CN114873567A - 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法 - Google Patents

一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法 Download PDF

Info

Publication number
CN114873567A
CN114873567A CN202110161457.0A CN202110161457A CN114873567A CN 114873567 A CN114873567 A CN 114873567A CN 202110161457 A CN202110161457 A CN 202110161457A CN 114873567 A CN114873567 A CN 114873567A
Authority
CN
China
Prior art keywords
magnesium
graphene
powder
sulfur
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110161457.0A
Other languages
English (en)
Other versions
CN114873567B (zh
Inventor
付永胜
刘明亮
陈鹏
郭彤
崔香梅
刘永胜
方鸣坤
朱俊武
汪信
欧阳晓平
孙敬文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110161457.0A priority Critical patent/CN114873567B/zh
Publication of CN114873567A publication Critical patent/CN114873567A/zh
Application granted granted Critical
Publication of CN114873567B publication Critical patent/CN114873567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/42Sulfides or polysulfides of magnesium, calcium, strontium, or barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法。采用简单的球磨混合辅助高温焙烧的方法制备碳包覆硫化镁纳米颗粒复合材料,该复合材料可作为镁硫电池的正极材料。该方法既增加了硫化镁的导电性,提高电池的反应动力学,此外,石墨烯包覆可以避免多硫化镁的溶解及穿梭,提高电池的循环稳定性。

Description

一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制 备方法
技术领域
本发明涉及一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法,属于化学电源领域。
背景技术
传统的锂离子电池在能量密度、安全性等方面难以满足电动汽车、电网存储等新兴市场的快速发展需求。因此,开发安全且能量密度高的新型二次电池储能体系成为了一个亟待解决的全球性问题。硫单质具有高的理论质量比容量(1675 mA·h/g)和体积比容量(3459 mA·h/cm3),被认为是最有前景的正极材料之一。以硫为正极的锂硫(Li-S)电池具有 2500 W·h/kg 的理论能量密度,是商业锂离子电池的5倍以上。然而,金属锂和电解液会发生副反应,导致“死锂”的产生和电解液的损耗,严重影响Li-S电池的容量和循环寿命。此外,金属锂在充放电过程中易形成枝晶,引起电池短路甚至爆炸,存在严重的安全性问题。金属镁作为金属锂的对角线元素,二者化学性质相似,而且金属镁的还原电势[-2.37 Vvs. 标准氢电极(SHE)]较低,是一种非常有潜力的多价态电池正极材料。与金属锂相比较,金属镁正极具有诸多的优势(表1):
Figure 697506DEST_PATH_IMAGE002
将金属镁与非金属硫进行匹配得到的镁硫(Mg-S)电池的理论能量密度大于3260Wh/L。因此,镁硫电池引起了大家广泛的关注。
在Li-S电池的研究中,硫正极的设计包括构建多级储存硫的结构、设计亲硫界面等,这些设计思路也同样适用于Mg-S电池。但是二价镁离子相比于一价锂离子具有更强的静电引力和更高的扩散势垒。因此,在Mg-S电池中对于硫正极的研究面临着更多的挑战。
硫是一种极具前景的高比容量正极材料,但其导电性较差,因此会将其和碳材料(和粘结剂)混合来制备硫正极。最初应用于Mg-S电池的硫正极是硫和导电碳的简单混合,但是由于多硫化镁(MgSx,4≤x≤8)的穿梭效应,导致Mg-S电池的可逆性差。
发明内容
本发明的目的在于提供一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法。
实现本发明目的的技术解决方案为:一种石墨烯包覆硫化镁纳米颗粒及其制备方法,采用球磨法辅助高温焙烧的方法制备,包括以下步骤:
第一步,将氧化石墨烯粉末、镁粉、硫粉按一定质量比放入球磨罐中,球磨一段时间;
第二步,将球磨得到的粉料放入真空管式炉中,在保护气体氛围下,于一定温度下焙烧一定时间得到石墨烯包覆的硫化镁纳米颗粒复合材料。
较佳的,第一步中,镁粉与硫粉的原子比为1:1,质量比为3:4,氧化石墨烯与镁粉和硫粉总和的质量比为1:1-1:6。
较佳的,第一步中,球料比为3:1-10:1,球磨的时间为1-6 h,转速为300-600转/min。
具体的,第二步中,保护气体为N2或Ar。
较佳的,第二步中,焙烧温度为800-1000 ℃,时间为2-10 h。
上述石墨烯包覆硫化镁纳米颗粒作为镁硫电池正极材料的用途。
本发明与现有技术相比,其优点在于:(1)石墨烯包覆的硫化镁纳米颗粒可以阻止多硫化镁的溶解与穿梭,提高循环稳定性;(2)石墨烯的包覆可以提高硫化镁的导电性和利用率;(3)该方法合成步骤简单,易于操作,便于工业化。
附图说明
图1是本发明的合成示意图。
图2是实施例1中石墨烯包覆硫化镁纳米颗粒的XRD数据图。
图3是实施例1中石墨烯包覆硫化镁纳米颗粒的SEM图片。
图4是实施例1中石墨烯包覆硫化镁纳米颗粒用于镁硫电池是在0.1 C下的首圈充放电曲线图。
具体实施方式
下面结合附图和实施例对本发明进行进一步阐述。
更适合Mg-S电池体系的硫正极复合材料。该材料一般需要具备以下特质:1)具有高的电子导电性;2)能够在一定程度上抑制多硫化镁的穿梭效应;3)有足够的内部空间和强度来容纳硫的体积变化;4)易被电解液浸润。基于此,本发明提供了一种石墨烯包覆硫化镁纳米颗粒复合材料。
如图1所示,本发明的石墨烯包覆硫化镁纳米颗粒复合材料通过以下步骤制备:
第一步,将氧化石墨烯粉末、镁粉、硫粉按一定质量比放入球磨罐中,再加入球磨子球磨一段时间;
第二步,将球磨得到的粉料放入真空管式炉中,在保护气氛、一定温度下焙烧一定时间得到石墨烯包覆的硫化镁纳米颗粒复合材料。
第一步中,镁粉与硫粉的原子比为1,质量比为3:4,氧化石墨烯与镁粉和硫粉的质量比为1:1-1:6,球料比为3:1-10:1,球磨的时间为1-6 h,转速为300-600转/min。
第二步中,焙烧所用的保护气体为N2或Ar,焙烧的温度为800-1000 ℃,时间为2~10 h。
实施例1
第一步,将氧化石墨烯粉末、镁粉、硫粉按质量比2:3:4放入球磨罐中,再加入球磨子球磨一段时间,球料比为6:1,球磨时间为2 h;
第二步,将球磨得到的粉料放入真空管式炉中,在N2气体保护、800 ℃下焙烧3 h得到石墨烯包覆的硫化镁纳米颗粒复合材料。
将石墨烯包覆的硫化镁纳米颗粒复合材料与导电剂、粘结剂混合涂覆在铜箔上制成正极片,并与镁金属片组装成镁硫电池进行电化学性能测试。
图2是石墨烯包覆硫化镁纳米颗粒的XRD数据图。图中可以看出存在石墨烯的(002)晶面以及硫化镁的(111)、(200)、(220)、(222)晶面,这表面复合材料由石墨烯和硫化镁构成。
图3是石墨烯包覆硫化镁纳米颗粒的SEM图片。图中可以看出石墨烯均匀包裹着纳米级的硫化镁颗粒。
图4是石墨烯包覆硫化镁纳米颗粒用于镁硫电池是在0.1 C下的首圈充放电曲线图。从图中可以看出镁硫电池放电平台在0.8-1.0 V之间,首次放电容量达到774.6 mAh/g。
实施例2
第一步,将氧化石墨烯粉末、镁粉、硫粉按质量比2:3:4放入球磨罐中,再加入球磨子球磨一段时间,球料比为8:1,球磨时间为3 h;
第二步,将球磨得到的粉料放入真空管式炉中,在N2气体保护、900 ℃下焙烧2 h得到石墨烯包覆的硫化镁纳米颗粒复合材料。
将石墨烯包覆的硫化镁纳米颗粒复合材料与导电剂、粘结剂混合涂覆在铜箔上制成正极片,并与镁金属片组装成镁硫电池进行电化学性能测试。镁硫电池放电平台在0.8-1.0 V之间,首次放电容量达到742.1 mAh/g。
实施例3
第一步,将氧化石墨烯粉末、镁粉、硫粉按质量比3:3:4放入球磨罐中,再加入球磨子球磨一段时间,球料比为6:1,球磨时间为6 h;
第二步,将球磨得到的粉料放入真空管式炉中,在N2气体保护、1000 ℃下焙烧2 h得到石墨烯包覆的硫化镁纳米颗粒复合材料。
将石墨烯包覆的硫化镁纳米颗粒复合材料与导电剂、粘结剂混合涂覆在铜箔上制成正极片,并与镁金属片组装成镁硫电池进行电化学性能测试。镁硫电池放电平台在0.8-1.0 V之间,首次放电容量达到683.2 mAh/g。
实施例4
第一步,将氧化石墨烯粉末、镁粉、硫粉按质量比3:3:4放入球磨罐中,再加入球磨子球磨一段时间,球料比为6:1,球磨时间为4 h;
第二步,将球磨得到的粉料放入真空管式炉中,在N2气体保护、900 ℃下焙烧6 h得到石墨烯包覆的硫化镁纳米颗粒复合材料。
将石墨烯包覆的硫化镁纳米颗粒复合材料与导电剂、粘结剂混合涂覆在铜箔上制成正极片,并与镁金属片组装成镁硫电池进行电化学性能测试。镁硫电池放电平台在0.8-1.0 V之间,首次放电容量达到701.2 mAh/g。
对比例1
第一步,将镁粉、硫粉按质量比3:3:4放入球磨罐中,再加入球磨子球磨一段时间,球料比为6:1,球磨时间为6 h;
第二步,将球磨得到的粉料放入真空管式炉中,在N2气体保护、1000 ℃下焙烧2 h得到硫化镁颗粒材料。
将硫化镁颗粒材料与导电剂、粘结剂混合涂覆在铜箔上制成正极片,并与镁金属片组装成镁硫电池进行电化学性能测试。镁硫电池放电平台在0.8-1.0 V之间,首次放电容量仅有214.6 mAh/g。由于没有石墨烯的包覆,导致焙烧时,硫化镁颗粒生长过大,增大了镁离子的迁移距离,硫化镁的导电性也变差,另外多硫化镁的穿梭效应也变得严重,因此作为镁硫电池正极时容量较低。
对比例2
第一步,将氧化石墨烯粉末、镁粉、硫粉按质量比3:3:4进行称量,放入玛瑙研钵中手动研磨2 h;
第二步,将研磨得到的粉料放入真空管式炉中,在N2气体保护、1000 ℃下焙烧2 h得到石墨烯包覆的硫化镁颗粒复合材料。
将石墨烯包覆的硫化镁颗粒复合材料与导电剂、粘结剂混合涂覆在铜箔上制成正极片,并与镁金属片组装成镁硫电池进行电化学性能测试。镁硫电池放电平台在0.8-1.0 V之间,首次放电容量达到119.2 mAh/g。由于没有进行球磨,物料混合不均匀,因此石墨烯包覆并不均匀,很多硫化镁颗粒并没有被石墨烯所包覆,导致硫化镁颗粒尺寸较大,超过了20微米,镁离子的迁移距离则较大,导电性也不佳,因此作为镁硫电池正极时性能不佳。

Claims (8)

1.一种石墨烯包覆硫化镁纳米颗粒的制备方法,其特征在于,包括以下步骤:
第一步,将氧化石墨烯粉末、镁粉、硫粉按一定质量比球磨一段时间;
第二步,将球磨得到的粉料在保护气体氛围下,于一定温度下焙烧一定时间得到石墨烯包覆的硫化镁纳米颗粒复合材料。
2.如权利要求1所述的方法,其特征在于,第一步中,镁粉与硫粉的原子比为1:1,质量比为3:4。
3.如权利要求1所述的方法,其特征在于,氧化石墨烯与镁粉和硫粉总和的质量比为1:1-1:6。
4. 如权利要求1所述的方法,其特征在于,第一步中,球料比为3:1-10:1,球磨的时间为1-6 h,转速为300-600转/min。
5.如权利要求1所述的方法,其特征在于,第二步中,保护气体为N2或Ar。
6. 如权利要求1所述的方法,其特征在于,第二步中,焙烧温度为800-1000 ℃,时间为2-10 h。
7.如权利要求1-6任一项所述的方法制备的石墨烯包覆硫化镁纳米颗粒。
8.如权利要求1-6任一项所述的方法制备的石墨烯包覆硫化镁纳米颗粒作为镁硫电池正极材料的用途。
CN202110161457.0A 2021-02-05 2021-02-05 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法 Active CN114873567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110161457.0A CN114873567B (zh) 2021-02-05 2021-02-05 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110161457.0A CN114873567B (zh) 2021-02-05 2021-02-05 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法

Publications (2)

Publication Number Publication Date
CN114873567A true CN114873567A (zh) 2022-08-09
CN114873567B CN114873567B (zh) 2023-10-31

Family

ID=82667624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110161457.0A Active CN114873567B (zh) 2021-02-05 2021-02-05 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN114873567B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129455A (zh) * 2016-08-30 2016-11-16 上海大学 锂硫电池
CN106531995A (zh) * 2016-11-15 2017-03-22 复旦大学 一种石墨烯负载纳米硫化镁复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129455A (zh) * 2016-08-30 2016-11-16 上海大学 锂硫电池
CN106531995A (zh) * 2016-11-15 2017-03-22 复旦大学 一种石墨烯负载纳米硫化镁复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAOPING ZHANG等: "Controlled-Size Hollow Magnesium Sulfide Nanocrystals Anchored on Graphene for Advanced Lithium Storage", 《ACS NANO》, vol. 12 *

Also Published As

Publication number Publication date
CN114873567B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
Yi et al. Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries
Li et al. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries
Wu et al. Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries
Kim et al. Surface engineering of graphite anode material with black TiO2-x for fast chargeable lithium ion battery
Li et al. Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries
CN1907844A (zh) 高密度超微复合型磷酸铁锂正极材料及制备方法
CN113871702A (zh) 一种硫银锗矿型固态电解质的制备及其全固态电池应用
Lu et al. Improved coulombic efficiency and cycleability of SnO 2–Cu–graphite composite anode with dual scale embedding structure
CN114094068A (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
CN110311111B (zh) N掺杂CNT原位包覆Co纳米颗粒复合材料及制备与应用
Chai et al. Cooperation of Fe2O3@ C and Co3O4/C subunits enhances the cyclic stability of Fe2O3@ C/Co3O4 electrodes for lithium‐ion batteries
Zhou et al. Metallurgy of aluminum-inspired formation of aluminosilicate-coated nanosilicon for lithium-ion battery anode
KR20110108301A (ko) 비수 전해질 이차 전지 및 비수 전해질 이차 전지의 제조 방법
Li et al. Ultra-Thin AlPO4 Layer Coated LiNi0. 7Co0. 15Mn0. 15O2 Cathodes With Enhanced High-Voltage and High-Temperature Performance for Lithium-Ion Half/Full Batteries
CN105529460A (zh) 锂硫电池正极材料、其制备方法及锂硫电池
Son et al. Facile synthesis of aluminum-antimony alloys and their application for lithium-ion and sodium-ion storage
CN101834287B (zh) 一种锂离子电池正极材料的制备方法
CN114843479A (zh) 一种硅锡纳米材料及其制备方法和应用
CN102227022A (zh) 锂离子电池用硅酸亚铁锂正极材料及其制备方法
Xing et al. CeO2/Ce2S3 modified carbon nanotubes as efficient cathode materials for lithium-sulfur batteries
CN108091835B (zh) 铁酸钴负载硫的锂硫电池复合正极材料及其制备方法
Lian et al. Si@ C anode materials decorated with higher manganese silicides for enhanced rate capability and cycle stability
CN113871605A (zh) 一种预锂化硅基负极材料及其制备方法和用途
Liu et al. Advanced Sn/C composite anodes for lithium ion batteries
CN117012954A (zh) 一种蜂窝状碳/双金属硫化物材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant