CN106531995A - 一种石墨烯负载纳米硫化镁复合材料及其制备方法 - Google Patents

一种石墨烯负载纳米硫化镁复合材料及其制备方法 Download PDF

Info

Publication number
CN106531995A
CN106531995A CN201611004227.9A CN201611004227A CN106531995A CN 106531995 A CN106531995 A CN 106531995A CN 201611004227 A CN201611004227 A CN 201611004227A CN 106531995 A CN106531995 A CN 106531995A
Authority
CN
China
Prior art keywords
graphene
magnesium
magnesium sulfide
composite material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611004227.9A
Other languages
English (en)
Other versions
CN106531995B (zh
Inventor
余学斌
张宝萍
夏广林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201611004227.9A priority Critical patent/CN106531995B/zh
Publication of CN106531995A publication Critical patent/CN106531995A/zh
Application granted granted Critical
Publication of CN106531995B publication Critical patent/CN106531995B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于锂离子电池电极材料技术领域,具体为一种石墨烯负载纳米硫化镁复合材料及其制备方法。本发明以分布于石墨烯表面的纳米氢化镁为前驱体,以硫单质为硫源,通过热蒸发和高温硫化反应,制备石墨烯负载纳米硫化镁。复合材料中,纳米硫化镁呈现较高的储锂活性和理论容量;柔韧轻薄的石墨烯保证了纳米硫化镁的均匀分散,提高离子和电子的传输速度,提高导电性;石墨烯对硫化镁颗粒的限域作用有助于缓冲在脱嵌锂过程中硫化镁颗粒的体积膨胀,减缓活性物质的团聚。本发明通过纳米化与石墨烯的协同作用,有效的提高了硫化镁在充放电过程中的稳定性,使该电极材料呈现较高的容量和电化学循环稳定性。

Description

一种石墨烯负载纳米硫化镁复合材料及其制备方法
技术领域
本发明属于锂离子电池电极材材技术领域,具体涉及一种石墨烯负载纳米硫化镁(MgS/GNs)的锂离子电池负极材料及其制备方法。
背景技术
锂离子电池具有工作电压高、重量轻、体积小、无记忆效应、循环寿命长、自放电率低等优点,被认为是混合电动汽车以及便携式电子设备很有前景的新能源。作为电池的主要组成部分,电极材料的结构和性能决定了锂离子电池的能量密度、功率密度等电化学性能,是锂离子电池领域研究的重点。目前商业化的锂离子电池负极材料主要是石墨,其理论比容量较低(372 mAh g-1)。金属硫化物具备高的比容量、低成本、无污染等特点,是一类非常有前景的锂电池电极材料,大量的研究工作集中在利用新的概念和方法设计制备不同形貌及纳米尺度的金属硫化物,并广泛应用于锂离子电池正负极材料等领域。其中,硫化镁(MgS)具备合适的工作电压和较高的理论比容量,而且镁与硫元素均是地球上储量丰富的元素种类。硫化镁的脱嵌锂过程分为两部分:(1)MgS +2Li++ 2e- ↔ Mg + Li2S,(2)Mg +xLi+ + xe-↔ LixMg。 其中(1)转换过程理论比容量为951 mA h g -1,而且(2)的合金化过程可继续贡献较高的比容量。目前国内外报道的硫化镁电极材料均采用机械球磨法制备工艺,以氢化镁或镁单质为镁源,硫单质为硫料,通过添加不同石墨烯、碳纳米管、介孔碳材料等导电材料,通过不同的球磨工艺条件下制备MgS,并探究其形貌及电化学性能。此种方法制备的硫化镁颗粒在微米级,粒度不均匀,导电性差,从而导致在充放电循环过程中发生团聚,循环性能衰减,尤其是大电流密度下容量衰退严重;而且微米级硫化镁在合金化过程中由于颗粒比较大贡献的容量有限。因此,设计制备高能量密度、优异倍率性能及电化学循环稳定的硫化镁电极材料是目前硫化镁作为锂离子电池负极材料应用研究的重点。
发明内容
本发明的目的是提供一种能量密度高、倍率性能好、电化学循环稳定的石墨烯负载纳米硫化镁的锂离子电池负极材料及其制备方法。
以硫化镁为负极材料的锂离子电池充放电过程体积膨胀,团聚严重,导电性差是影响电极材料性能的关键因素,通过纳米化和功能修饰等手段可以明显的改善硫化镁的电化学性能。
本发明采用层状高导电性的石墨烯为基体,制备颗粒尺度均匀的纳米硫化镁。通过纳米化与石墨烯的协同作用,大幅度改善了硫化镁的电化学性能和循环稳定性。其中,纳米化硫化镁颗粒有助于提高锂离子与电子的传输传导速率。而石墨烯的高表面积和韧性保证了纳米硫化镁的均匀分散,一定程度缓冲硫化镁在充放电过程中的体积变化,缓解硫化镁颗粒团聚长大,并有效的提高材料的导电性。
本发明提供上述石墨烯负载纳米硫化镁(MgS/GNs)的制备方法,具体步骤为:
(1)以有机镁为前驱体,石墨烯为载体,通过高压溶剂热法,制备得到均匀生长在石墨烯表面的纳米氢化镁颗粒,颗粒尺寸在5 ~ 100 nm,氢压20~50 bar,温度100~250 ℃条件下;
(2)将石墨烯负载的纳米氢化镁与硫粉分别置于石英舟中,在氮气气氛保护下,于管式炉中以4 ~ 6 ℃/min的速率(优选升温速率为5 ℃/min)升温至150 ~ 350 ℃,硫化反应2~8 h,即得石墨烯负载纳米硫化镁,记为MgS/GNs。
本发明中,通过调节氢化镁的负载率与硫粉的比例,控制硫化镁复合材料的组成:纳米硫化镁颗粒的质量百分数为25.0 ~ 85.0 %,石墨烯的质量百分数为75.0 ~ 15.0 %。
本发明所制备的石墨烯负载纳米氢化镁复合材料可作为锂离子电池负极材料,具有以下优点和特性:
(1)复合材料中的硫化镁为尺度均匀的纳米颗粒,从而可以有效的缩短在充放电过程中锂离子和电子的扩散路径,有利于提高硫化镁的储锂比容量,有助于电解液的渗透;
(2)复合材料中纳米硫化镁颗粒均匀分布在石墨烯纳米片的表面,能够在脱嵌锂过程中有效阻止纳米硫化镁的团聚长大并缓冲纳米硫化镁的体积膨胀,充分发挥石墨烯离子和电子导通作用。因此本发明所制备的锂离子电池负极材料具有结构稳定,储锂比容量大和循环稳定等优点。
附图说明
图1 是实施例1 所得的锂电池负极材料MgS/GNs的XRD图。
图2 是实施例1 所得的锂电池负极材料MgS/GNs的扫描电镜(SEM)图及透射电镜(TEM)图。其中,(a,b)实施例1产物MgS/GNs 的SEM图;(c)实施例1 MgS/GNs产物TEM图;(d)商品MgH2 制备MgS样品SEM图。
图3是实施例1、例2 所得的锂电池负极材料MgS/GNs的电化学循环性能对比图。其中,(a) 实施例1产物;(b)实施例2产物;(c)商品MgH2 制备MgS样品。
具体实施方式
下面通过实例进一步说明本发明。
实施例1
(1)将2.0 ml有机镁,30.0 mg石墨烯,40 ml环己烷加入高压釜中,加氢20 bar,加热至200 ℃,反应8 h,得到均匀生长在石墨烯表面的纳米氢化镁颗粒;
(2)将石墨烯负载的纳米氢化镁60 mg与88 mg硫粉分别置于石英舟中,在氮气气氛保护下,于管式炉中进行程序升温5℃/min 升温至300℃,硫化反应5 h,即得石墨烯负载纳米硫化镁;
(3)将最终的样品做XRD测试和扫描电镜SEM分析,如图1和图2所示;
(4)实例1制备的石墨烯负载纳米硫化镁复合负极材料的电化学性能测试:
添加复合材料:导电碳:PVDF比例为80:10:10制浆,均匀涂布在铜片上于120℃真空干燥24 h制备电极。以2025 纽扣电池壳,隔膜为PP/PE/PP,用1 mol/L 的LiPF6 做为电解液,溶剂为碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯(摩尔比1:1:1),锂片做对电极,在氩气保护下用手套箱组装成纽扣电池。在电压范围为0.005~3.0 V,100 mA g-1 电流密度下进行电化学循环性能测试。进行100 次充放电测试,比容量仍然保持有840 mAh g -1左右。
实施例2
(1)将2.0 ml有机镁,40.0 mg石墨烯,40 ml环己烷加入高压釜中,加氢20 bar,加热至200 ℃,反应8 h,得到均匀生长在石墨烯表面的纳米硫化镁颗粒;
(2)将石墨烯负载的纳米氢化镁40 mg与35 mg硫粉分别置于石英舟中,在氮气气氛保护下,于管式炉中进行程序升温6 ℃/min 升温至350℃,硫化反应4 h,即得石墨烯负载纳米硫化镁;
(3)实例2制备的石墨烯负载纳米硫化镁复合负极材料的电化学性能测试:
添加复合材料、导电碳、PVDF制浆(质量比为80:10:10),均匀涂布在铜片上于120℃真空干燥24 h制备电极。以2025 纽扣电池壳,隔膜为PP/PE/PP,用1 mol/L 的LiPF6 做为电解液,溶剂为碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯(摩尔比1:1:1),锂片做对电极,在氩气保护下用手套箱组装成纽扣电池。在电压范围为0.005~3.0 V,100 mA g-1 电流密度下进行电化学循环性能测试。进行100 次充放电测试,比容量仍然保持有656 mAh g -1左右。
实施例 3
(1)将2.0 ml有机镁,40.0 mg石墨烯,40 ml环己烷加入高压釜中,加氢30 bar,加热至150 ℃,反应8 h,得到均匀生长在石墨烯表面的纳米硫化镁颗粒;
(2)将石墨烯负载的纳米氢化镁40 mg与25 mg硫粉分别置于石英舟中,在氮气气氛保护下,于管式炉中进行程序升温5 ℃/min 升温至350℃,硫化反应6 h,即得石墨烯负载纳米硫化镁;
(3)实例2制备的石墨烯负载纳米硫化镁复合负极材料的电化学性能测试:
添加复合材料、导电碳、PVDF制浆(质量比为80:10:10),均匀涂布在铜片上于120℃真空干燥24 h制备电极。以2025 纽扣电池壳,隔膜为PP/PE/PP,用1 mol/L 的LiPF6 做为电解液,溶剂为碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯(摩尔比1:1:1),锂片做对电极,在氩气保护下用手套箱组装成纽扣电池。在电压范围为0.005~3.0 V,100 mA g-1 电流密度下进行电化学循环性能测试。进行100 次充放电测试,比容量仍然保持有450 mAh g -1左右。

Claims (5)

1.一种石墨烯负载纳米硫化镁复合材料的制备方法,其特征在于,具体步骤为:
(1)以有机镁为前驱体,石墨烯为载体,利用高压溶剂热法,氢压20 ~ 50 bar,温度100~ 250 ℃条件下,制备得到均匀生长在石墨烯表面的纳米氢化镁颗粒,颗粒尺寸在5 ~ 100nm;
(2)将石墨烯负载的纳米氢化镁与硫粉分别置于石英舟中,在氮气气氛保护下,于管式炉中以4 ~ 6 ℃/min的速率升温至150 ~ 350 ℃,硫化反应2~8 h,即得石墨烯负载纳米硫化镁复合材料,记为MgS/GNs。
2. 根据权利要求1所述的制备方法,其特征在于,通过调节氢化镁的负载率与硫粉的比例,控制硫化镁复合材料的组成:纳米硫化镁颗粒的质量百分数为25.0 ~ 85.0 %,石墨烯的质量百分数为75.0 ~ 15.0 %。
3. 根据权利要求1所述的制备方法,其特征在于,所述纳米硫化镁颗粒的尺寸均匀,粒径在10 ~100 nm之间。
4.由权利要求1-3之一所述的制备方法制备得到的石墨烯负载纳米硫化镁复合材料。
5.如权利要求4所述的石墨烯负载纳米硫化镁复合材料作为锂离子电池负极材料的应用。
CN201611004227.9A 2016-11-15 2016-11-15 一种石墨烯负载纳米硫化镁复合材料及其制备方法 Expired - Fee Related CN106531995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611004227.9A CN106531995B (zh) 2016-11-15 2016-11-15 一种石墨烯负载纳米硫化镁复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611004227.9A CN106531995B (zh) 2016-11-15 2016-11-15 一种石墨烯负载纳米硫化镁复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106531995A true CN106531995A (zh) 2017-03-22
CN106531995B CN106531995B (zh) 2019-08-09

Family

ID=58351868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611004227.9A Expired - Fee Related CN106531995B (zh) 2016-11-15 2016-11-15 一种石墨烯负载纳米硫化镁复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106531995B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110589776A (zh) * 2019-10-28 2019-12-20 南昌航空大学 一种机械球磨合成硫化镁的方法
CN114873567A (zh) * 2021-02-05 2022-08-09 南京理工大学 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法
CN115259101A (zh) * 2022-08-04 2022-11-01 上海纳米技术及应用国家工程研究中心有限公司 一种三维核壳空心硫化镁纳米花的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140272610A1 (en) * 2013-03-12 2014-09-18 Uchicago Argonne, Llc Porous graphene nanocages for battery applications
CN104609376A (zh) * 2015-01-30 2015-05-13 浙江工业大学 一种硫化锂粉体的制备方法
CN105870444A (zh) * 2016-04-29 2016-08-17 陕西科技大学 一种vs2纳米材料的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140272610A1 (en) * 2013-03-12 2014-09-18 Uchicago Argonne, Llc Porous graphene nanocages for battery applications
CN104609376A (zh) * 2015-01-30 2015-05-13 浙江工业大学 一种硫化锂粉体的制备方法
CN105870444A (zh) * 2016-04-29 2016-08-17 陕西科技大学 一种vs2纳米材料的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGLIN XIA ET AL.: ""Monodisperse Magnesium Hydride Nanoparticles Uniformly Self-Assembled on Graphene"", 《ADVANCED MATERIALS》 *
MINJUAN WANG ET AL.: ""A Novel synthesis of MgS and its application as electrode material for lithium-ion batteries"", 《JOURNAL OF ALLOYS AND COMPOUND》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110589776A (zh) * 2019-10-28 2019-12-20 南昌航空大学 一种机械球磨合成硫化镁的方法
CN110589776B (zh) * 2019-10-28 2022-11-08 南昌航空大学 一种机械球磨合成硫化镁的方法
CN114873567A (zh) * 2021-02-05 2022-08-09 南京理工大学 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法
CN114873567B (zh) * 2021-02-05 2023-10-31 南京理工大学 一种用于镁硫电池正极的石墨烯包覆硫化镁纳米颗粒及其制备方法
CN115259101A (zh) * 2022-08-04 2022-11-01 上海纳米技术及应用国家工程研究中心有限公司 一种三维核壳空心硫化镁纳米花的制备方法
CN115259101B (zh) * 2022-08-04 2023-07-18 上海纳米技术及应用国家工程研究中心有限公司 一种三维核壳空心硫化镁纳米花的制备方法

Also Published As

Publication number Publication date
CN106531995B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
Wang et al. Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries
Patra et al. High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes
Sun et al. Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder
Xu et al. Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life
Xu et al. Hierarchical NiCoO 2 nanosheets supported on amorphous carbon nanotubes for high-capacity lithium-ion batteries with a long cycle life
Wang et al. Onion-like carbon matrix supported Co 3 O 4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability
Zhang et al. NiO-Co3O4 nanoplate composite as efficient anode in Li-ion battery
Wu et al. Sb@ C/expanded graphite as high-performance anode material for lithium ion batteries
CN107425185B (zh) 一种碳纳米管负载的碳化钼材料的制备方法及其在锂硫电池正极材料中的应用
Li et al. High performance porous MnO@ C composite anode materials for lithium-ion batteries
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
Fu et al. Co3O4 nanoparticles@ MOF-5-derived porous carbon composites as anode materials with superior lithium storage performance
Yu et al. High electrochemical performance of LiFePO4 cathode material via in-situ microwave exfoliated graphene oxide
Ding et al. Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery
Zhang et al. Synthesis of Sn-MnO@ nitrogen-doped carbon yolk-shelled three-dimensional interconnected networks as a high-performance anode material for lithium-ion batteries
Zhu et al. Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application
CN105428618B (zh) 一种壳核型碳包覆金属硫化物纳米复合粒子的制备方法及其应用
Ma et al. Fabrication of NiO-ZnO/RGO composite as an anode material for lithium-ion batteries
Li et al. Facile synthesis of carbon-coated Fe 3 O 4 core–shell nanoparticles as anode materials for lithium-ion batteries
Ullah et al. Enabling the fast lithium storage of large-scalable γ-Fe2O3/Carbon nanoarchitecture anode material with an ultralong cycle life
Yao et al. Three-dimensional carbon-coated ZnFe2O4 nanospheres/nitrogen-doped graphene aerogels as anode for lithium-ion batteries
Ma et al. Electrochemically converting micro-sized industrial Si/FeSi2 to nano Si/FeSi for the high-performance lithium-ion battery anode
Liu et al. Synthesis of three-dimensional honeycomb-like Fe3N@ NC composites with enhanced lithium storage properties
Qiu et al. In situ growth of mesoporous NiO nanoplates on a graphene matrix as cathode catalysts for rechargeable lithium–air batteries
Zhang et al. Synthesis of expanded graphite-based materials for application in lithium-based batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190809

Termination date: 20211115