CN114871435B - 一种多级孔结构的泡沫金属的制备方法 - Google Patents

一种多级孔结构的泡沫金属的制备方法 Download PDF

Info

Publication number
CN114871435B
CN114871435B CN202210484016.9A CN202210484016A CN114871435B CN 114871435 B CN114871435 B CN 114871435B CN 202210484016 A CN202210484016 A CN 202210484016A CN 114871435 B CN114871435 B CN 114871435B
Authority
CN
China
Prior art keywords
ferroferric oxide
metal
oxide powder
powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210484016.9A
Other languages
English (en)
Other versions
CN114871435A (zh
Inventor
方东
杨广杰
谢明
常仕英
陈俊俊
易健宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Sino Platinum Metals Co Ltd
Original Assignee
Kunming University of Science and Technology
Sino Platinum Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology, Sino Platinum Metals Co Ltd filed Critical Kunming University of Science and Technology
Priority to CN202210484016.9A priority Critical patent/CN114871435B/zh
Publication of CN114871435A publication Critical patent/CN114871435A/zh
Application granted granted Critical
Publication of CN114871435B publication Critical patent/CN114871435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1896Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by electrochemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种多级孔结构泡沫金属的制备方法,属于多孔材料技术领域,包括如下步骤:将粉末状的四氧化三铁与乙炔黑一起机械混合球磨,压片,并作为正极材料组装成锂离子或钠离子电池,放电0.01‑1V,然后将放电后的电极材料取出并置于目标金属盐的无水溶液中进行反应包覆,之后收集包覆后的粉末、还原烧结成块体,并在酸中溶去四氧化三铁核心得到多孔泡沫金属材料,本发明的多级孔结构的泡沫金属的制备方法简单,易操作,有广阔的应用前景。

Description

一种多级孔结构的泡沫金属的制备方法
技术领域
本发明涉及一种多级孔结构的泡沫金属的制备方法,属于属于多孔材料技术领域。
背景技术
多孔金属材料由于具备金属材料在机械强度、导电性、延展性和焊接性能等方面的优点广泛应用于石油、化工、食品、制药、环保、汽车、消声等领域。特别在分离过滤、气体传感、催化、电化学、表面增强光谱、化工制药等行业的过滤工段应用尤其广泛。使用多孔金属作为分离膜与有机膜和陶瓷膜相比有许多优点:具有良好的导热性,由于采用的是金属材质,具有较好的散热能力,减小分离膜的热应力,从而提高膜的使用寿命。具有高的机械强度,可在较高的压力下使用,可以用增大压差的方法提高渗透速率,增大膜的分离能力。易于与其他设备连用,多孔金属膜是金属材质,具有良好的焊接性能,使膜组件易于连接。应用范围广,在过滤过程中,多孔金属膜吸附量高、支撑性强、过滤面积大、可在线清洗、重复利用。
目前制备多孔金属膜的传统方法主要有粉末冶金法、纤维烧结法、溶体发泡法、熔体吹气法、渗流铸造法、金属沉积法、中空球烧结法、自蔓延高温合成法、泡沫浸渍法等。专利CN102462861A一种一用金属植入材料多孔钽的制备方法,用有机粘结剂与分散剂制成溶液,加入淀粉和钽粉变为浆料加入模具,干燥后除去分散剂有机体,真空下烧结得到多孔钽。但这种材料孔结构单一且随机,难以控制孔径的大小,孔结构不能满足多种功能需求。专利CN201410834347.6提出利用有机物先将多孔金属基体的表面孔进行封堵,再用喷涂或抽滤方式将含有膜层金属粉浆料涂于基体表面,经过烧结将有机物除去。但这种方法不仅工序操作难度大,还会引入了杂质,有堵塞物残留,从而影响多孔金属膜的性能。专利201910151019.9一种多孔金属膜的制备,采用喷涂方法在盘式多孔支撑体表面制备多孔金属膜。但存在着膜层厚度不均,烧结后开裂,喷涂中产生大量粉尘污染等问题。因此急需找到一种工艺简单易操作、泡沫金属的孔径可以调控、原料价格低廉、绿色环保的制备方法。四氧化三铁由于具有良好的稳定性和磁性引起我们的注意,另外作为电池负极具有较高的理论容量,在锂/钠离子电池中为926mAh g-1(Materials Letters,58(21),2692-2694)。可以用其作为模板来制备纳米多孔材料。
发明内容
本发明的一种多级孔结构泡沫金属的制备方法,将粉末状的四氧化三铁与乙炔黑一起机械混合球磨,之后压片,并作为正极材料组装成电池,放电0.01-1V,然后将放电后的电极材料取出并置于目标金属盐的无水溶液中进行反应包覆,之后收集包覆后的粉末还原烧结成块体,并在酸中溶去四氧化三铁核得到多孔泡沫金属材料包括以下步骤:
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为薄片作为工作电极、锂片或钠片为对电极组装锂离子或钠离子电池,然后对电池进行放电,在达到放电截止电位时取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.01~1mo l/L的目标金属盐的无水溶液中进行反应,在还原性的带电四氧化三铁粉表面原位沉积金属,沉积时间为1~30h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆金属的四氧化三铁粉,洗涤、干燥后,将包覆金属的四氧化三铁粉在H2/Ar气氛下200~600℃热处理0.5~10h;
d、在步骤c)得到的金属粉末熔点70%-95%的温度区间内进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.1M-1M的硝酸或盐酸或硫酸或乙酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
所述四氧化三铁的粒度范围为0.01-100μm。
所述金属粉末的金属成分为N i、Cu、T i、Ag、Au、Pt中的一种或一种以上的合金。
所述放电截止电位为0.01-1V vs L i+/L i或Na+/Na。
所述的目标金属的盐无水溶液为可溶性N i、Cu、T i、Ag、Au、Pt盐的甲酰胺、乙腈、N,N-二甲基甲酰胺、N-甲基吡咯烷酮中的一种溶液。
由于采用了以上技术方案,本发明的一种多级孔结构的泡沫金属的制备方法,是指将粉末状的四氧化三铁与乙炔黑一起机械混合球磨,之后压片,利用将电极材料放电到低电压,使得四氧化三铁电极材料具有很高的还原性来吸附、还原正价金属离子,可以用于多种金属元素,具有普遍的适用性。并且利用四氧化三铁易磁性分离的特点,将包覆金属后的粉末从溶液中分离,除去乙炔黑。之后将收集的金属包覆后的粉末还原烧结成块体,进一步在酸中溶去四氧化三铁。通过选用不同粒径的四氧化三铁粉末可以制备不同孔径的泡沫金属。该方法采用的原料价格低廉,工艺简单、易操作。而且泡沫金属的孔径可以调控,具有好的应用前景。
具体实施方式
下面实施例对本发明做进一步详细描述:
实施例1
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.1cm片作为工作电极、锂片为对电极组装锂离子电池,四氧化三铁的粒度范围为0.01μm。然后对电池进行放电到0.01V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.01mo l/L的硝酸铜的甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积铜,沉积时间为1h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离后得到的包覆铜的四氧化三铁粉洗涤、干燥后,将包覆铜的四氧化三铁粉在H2/Ar气氛下200℃热处理0.5h;
d、在步骤c)得到的金属粉末在800℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.5M的盐酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例2
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.1cm片作为工作电极、钠片为对电极组装钠离子电池,四氧化三铁的粒度范围为0.1μm。然后对电池进行放电到0.1V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.1mo l/L的硝酸铜的甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积铜,沉积时间为10h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆铜的四氧化三铁粉洗涤、干燥后,将包覆铜的四氧化三铁粉在H2/Ar气氛下300℃热处理1h;
d、在步骤c)得到的金属粉末在800℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在5M的乙酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例3
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.05cm片作为工作电极、锂片为对电极组装锂离子电池,四氧化三铁的粒度范围为1μm。然后对电池进行放电到0.01V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在1mo l/L的四氯化钛的乙腈溶液中进行反应,在还原性的带电四氧化三铁粉表面原位沉积金属,沉积时间为30h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆钛的四氧化三铁粉洗涤、干燥后,将包覆钛的四氧化三铁粉在H2/Ar气氛下600℃热处理10h;
d、在步骤c)得到的金属粉末在1400℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.1M的硝酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例4
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.01cm片作为工作电极、钠片为对电极组装钠离子电池,四氧化三铁的粒度范围为10μm。然后对电池进行放电到0.1V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.1mo l/L的亚金氰化钾的N,N二甲基甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积金,沉积时间为5h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆金的四氧化三铁粉洗涤、干燥后,将包覆镍的四氧化三铁粉在H2/Ar气氛下600℃热处理5h;
d、在步骤c)得到的金属粉末在1200℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.1M的盐酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例5
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.1cm片作为工作电极、钠片为对电极组装钠离子电池,四氧化三铁的粒度范围为100μm。然后对电池进行放电到1V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.1mo l/L的硝酸镍的N,N-二甲基甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积镍,沉积时间为10h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆镍的四氧化三铁粉洗涤、干燥后,将包覆镍的四氧化三铁粉在H2/Ar气氛下400℃热处理5h;
d、在步骤c)得到的金属粉末在1200℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.5M的盐酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例6
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.2cm片作为工作电极、锂片为对电极组装锂离子电池,四氧化三铁的粒度范围为0.1μm。然后对电池进行放电到0.01V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在1mo l/L的氯化铜的N-甲基吡咯烷酮中进行反应,在还原性的带电四氧化三铁粉表面原位沉积铜,沉积时间为1h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆铜四氧化三铁粉洗涤、干燥后,将包覆铜的四氧化三铁粉在H2/Ar气氛下300℃热处理0.5h;
d、在步骤c)得到的金属粉末在800℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.5M的硫酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例7
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.01cm片作为工作电极、锂片为对电极组装锂离子电池,四氧化三铁的粒度范围为0.01μm。然后对电池进行放电到1V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.01mo l/L的硝酸镍的N-甲基吡咯烷酮中进行反应,在还原性的带电四氧化三铁粉表面原位沉积金属,沉积时间为30h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆镍的四氧化三铁粉洗涤、干燥后,将包覆金属的四氧化三铁粉在H2/Ar气氛下500℃热处理1h;
d、在步骤c)得到的金属粉末在1200℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在5M的盐酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例8
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.2cm片作为工作电极、钠片为对电极组装钠离子电池,四氧化三铁的粒度范围为1μm。然后对电池进行放电到1V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在1mo l/L的硝酸铜的甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积铜,沉积时间为15h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆铜的四氧化三铁粉洗涤、干燥后,将包覆铜的四氧化三铁粉在H2/Ar气氛下350℃热处理3h;
d、在步骤c)得到的金属粉末在800℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.2M的硝酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例9
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.1cm片作为工作电极、锂片为对电极组装锂离子电池,四氧化三铁的粒度范围为0.01μm。然后对电池进行放电到0.11V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.01mo l/L的四氯化钛的甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积钛,沉积时间为5h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆钛的四氧化三铁粉洗涤、干燥后,将包覆钛的四氧化三铁粉在H2/Ar气氛下500℃热处理0.5h;
d、将步骤c)得到的金属粉末在1400℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在5M的硫酸的水溶液中溶解去除四氧化三铁核,即得所述的具有多级孔结构的泡沫金属材料。
实施例10
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.01cm片作为工作电极、锂片为对电极组装锂离子电池,四氧化三铁的粒度范围为0.01μm。然后对电池进行放电到0.01V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.01mo l/L的硝酸镍的甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积镍,沉积时间为30h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离后得到的包覆镍的四氧化三铁粉洗涤、干燥后,将包覆镍的四氧化三铁粉在H2/Ar气氛下300℃热处理10h;
d、在步骤c)得到的金属粉末在1200℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.1M的盐酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例11
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.01cm片作为工作电极、锂片为对电极组装锂离子电池,四氧化三铁的粒度范围为100μm。然后对电池进行放电到1V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在1mo l/L的氯铂酸的甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积铂,沉积时间为15h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆铂的四氧化三铁粉洗涤、干燥后,将包覆铜的四氧化三铁粉在H2/Ar气氛下400℃热处理3h;
d、在步骤c)得到的金属粉末在800℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在1M的硫酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
实施例12
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为厚度为0.1cm片作为工作电极、钠片为对电极组装钠离子电池,四氧化三铁的粒度范围为1μm。然后对电池进行放电到0.01V,取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.01mo l/L的硝酸银的N,N-二甲基甲酰胺中进行反应,在还原性的带电四氧化三铁粉表面原位沉积银,沉积时间为2h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆银的四氧化三铁粉洗涤、干燥后,将包覆银的四氧化三铁粉在H2/Ar气氛下600℃热处理1h;
d、在步骤c)得到的金属粉末在800℃进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在5M的盐酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。

Claims (5)

1.一种多级孔结构泡沫金属的制备方法,其特征在于:将粉末状的四氧化三铁与乙炔黑一起机械混合球磨,之后压片,并作为正极材料组装成电池,放电0.01-1V,然后将放电后的电极材料取出并置于目标金属的盐的无水溶液中进行反应包覆,之后收集包覆后的粉末还原烧结成块体,并在酸中溶去四氧化三铁核得到多孔泡沫金属材料包括以下步骤:
a、以质量比为9:1的四氧化三铁-乙炔黑混合粉末压为薄片作为工作电极、锂片或钠片为对电极组装锂离子或钠离子电池,然后对电池进行放电,在达到放电截止电位时取出所述的工作电极,得到具有还原性的带电四氧化三铁粉;
b、将步骤a)得到的所述带电四氧化三铁粉浸泡在0.01~1mol/L的目标金属的盐的无水溶液中进行反应,在还原性的带电四氧化三铁粉表面原位沉积金属,沉积时间为1~30h,得到金属包覆的四氧化三铁粉;
c、将步骤b)溶液采用磁铁分离得到的包覆金属的四氧化三铁粉,洗涤、干燥后,将包覆金属的四氧化三铁粉在H2/Ar气氛下200~600℃热处理0.5~10h;
d、在步骤c)得到的金属粉末熔点70%-95%的温度区间内进行热压真空烧结处理,得到块体;
e、将步骤d)得到的所述块体样品在0.1M-1M的硝酸或盐酸或硫酸或乙酸的水溶液中溶解去除四氧化三铁,即得所述的具有多级孔结构的泡沫金属材料。
2.根据权利要求1所述的方法,其特征在于,所述四氧化三铁的粒度范围为0.01-100μm。
3.根据权利要求1所述的方法,其特征在于,所述金属粉末的金属成分为Ni、Cu、Ti、Ag、Au、Pt中的一种或一种以上的合金。
4.根据权利要求1所述的方法,其特征在于,所述放电截止电位为0.01-1V vs Li+/Li或Na+/Na。
5.根据权利要求1所述的方法,其特征在于,目标金属的盐的无水溶液为无水的可溶性Ni、Cu、Ti、Ag、Au、Pt盐的甲酰胺、乙腈、N,N-二甲基甲酰胺、N-甲基吡咯烷酮中的一种溶液。
CN202210484016.9A 2022-05-05 2022-05-05 一种多级孔结构的泡沫金属的制备方法 Active CN114871435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210484016.9A CN114871435B (zh) 2022-05-05 2022-05-05 一种多级孔结构的泡沫金属的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210484016.9A CN114871435B (zh) 2022-05-05 2022-05-05 一种多级孔结构的泡沫金属的制备方法

Publications (2)

Publication Number Publication Date
CN114871435A CN114871435A (zh) 2022-08-09
CN114871435B true CN114871435B (zh) 2023-06-23

Family

ID=82673809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210484016.9A Active CN114871435B (zh) 2022-05-05 2022-05-05 一种多级孔结构的泡沫金属的制备方法

Country Status (1)

Country Link
CN (1) CN114871435B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1618575B1 (en) * 2003-04-28 2019-10-23 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
KR101353262B1 (ko) * 2013-04-19 2014-01-23 주식회사 셀모티브 리튬이차전지 전극용 메탈폼, 상기 메탈폼의 제조방법 및 상기 메탈폼을 포함하는 리튬이차전지
CN108428866B (zh) * 2018-03-06 2021-08-17 昆明理工大学 一种原位还原包覆金属提高电极容量的方法
CN108441662B (zh) * 2018-03-06 2021-07-23 昆明理工大学 一种金属包覆的碳纳米管增强金属基复合材料的制备方法
CN111515395B (zh) * 2020-04-09 2022-04-05 安徽省新方尊自动化科技有限公司 具有多级孔结构的泡沫金属及其制备方法、吸声降噪材料

Also Published As

Publication number Publication date
CN114871435A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN103774149B (zh) 一种高强纳米多孔镍膜的制备方法
US3150011A (en) Shaped metal parts having a superficial double skeleton catalyst structure
JP5465883B2 (ja) 多孔質体
CN109763134A (zh) 多孔硅的制备方法
CN110216282A (zh) 铜基合金触点的制备方法
JP2013011003A (ja) リチウムの回収方法及びこれに用いる電極
CN103305784A (zh) 一种热喷涂用球形尖晶石粉体的制备方法
Li et al. Electrochemical properties of powder-pressed Pb–Ag–PbO2 anodes
CN110791771B (zh) 一体化过渡金属系析氧催化材料及制备方法
JPH0746610B2 (ja) 溶融炭酸塩燃料電池正極及びその製造方法
CN114871435B (zh) 一种多级孔结构的泡沫金属的制备方法
Wang et al. Synthesis and study of TiMn2 intermetallic compound anode materials with different structures for zinc electrowinning
CN117418254A (zh) 一种稀土掺杂柔性Fe基非晶合金析氧电极及其制备方法
CN110923490B (zh) 一种钛钼合金去合金化制备高强微米多孔金属钛块体的方法
CN109524645B (zh) 一种螯合剂辅助制备锡/铜/碳复合材料的方法
JP5029974B2 (ja) 金属多孔体及びそれを用いた電池用電極、並びに金属多孔体の製造方法
US9118082B2 (en) Oxygen-consuming electrode and process for the production thereof
JP6860339B2 (ja) 電解アルミニウム箔の製造方法および製造装置
Wang et al. Nanoporous metals based on metallic glasses: Synthesis, structure and functional applications
CN100477044C (zh) 银、镍、稀土氧化物和碳组成的触头及其生产方法
CN109378462A (zh) 一种锂离子电池用三维Co3Sn2/SnO2负极材料及其制备方法
CN111636064B (zh) 一种Fe-Al金属间化合物多孔材料的制备方法
JP3468493B2 (ja) 電池用電極基板及びその製造方法
WO1986006107A1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
WO2016082262A1 (zh) 一种分级多孔材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant