A520-A800=-0.1240C+0.2907(R2=0.993),比色法的线性范围为0.2-1.2mg/L,检出限为21.7μg/L。
在进行纳米金复合物Au-cys比色信号的采集后,取10mg/L的碳量子点CDs加入比色信号检测后的纳米金复合物Au-cys体系中,反应5min后测量激发波长为350nm处溶液的荧光发射光谱强度图;以丙溴磷浓度值为横坐标,荧光强度恢复量(△F=FL-FL0)为纵坐标(其中FL和FL0分别表示存在和不存在丙溴磷时纳米金复合物Au-cys-CDs的荧光强度),得到加入不同浓度丙溴磷的纳米金复合物Au-cys-CDs溶液的荧光恢复量与丙溴磷浓度之间的线性关系图,结果如图3所示。建立的荧光法标准曲线方程为ΔFL=0.2471C-0.0799(R2=0.990),荧光法的线性范围为20-320μg/L,检出限为5.5μg/L。
【实施例6】:
比色荧光双信号法检测丙溴磷的选择性
为了探究方法的选择性,选择不同种类的无机物(CuCl2、CdCl2、MnCl2、MgCl2、NaCl和Na2SO4)和农药有机物(敌百虫、敌敌畏、毒死蜱、马拉硫磷、氯氟氰菊酯、联苯菊酯、氯菊酯和溴氰菊酯)作为干扰物质,将100μL的Au-cys直接与300μL的干扰溶液混合,反应7min后测量溶液在520nm和800nm处的吸光度。在进行纳米金复合物Au-cys比色信号的采集后,取10mg/L的碳量子点CDs加入比色信号检测后的纳米金复合物Au-cys体系中,反应5min后测量激发波长为350nm处溶液的荧光发射光谱强度图。比色荧光信号的结果如图4所示。表明其他无机物和农药农机无对本方法几乎没有干扰,表明该方法对丙溴磷具有良好的选择性。
【实施例7】:
实际样品中丙溴磷的检测
为了验证该方法在实际样品中检测丙溴磷的可行性,进行加标回收率实验。选择大米、小麦、白菜、农田水、农田土作为实际样品,首先对样品进行单独预处理。各样品前处理如下:白菜:将10g芹菜卷心菜研磨成浆状,加入100mL超纯水,然后超声处理30min;大米:将1g米粉溶于100mL超纯水,然后超声处理30min;小麦:1g小麦粉溶于100mL超纯水,然后超声处理30min;农田水:将收集的农田水加热至沸点,然后冷却至室温;农田土:将1g土壤溶解在100mL超纯水,然后超声处理30min。然后,将所有样品溶液以13000rpm的转速离心30min,将得到的上清液用0.45μm的滤膜过滤得到处理后的实际样品溶液。之后,在实际样品溶液中加入不同含量的丙溴磷,以配制成不同加标浓度(40、200和1000μg/L)的样品溶液。然后将100μL的Au-cys直接与300μL的样品溶液混合,反应7min后测量溶液在520nm和800nm处的吸光度,根据比色传感法的标准曲线计算丙溴磷浓度,并计算加标回收率和相对标准偏差(RSD)。在进行纳米金复合物Au-cys比色信号的采集后,取10mg/L的碳量子点CDs加入比色信号检测后的纳米金复合物Au-cys体系中,反应5min后测量激发波长为350nm处溶液的荧光发射光谱强度图,根据荧光传感法的标准曲线计算丙溴磷浓度,并计算加标回收率和相对标准偏差(RSD)。此外,为验证比色荧光法的可靠性,也采用液质联用法检测实际样品中的丙溴磷浓度,并将结果与比色荧光法进行比对,结果如表1所示:
表1实际样品中检测丙溴磷(n=3)
Figure BDA0003665387760000071
ND:未检出
比色法回收率为80.4%~100.4%,RSD值为2.0%~5.3%;荧光法回收率为82.3%~103.5%,RSD值为2.1%~5.1%。经与液质联用法进行比较,发现比色荧光双信号传感法也具有良好的精密度和准确度,表明基于纳米金和碳量子点的比色荧光双信号传感法可作为检测丙溴磷的替代方法。
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。

Claims (7)

1.一种基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特征在于,包括以下步骤:
S1.制备纳米金复合物Au-cys和碳量子点CDs;
S2.建立纳米金复合物Au-cys和碳量子点CDs比色荧光双信号法检测丙溴磷;
S3.比色荧光双信号法检测丙溴磷的选择性;
S4.实际样品中丙溴磷的检测。
2.根据权利要求1所述的基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特征在于,所述步骤S1进一步包括:
⑴将半胱氨酸和硼氢化钠加入到氯金酸溶液中,在搅拌器上搅拌一段时间后,得到纳米金复合物Au-cys溶液;
⑵将碳源和钝化剂加入圆底烧瓶中,超声后,置于微波合成反应器中进行反应,设置微波合成反应器的一定的温度、功率和反应时间,反应结束后,在反应体系中加入超纯水超声分散,得到的溶液于滤膜过滤后,在烘箱中烘干,得到碳量子点CDs固体,通过称量,用超纯水将碳量子点CDs重新溶解,得到碳量子点CDs溶液;
所述碳源为叶酸、柠檬酸或水杨酸等的一种,碳源的含量为0.005~0.05mmol,所述钝化剂为乙二胺、三聚氰胺、半胱氨酸或氨水等的一种,钝化剂的含量为0.005~0.05mmol,所述超声时间均为5~30min,所述微波反应器的温度为80~180℃,功率为500~1000W,反应时间为10~100min,所述滤膜为0.22μm规格,所述烘箱温度为60℃,所述碳量子点CDs颜色为黄色。
3.根据权利要求2所述的基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特征在于,所述步骤⑴中,所述半胱氨酸含量为0.01~0.1mmol,硼氢化钠含量为0.01~0.05mmol,氯金酸含量为0.05~0.5mmol,搅拌器转速为400~1200rpm,搅拌时间为10~100min,所述纳米金复合物Au-cys溶液颜色为酒红色。
4.根据权利要求1所述的基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特征在于,所述步骤S2进一步包括:
⑴配置不同浓度梯度的丙溴磷标准溶液,所述丙溴磷标准溶液的浓度范围为0.02~2.4mg/L;
⑵比色法检测丙溴磷;
(2.1)将纳米金复合物Au-cys与丙溴磷标准溶液混合,所述纳米金复合物Au-cys与丙溴磷标准溶液的体积比为1:3,所述反应时间为3~10min;
(2.2)反应后测量溶液的比色和吸光度信号,以丙溴磷浓度值为横坐标,吸光度差值:A520-A800为纵坐标,式中:A520表示520nm处的吸光度,A800表示800nm处的吸光度,得到加入含丙溴磷的纳米金复合物Au-cys比色探针溶液的吸光度差值与丙溴磷浓度之间的线性关系,建立吸光度标准曲线;
⑶荧光法检测丙溴磷;
(3.1)在进行纳米金复合物Au-cys比色信号的采集后,加入碳量子点CDs,反应后测量荧光强度;
(3.2)以丙溴磷浓度值为横坐标,荧光强度恢复量:△F=FL-FL0为纵坐标,式中:FL和FL0分别表示存在和不存在丙溴磷时Au-cys-CDs的荧光强度,得到加入含丙溴磷的Au-cys-CDs溶液的荧光恢复量与丙溴磷浓度之间的线性关系,所述碳量子点CDs的浓度为2~20mg/L,所述碳量子点CDs与加入丙溴磷后纳米金复合物Au-cys溶液的体积比为1:40,所述反应时间为3~10min,所述激发波长为350nm,所述荧光发射峰为425nm;建立荧光标准曲线。
5.根据权利要求1所述的基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特征在于,所述步骤S3进一步包括:所述干扰物为不同种类的无机物和农药有机物,浓度为0.2~20mg/L,所述丙溴磷浓度为0.2~1.2mg/L;选择不同干扰物,所述干扰物含丙溴磷或不含丙溴磷,按照步骤S2的⑵和⑶中比色法和荧光法分别得到吸光度和荧光强度。
6.根据权利要求1所述的基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特征在于,所述步骤S4进一步包括:将实际样品预处理后,加入不同含量的丙溴磷,以配制成不同丙溴磷加标浓度的样品待测液;按照步骤S2的⑵和⑶中比色法和荧光法分别得到吸光度和荧光强度,对照比色标准曲线和荧光标准曲线,即可确定待测样中丙溴磷的含量,并计算加标回收率和相对标准偏差;为验证基于纳米金和碳量子点比色荧光双信号法检测丙溴磷的可靠性,也采用常用的传统的液质联用方法检测实际样品中的丙溴磷浓度,并将结果与荧光法进行比对。
7.根据权利要求6所述的基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法,其特征在于,所述丙溴磷的加标浓度为0.02~1.2mg/L,待测物预处理的步骤具体为:农产品:取1~10g农产品,研磨成浆状或粉状,加入100mL超纯水,然后超声处理30min;土壤样品:取1g土壤溶解在100mL超纯水,然后超声处理30min;水样品:取水样煮沸,而后冷却至室温;然后将所有样品溶液以13000rpm的转速离心30min,将得到的上清液用0.45μm的滤膜过滤得到处理后的实际样品溶液。
CN202210591554.8A 2022-05-27 2022-05-27 基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法 Pending CN114878562A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210591554.8A CN114878562A (zh) 2022-05-27 2022-05-27 基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210591554.8A CN114878562A (zh) 2022-05-27 2022-05-27 基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法

Publications (1)

Publication Number Publication Date
CN114878562A true CN114878562A (zh) 2022-08-09

Family

ID=82676929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210591554.8A Pending CN114878562A (zh) 2022-05-27 2022-05-27 基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法

Country Status (1)

Country Link
CN (1) CN114878562A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432673A (zh) * 2022-08-26 2022-12-06 华南农业大学 一种利用荧光碳量子点制备纳米硒的方法和应用
CN117368187A (zh) * 2023-10-13 2024-01-09 南通大学 一种基于mof比色荧光双模式传感器及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432673A (zh) * 2022-08-26 2022-12-06 华南农业大学 一种利用荧光碳量子点制备纳米硒的方法和应用
CN115432673B (zh) * 2022-08-26 2024-01-26 华南农业大学 一种荧光碳量子点-纳米硒的制备方法和应用
CN117368187A (zh) * 2023-10-13 2024-01-09 南通大学 一种基于mof比色荧光双模式传感器及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN114878562A (zh) 基于纳米金和碳量子点的丙溴磷比色荧光双信号检测方法
Yin et al. Rapid colorimetric detection of melamine by H 2 O 2–Au nanoparticles
Chen et al. An aggregation induced emission enhancement-based ratiometric fluorescent sensor for detecting trace uranyl ion (UO22+) and the application in living cells imaging
CN110672574B (zh) 一种用于检测Cu2+的比率荧光传感器及其制备方法和应用
CN109444101B (zh) 比例型核酸适配体荧光探针及其检测赭曲霉毒素a的方法
CN110940648B (zh) 一种绿色荧光碳量子点的合成方法及在检测亚硝酸盐中的应用
CN109358027A (zh) 一种测定赭曲霉毒素a的适配体生物传感器的构建方法
CN113720794A (zh) 基于金纳米粒子的比色适配体传感检测大米中真菌毒素的方法
Kang et al. Advanced sensing of volatile organic compounds in the fermentation of kombucha tea extract enabled by nano-colorimetric sensor array based on density functional theory
Zhai et al. Biosensors based on core–shell nanoparticles for detecting mycotoxins in food: a review
CN114181696B (zh) 一种双色近红外发射碳纳米点荧光纳米材料及其合成方法和应用
Mandrile et al. Migration study of organotin compounds from food packaging by surface-enhanced Raman scattering
CN111518554A (zh) 拥有模拟酶性质的铜掺杂碳量子点及其制备方法和应用
CN113758910B (zh) 一种测定醋醅中黄曲霉毒素b1的拉曼增强光谱方法
CN113138185B (zh) 基于mof的sers技术检测牛奶中硫氰酸钠的方法
Hou et al. Fast preparation of Eu (BTB) MOFs in dielectric barrier discharge liquid plasma for luminescent sensing of trace iron
Zhang et al. Flow injection spectrophotometric determination total antioxidant capacity in human serum samples based on response surface methodology to optimize synthesized peroxidase-like activity carbon dots
CN114644924A (zh) 一种新型生物质碳点的绿色合成方法及在农药检测中的应用
Lin et al. Detection of wheat toxigenic aspergillus flavus based on nano-composite colorimetric sensing technology
CN108333158B (zh) 双掺杂荧光碳量子点及合成方法
CN112723325B (zh) 一种磷掺杂石墨相氮化碳纳米片及其制备方法和应用
CN113237866B (zh) 一种固态表面增强拉曼散射基底及其制备方法和应用
Yu et al. A fluorescent aptasensor based on gold nanoparticles quenching the fluorescence of rhodamine B to detect acetamiprid
CN116297423A (zh) 一种磁性氮掺杂碳甲壳素微球纳米酶对葡萄糖和过氧化氢的比色检测方法
CN114951683A (zh) 金纳米簇的合成方法及其六价铬离子的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination