CN114854751A - 代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用 - Google Patents

代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用 Download PDF

Info

Publication number
CN114854751A
CN114854751A CN202210527238.4A CN202210527238A CN114854751A CN 114854751 A CN114854751 A CN 114854751A CN 202210527238 A CN202210527238 A CN 202210527238A CN 114854751 A CN114854751 A CN 114854751A
Authority
CN
China
Prior art keywords
module
gene
upc2
strain
named
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210527238.4A
Other languages
English (en)
Inventor
安天悦
李德芳
王国丽
武振科
李明凯
郑秋生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binzhou Medical College
Original Assignee
Binzhou Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binzhou Medical College filed Critical Binzhou Medical College
Priority to CN202210527238.4A priority Critical patent/CN114854751A/zh
Publication of CN114854751A publication Critical patent/CN114854751A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本申请适用于微生物技术领域,提供了代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用。所述代谢工程方法为过表达长非编码RNA PCGEM1和原癌基因c‑Myc,可有效促进酿酒酵母工程菌三萜化合物角鲨烯和倍半萜化合物橙花叔醇的产量。

Description

代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建 方法、应用
技术领域
本申请属于微生物技术领域,尤其涉及一种代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用。
背景技术
随着合成生物学的发展,酿酒酵母已被广泛作为异源表达宿主来生产有价值的天然产物,这些天然产物包括单萜吲哚生物碱、青蒿酸和大麻素等。为了更加充分地利用酵母细胞工厂,越来越多的代谢工程策略被开发出来。对基因启动子和终止子的操控,以及对代谢通路上下游基因的融合、支架蛋白的构建和细胞器区室化的策略在一些重要化合物的生物合成中起到了很大的促进作用,同时,对酵母细胞内源亚细胞结构内质网膜的修饰能够提高角鲨烯及三萜类化合物的产量。
长非编码RNA在肿瘤细胞的发展和浸润过程中起着至关重要的作用。细胞内有一类能够募集组蛋白修饰复合物的转录因子,而长非编码RNA可指引这类转录因子到达染色体的指定位置,间接引起组蛋白结构的修饰,进而发挥调控作用。例如,长非编码RNAPCGEM1是前列腺癌细胞潜在的生物标记物和治疗靶点,它能够结合转录组因子c-Myc,调控糖酵解、三羧酸循环及脂质合成等代谢途径,进而引起细胞代谢流的重排。虽然在癌细胞中对长非编码RNA和原癌基因的研究很多,但在酵母细胞中的研究还比较少,而更进一步,将长非编码RNA和原癌基因开发成为一种代谢工程策略还未见报道。
发明内容
本申请实施例的目的在于提供一种基于长非编码RNA和原癌基因的代谢工程方法。
本申请实施例是这样实现的,一种基于长非编码RNA和原癌基因的代谢工程方法,所述代谢工程方法为过表达PCGEM1基因和c-Myc基因;其中,
所述PCGEM1基因为长非编码RNA编码基因,其核苷酸序列如SEQ ID NO.1所示;
所述c-Myc基因为原癌基因,其核苷酸序列如SEQ ID NO.2所示。
本申请实施例的另一目的在于一种根据所述的基于长非编码RNA和原癌基因的代谢工程方法在构建酿酒酵母工程菌中的应用。
本申请实施例的另一目的在于一种产角鲨烯工程菌,所述产角鲨烯工程菌以酿酒酵母为出发菌株,过表达PCGEM1、c-Myc、tHMGR、UPC2-1和ERG9基因;其中,
PCGEM1和c-Myc基因整合到酵母基因组NDT80位点;
tHMGR和UPC2-1基因整合到酿酒酵母染色体TY3位点;
ERG9基因启动子为组成型强启动子TPI1p。
本申请实施例的另一目的在于一种产橙花叔醇工程菌,所述产橙花叔醇工程菌以酿酒酵母为出发菌株,过表达PCGEM1、c-Myc、tHMGR和UPC2-1基因,抑制ERG9基因;其中,
PCGEM1和c-Myc基因整合到酵母基因组NDT80位点;
tHMGR和UPC2-1基因整合到酿酒酵母染色体TY3位点;
ERG9基因启动子为葡萄糖抑制型启动子HXT1p。
本申请实施例的另一目的在于一种产角鲨烯工程菌的构建方法,包括:
将PGK1p、PCGEM1和CYC1t连接,构建基因表达模块PGK1p-PCGEM1-CYC1t,命名为模块I;
将TEF1p、c-Myc和ADH1t连接,构建基因表达模块TEF1p-c-Myc-ADH1t,命名为模块II;
将筛选标记HIS表达框、模块I和模块II连接,构建基因表达模块HIS-PGK1p-PCGEM1-CYC1t-TEF1p-c-Myc-ADH1t,命名为模块III;
将GAL1p、tHMGR和ADH1t连接,构建基因表达模块GAL1p-tHMGR-ADH1t,命名为模块IV;
将GAL10p、UPC2-1和CYC1t连接,构建基因表达模块GAL10p-UPC2-1-CYC1t,命名为模块V;
将模块V和模块VI连接,构建基因表达模块GAL1p-tHMGR-ADH1t-GAL10p-UPC2-1-CYC1t,命名为模块VI;
将筛选标记LEU和启动子TPI1p连接,构建基因表达模块LEU-TPI1p,命名为模块VII;
将模块III转化酵母菌株,整合到基因组的NDT80位点,得到菌株1;
将模块VI插入到载体pCfB2988的SfaSI酶切位点,得到整合表达载体pCfB2988-VI;
用限制性核酸内切酶NotΙ酶切整合表达载体pCfB2988-VI,得到DNA整合片段S1;
将DNA整合片段S1整合到菌株1染色体的TY1位点,得到菌株2;
将模块VII转化菌株2,整合到ERG9基因的启动子位置,得到产角鲨烯工程菌。
本申请实施例的另一目的在于一种产橙花叔醇工程菌的构建方法,包括:
将PGK1p、PCGEM1和CYC1t连接,构建基因表达模块PGK1p-PCGEM1-CYC1t,命名为模块I;
将TEF1p、c-Myc和ADH1t连接,构建基因表达模块TEF1p-c-Myc-ADH1t,命名为模块II;
将筛选标记HIS表达框、模块I和模块II连接,构建基因表达模块HIS-PGK1p-PCGEM1-CYC1t-TEF1p-c-Myc-ADH1t,命名为模块III;
将GAL1p、tHMGR和ADH1t连接,构建基因表达模块GAL1p-tHMGR-ADH1t,命名为模块IV;
将GAL10p、UPC2-1和CYC1t连接,构建基因表达模块GAL10p-UPC2-1-CYC1t,命名为模块V;
将模块V和模块VI连接,构建基因表达模块GAL1p-tHMGR-ADH1t-GAL10p-UPC2-1-CYC1t,命名为模块VI;
将筛选标记MET和启动子HXT1p连接,构建基因表达模块MET-HXT1p,命名为模块VIII;
将模块III转化酵母菌株,整合到基因组的NDT80位点,得到菌株1;
将模块VI插入到载体pCfB2988的SfaSI酶切位点,得到整合表达载体pCfB2988-VI;
用限制性核酸内切酶NotΙ酶切整合表达载体pCfB2988-VI,得到DNA整合片段S1;
将DNA整合片段S1整合到菌株1染色体的TY1位点,得到菌株2;
将模块VIII转化菌株2,整合到ERG9基因的启动子位置,得到产橙花叔醇工程菌。
本申请实施例的另一目的在于一种根据所述的基于长非编码RNA和原癌基因的代谢工程方法在高产倍半萜化合物橙花叔醇和三萜化合物角鲨烯,以及其他倍半萜和三萜类化合物生产中的应用。
本申请实施例提供的基于长非编码RNA和原癌基因的代谢工程方法,所述代谢工程方法为过表达长非编码RNA PCGEM1和原癌基因c-Myc,可有效促进酿酒酵母工程菌三萜化合物角鲨烯和倍半萜化合物橙花叔醇的产量。
附图说明
图1为本申请实施例所构建的酿酒酵母工程菌株TT01角鲨烯的GC-MS检测结果;
图2为本申请实施例所构建的酿酒酵母工程菌株TT01角鲨烯的质谱图;
图3为本申请实施例所构建的酿酒酵母工程菌株ST01橙花叔醇的GC-MS检测结果;
图4为本申请实施例所构建的酿酒酵母工程菌株ST01橙花叔醇的质谱图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本申请提供了一种基于长非编码RNA和原癌基因的代谢工程方法,所述代谢工程方法为过表达PCGEM1基因和c-Myc基因。
本申请提供了上述的基于长非编码RNA和原癌基因的代谢工程方法在构建酿酒酵母工程菌中的应用。
具体地,本申请提供了一种产角鲨烯工程菌,为菌株TT01。
所述菌株TT01以酿酒酵母为出发菌株,过表达PCGEM1、c-Myc、tHMGR、UPC2-1和ERG9基因;其中,
PCGEM1和c-Myc基因整合到酵母基因组NDT80位点;
tHMGR和UPC2-1基因整合到酿酒酵母染色体TY3位点;
ERG9基因启动子为组成型强启动子TPI1p。
本申请还提供了一种产橙花叔醇工程菌,为菌株ST01。
所述菌株ST01以酿酒酵母为出发菌株,过表达PCGEM1、c-Myc、tHMGR和UPC2-1基因,抑制ERG9基因;其中,
PCGEM1和c-Myc基因整合到酵母基因组NDT80位点;
tHMGR和UPC2-1基因整合到酿酒酵母染色体TY3位点;
ERG9基因启动子为葡萄糖抑制型启动子HXT1p。
其中,所述的PCGEM1基因为前列腺癌细胞中的长非编码RNA编码基因,其核苷酸序列如SEQ ID NO.1所示。
所述的c-Myc基因为前列腺癌细胞中的原癌基因,其核苷酸序列如SEQ ID NO.2所示。
所述的tHMGR和UPC2基因可从酿酒酵母BY4741基因组中克隆得到,其核苷酸序列分别如SEQ ID NO.3~4所示。
所述UPC2-1基因是基于PCR的定点突变技术将转录因子基因UPC2突变为UPC2-1,其核苷酸序列如SEQ ID NO.5所示。
所述TPI1p和HXT1p启动子可从酿酒酵母BY4741基因组克隆得到,其核苷酸序列分别如SEQ ID NO.6~7所示。
本申请还提供了上述的产角鲨烯工程菌和产橙花叔醇工程菌的构建方法,包括如下步骤:
(1)利用重叠PCR构建以下模块:
(a)将PGK1p、PCGEM1和CYC1t连接,构建基因表达模块PGK1p-PCGEM1-CYC1t,命名为模块I;
(b)将TEF1p、c-Myc和ADH1t连接,构建基因表达模块TEF1p-c-Myc-ADH1t,命名为模块II;
(c)将筛选标记HIS表达框、模块I和II连接,构建基因表达模块HIS-PGK1p-PCGEM1-CYC1t-TEF1p-c-Myc-ADH1t,命名为模块III;
(e)将GAL1p、tHMGR和ADH1t连接,构建基因表达模块GAL1p-tHMGR-ADH1t,命名为模块IV;
(f)将GAL10p、UPC2-1和CYC1t连接,构建基因表达模块GAL10p-UPC2-1-CYC1t,命名为模块V;
(g)将模块V和模块VI连接,构建基因表达模块GAL1p-tHMGR-ADH1t-GAL10p-UPC2-1-CYC1t,命名为模块VI;
(h)将筛选标记LEU和启动子TPI1p连接,构建基因表达模块LEU-TPI1p,命名为模块VII;
(i)将筛选标记MET和启动子HXT1p连接,构建基因表达模块MET-HXT1p,命名为模块VIII。
(2)构建菌株BY4741-1
将步骤(1)中得到的模块III转化酵母工程菌BY4741,整合到基因组的NDT80位点,得到菌株BY4741-1。
(3)构建菌株BY4741-2
将步骤(1)中得到的模块VI插入到载体pCfB2988的SfaSI酶切位点,得到整合表达载体pCfB2988-VI;然后用限制性核酸内切酶Not Ι酶切整合表达载体pCfB2988-VI,得到DNA整合片段S1;再将DNA整合片段S1整合到菌株BY4741染色体的TY1位点,得到菌株BY4741-2。
(4)构建菌株TT01
将步骤(1)中得到的模块VII转化酵母工程菌BY4741-2,整合到ERG9基因的启动子位置,得到菌株TT01,即为高产三萜的角鲨烯的酵母工程菌株(产角鲨烯工程菌)。
(5)构建菌株ST01
将步骤(1)中得到的模块VIII转化酵母工程菌BY4741-2,整合到ERG9基因的启动子位置,得到菌株ST01,即为高产倍半萜橙花叔醇的酵母工程菌株(产橙花叔醇工程菌)。
步骤(1)中所述PCGEM1基因为前列腺癌细胞中的长非编码RNA编码基因,委托公司合成,其核苷酸序列如SEQ ID NO.1所示。
步骤(1)中所述c-Myc基因为前列腺癌细胞中的原癌基因,委托公司合成,其核苷酸序列如SEQ ID NO.2所示。
步骤(1)中所述的tHMGR和UPC2基因可从酿酒酵母BY4741基因组克隆得到,其核苷酸序列分别如SEQ ID NO.3~4所示。
步骤(1)中所述UPC2-1基因是基于PCR的定点突变技术将转录因子基因UPC2突变为UPC2-1,其核苷酸序列如SEQ ID NO.5所示。
步骤(1)中所述启动子TPI1p、HXT1p、PGK1p、TEF1p、GAL1p和GAL10p可从酿酒酵母BY4741基因组克隆得到,其核苷酸序列如SEQ ID NO.6~11所示。
步骤(1)中所述终止子CYC1t和ADH1t可从酿酒酵母BY4741基因组克隆得到,其核苷酸序列如SEQ ID NO.12~13所示。
步骤(1)中所述的筛选标记HIS、LEU和MET的核苷酸序列如SEQ ID NO.14~16所示。
步骤(2)~(5)中所述的酵母菌株优选菌株为BY4741。
步骤(2)~(5)中所述的转化为采用酵母转化试剂盒进行转化;优选为用ZymoResearch Frozen-EZ Yeast Transformation II KitTM酵母转化试剂盒进行转化。
将步骤(4)所述的菌株进行发酵,目的产物为角鲨烯(C30H50),其结构式如下所示:
Figure BDA0003645050300000091
将步骤(5)所述的菌株进行发酵,目的产物为角鲨烯(C15H26O),其结构式如下所示:
Figure BDA0003645050300000092
本申请还涉及一种提高角鲨烯和橙花叔醇的方法,为将所述的高产目的产物的酵母工程菌经活化后接种到培养基中进行摇瓶发酵培养,得到目的产物;
具体包括如下步骤:
将所述的高产角鲨烯的酿酒酵母工程菌经活化后接种到发酵培养基中进行摇瓶发酵培养,得到角鲨烯。
将所述的高产橙花叔醇的酿酒酵母工程菌经活化后接种到发酵培养基中进行摇瓶发酵培养,得到橙花叔醇。
所述的摇瓶发酵通过如下步骤实现:为将所述的高产角鲨烯和橙花叔醇的酿酒酵母工程菌分别接种到相应氨基酸缺陷型的固体培养基上,36~48h后分别挑取单克隆接种到5mL的YPD培养基中,30℃条件下220rpm培养至OD值2~3,然后将菌液接种到装有50mLYPD液体培养基的250mL摇瓶中,30℃条件220rpm下发酵168h。
下面结合实施例对本申请作进一步详细的描述,但本申请的实施方式不限于此。除非特别说明,本申请采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件或按照制造厂所建议的实验条件。除非特别说明,本申请所用试剂和原材料均可通过市售获得。
实施例1酵母基因和表达元件的克隆
1、酵母基因组的提取
(1)挑取酿酒酵母BY4741的单克隆于装有5mL YPD培养基的10mL试管中,30℃条件下220rpm培养过夜。
(2)将培养物4℃条件下4000rpm离心5min,弃上清,收集菌体。将菌体置于研钵中,液氮速冻,研磨成粉末,并迅速转移至1.5mL的离心管中。
(3)加入1mL DNA提取裂解液(DNAiso Reagent,9770Q,takara)混匀,室温条件下12,000rpm离心10min。
(4)取上清至1.5mL离心管中,加入上清1/2体积的无水乙醇,混匀,室温条件下12000rpm离心2min。
(5)弃上清,加入75%的乙醇溶液洗涤沉淀。
(6)重复上述步骤一次,
(7)挥干残留乙醇,并加入30~50μL ddH2O溶解,获得酵母基因组DNA溶液。
2、酵母启动子和终止子的克隆
(1)以上述获得的酵母基因组为模板,分别克隆以下启动子和终止子(扩增引物见表1):
TPI1p(引物TPI1p-F、TPI1p-R)、HXT1p(引物HXT1p-F、HXT1p-R)、PGK1p(引物PGK1p-F、PGK1p-R)、TEF1p(引物TEF1p-F、TEF1p-R)、GAL1p(引物GAL1p-F、GAL1p-R)、PGK10p(引物PGK10p-F、PGK10p-R)、CYC1t(引物CYC1t-F、CYC1t-R)、ADH1t(引物ADH1t-F、ADH1t-R)。
PCR反应体系:2×Phanta Max Master Mix(P515-01,诺唯赞)10μL,正反向引物各0.5μL,ddH2O 8μl,模板1μL,总反应体系20μL。
PCR扩增反应条件为:95℃1min;95℃15s,50-60℃15s,72℃30s-1min,32循环;72℃10min。
PCR反应结束后,利用1%琼脂糖凝胶电泳检测PCR产物,切下目的条带,利用琼脂糖凝胶DNA回收试剂盒(DP219,天根生化)进行目的片段回收,具体操作过程见说明书。
(2)DNA回收片段连接亚克隆载体
将DNA回收片段连接亚克隆载体pLB(VT205,天根生化科技有限公司),具体操作见产品说明书。
(3)转化感受态大肠杆菌DH5α,涂布平板,置于37℃条件下过夜培养。
(3)挑选单菌落做菌落PCR。
PCR反应体系:2X M5 HiPer Taq HiFi PCR mix(MF002,聚合美)5μL,正反向引物(表1)各0.3μL,ddH2O 4.4μL。
PCR扩增条件为:95℃3min;94℃15s,55℃15s,72℃1-3min,30个循环;72℃7min。
PCR反应结束后,琼脂糖凝胶电泳检测,挑取阳性克隆菌株测序。
3、UPC2的定点突变
UPC2是甲羟戊酸途径的正向调控因子,将其的第888位的甘氨酸突变为天冬氨酸,能进一步提高其调控作用。利用快速定点突变试剂盒(KM101,天根生化),以pLB-UPC2质粒为模板,进行UPC2的定点突变(引物序列见表1),具体操作见产品说明书。
表1本发明中克隆各基因和表达元件所用的引物序列
Figure BDA0003645050300000121
Figure BDA0003645050300000131
实施例2、表达模块的构建
1、利用重叠PCR构建基因表达模块I~IV
模块的构建利用重叠PCR的方法,要进行重叠的各片段通过PCR克隆。
(1)第一轮PCR扩增体系:2×Phanta Max Master Mix(P515-01,诺唯赞)10μL,正反向引物各0.5μL(引物序列见表2),ddH2O 8μl,模板1μL,总反应体系20μL。
PCR扩增反应条件为:95℃1min;95℃15s,50-60℃15s,72℃30s-1min,32循环;72℃10min。
(2)第一轮PCR反应混合物稀释10倍,取1μL作为第二轮PCR的模板进行PCR反应:2×Phanta Max Master Mix(P515-01,诺唯赞)10μL,正反向引物各0.5μL(引物序列见表2),ddH2O 8μl,模板1μL,总反应体系20μL。
PCR扩增反应条件为:95℃1min;95℃15s,50-60℃15s,72℃30s-1min,32循环;72℃10min。
(3)胶回收并连接亚克隆载体pLB(VT205,天根生化科技有限公司),具体操作见产品说明书。
按上述步骤共构建以下4个模块:
(a)将PGK1p、PCGEM1和CYC1t连接,构建基因表达模块PGK1p-PCGEM1-CYC1t,命名为模块I;其中,第一轮PCR克隆PGK1p引物为I-PGK1p-F和I-PGK1p-R,克隆PCGEM1引物为I-PCGEM1-F和I-PCGEM1-R,克隆CYC1t引物为I-CYC1t-F和I-CYC1t-R;第二轮PCR引物为I-PGK1p-F和I-CYC1t-R;引物序列见表2。
(b)将将TEF1p、c-Myc和ADH1t连接,构建基因表达模块TEF1p-c-Myc-ADH1t,命名为模块II;其中,第一轮PCR克隆TEF1p引物为II-TEF1p-F和II-TEF1p-R,克隆c-Myc引物为II-c-Myc-F和II-c-Myc-R,克隆ADH1t引物为II-ADH1t-F和II-ADH1t-R;第二轮PCR引物为II-TEF1p-F和II-ADH1t-R;引物序列见表2。
(c)将筛选标记表达框HIS、模块I和II连接,构建基因表达模块HIS-PGK1p-PCGEM1-CYC1t-TEF1p-c-Myc-ADH1t,命名为模块III;其中,第一轮PCR克隆HIS筛选标记的引物为III-HIS-F和III-HIS-R,克隆模块I的引物为IIII-I-F和III-I-R,克隆模块II的引物为III-II-F和III-II-R;第二轮PCR引物为III-HIS-F和III-II-R;引物序列见表2。
(d)将GAL1p、tHMGR和ADH1t连接,构建基因表达模块GAL1p-tHMGR-ADH1t,命名为模块IV;其中,第一轮PCR克隆GAL1p引物为IV-GAL1p-F和IV-GAL1p-R,克隆tHMGR引物为IV-tHMGR-F和IV-tHMGR-R,克隆ADH1t引物为IV-ADH1t-F和IV-ADH1t-R;第二轮PCR引物为IV-GAL1p-F和IV-ADH1t-R;引物序列见表2。
(e)将GAL10p、UPC2-1和CYC1t连接,构建基因表达模块GAL10p-UPC2-1-CYC1t,命名为模块V;其中,第一轮PCR克隆GAL10p引物为V-GAL10p-F和V-GAL10p-R,克隆UPC2-1引物为V-UPC2-1-F和V-UPC2-1-R,克隆CYC1t引物为V-CYC1t-F和V-CYC1t-R;第二轮PCR引物为V-GAL10p-F和V-CYC1t-R;引物序列见表2。
(f)将模块IV和模块V连接,构建基因表达模块
GAL1p-tHMGR-ADH1t-GAL10p-UPC2-1-CYC1t,命名为模块VI。其中,第一轮PCR克隆模块IV的引物为VI-IV-F和VI-IV-R,克隆模块V的引物为VI-V-F和VI-V-R;第二轮的PCR引物为VI-IV-F和VI-V-R;引物序列见表2。
(g)将筛选标记表达框LEU和TPI1p,构建基因表达模块LEU-TPI1p,命名为模块VII;其中,第一轮PCR克隆LEU筛选标记引物为VII-LEU-F和VII-LEU-R,克隆TPI1p引物为VII-TPI1p-F和VII-TPI1p-R;第二轮PCR引物为VII-LEU-F和VII-TPI1p-R;引物序列见表2。
(h)将筛选标记表达框MET和HXT1p,构建基因表达模块MET-HXT1p,命名为模块VIII;其中,第一轮PCR克隆MET筛选标记引物为VIII-MET-F和VIII-MET-R,克隆HXT1p引物为VIII-HXT1p-F和VIII-HXT1p-R;第二轮PCR引物为VIII-MET-F和VIII-HXT1p-R;引物序列见表2。
表2本申请中构建各模块所用的引物序列
Figure BDA0003645050300000151
Figure BDA0003645050300000161
Figure BDA0003645050300000171
实施例3、构建工程酵母菌
1、酿酒酵母菌株BY4741-1的构建
(1)将模块III从pLB-IV(即上述模块IV连接pLB载体获得)上用引物III-HIS-F和III-II-R扩增下来,PCR扩增体系:2×Phanta Max Master Mix(P515-01,诺唯赞)25μL,正反向引物各1.25μL,ddH2O 21.5μl,模板1μL,总反应体系50μL。琼脂糖凝胶电泳检测PCR产物,并进行回收。
(2)将回收的PCR片段转化酿酒酵母BY4741,将模块III整合到酵母BY4741染色体的NDT80位点,用组氨酸缺陷型培养基(SD-HIS培养基)平板进行筛选,得到酵母工程菌株BY4741-1。
2、酿酒酵母菌株BY4741-2的构建
(1)利用限制性内切酶NotI酶切构建好的整合型表达载体pCfB2988-VI,凝胶电泳检测并回收目的条带,获得DNA整合片段S1。
(2)取50μL上述纯化的DNA片段,转化酿酒酵母BY4741-1,以将模块整合到酵母BY4741-1染色体的TY1位点,并用尿嘧啶和组氨酸缺陷型培养基(SD-URA-HIS培养基)平板进行筛选,经菌落PCR验证,得到阳性工程菌株BY4741-2。
3、酿酒酵母菌株TT01的构建
(1)将模块VII从pLB-VII(即上述模块VII连接pLB载体获得)上用引物VII-LEU-F和VII-TPI1p-R扩增下来,PCR扩增体系:2×Phanta Max Master Mix(P515-01,诺唯赞)25μL,正反向引物各1.25μL,ddH2O 21.5μl,模板1μL,总反应体系50μL。琼脂糖凝胶电泳检测PCR产物,并进行回收。
(2)将回收的PCR片段转化酿酒酵母BY4741-2,将模块VII替换到酵母BY4741-2菌株的ERG9启动子,用组氨酸、尿嘧啶和亮氨酸缺陷型培养基(SD-HIS-URA-LEU培养基)平板进行筛选,得到酵母工程菌株TT01。
4、酿酒酵母菌株ST01的构建
(1)将模块VIII从pLB-VIII(即上述模块VIII连接pLB载体获得)上用引物VIII-MET-F和VIII-HXT1p-R扩增下来,PCR扩增体系:2×Phanta Max Master Mix(P515-01,诺唯赞)25μL,正反向引物各1.25μL,ddH2O 21.5μl,模板1μL,总反应体系50μL。琼脂糖凝胶电泳检测PCR产物,并进行回收。
(2)将回收的PCR片段转化酿酒酵母BY4741-2,将模块VIII替换到酵母BY4741-2菌株的ERG9启动子,用组氨酸、尿嘧啶和甲硫氨酸缺陷型培养基(SD-HIS-URA-MET培养基)平板进行筛选,得到酵母工程菌株ST01。
实施例5、工程菌株发酵检测目标化合物
1、工程菌株TT01的发酵及目标化合物检测
(1)将菌株TT01的单菌落接种到5mL的SD-HIS-URA-LEU培养基中,30℃条件220rpm培养OD值至2~3。
(2)将菌液接种到3瓶50mL的SD-HIS-URA-LEU培养基中,每瓶接种5mL,30℃条件下220rpm培养OD值至2~3。
(3)将3瓶菌液分别接种到1L的SD-HIS-URA-LEU培养基中,每瓶接种50mL,30℃条件220rpm发酵120h。
2、菌株TT01发酵产物的提取和检测
(1)取50mL上述发酵液3000rpm离心,分别获得上清和菌体。向菌体中加入10mL的20%KOH碱裂解液,95℃加热15min进行裂解。
(2)将裂解的菌体混合液和上清混合,加入250mL锥形瓶中,并加入等体积的乙酸乙酯,超声萃取20min,静置72h。
(3)取上层有机层于液相小瓶中,用氮吹仪吹干,加入100μL硅烷化试剂MSTFA,80℃条件下温浴30min。
(4)利用安捷伦7890B-5977B气质联用仪检测目标化合物角鲨烯的产量。检测方法:HP-5ms毛细管柱;进样量1μL,不分流;进样口温度250℃,起始温度50℃保持3min,而后以20℃/min的速率升到70℃保持1min,接着15℃/min的速率升到300℃保持3min;ElectronIonization离子源,能量强度70eV;MS溶剂延迟设为12min,开启电压倍增模式,增益因子设为1。
(5)检测结果如图1-2所示,GC-MS检测结果显示,ST01菌株经发酵120h产生的角鲨烯为320mg/L。
3、工程菌株ST01的发酵及目标化合物检测
(1)将菌株ST01的单菌落接种到5mL的SD-HIS-URA-MET培养基中,30℃条件220rpm培养OD值至2~3。
(2)将菌液接种到3瓶50mL的SD-HIS-URA-MET培养基中,每瓶接种5mL,30℃条件下220rpm培养OD值至2~3。
(3)将3瓶菌液分别接种到1L的SD-HIS-URA-MET培养基中,每瓶接种50mL,30℃条件220rpm发酵120h。
4、菌株ST01发酵产物的提取和检测
(1)取上述发酵液,加入等体积的乙酸乙酯,超声1h,然后静置48h。
(2)取有机层于干净的液相小瓶中,进行GC-MS检测。其中,所用的仪器优选为安捷伦气质联用仪7890B-5977B。检测方法如下:进样体积为1μL,溶剂延时设置为12min,载气为氦气,流速为1mL/min。色谱柱为HP-5MS。色谱条件:50℃,3min;20℃/min速率升温到70℃,1min;15℃/min升温到300℃,3min。
(3)检测结果如图3-4所示,GC-MS检测结果显示,ST01菌株经发酵120h产生的橙花叔醇为150mg/L。
本发明实施例中所涉及的培养基的配方如下:
(1)YPD培养基:蛋白胨20g/L,酵母提取物10g/L,葡萄糖20g/L。
(2)SD+相应氨基酸缺陷型培养基:YNB培养基6.7g/L,缺陷氨基酸母液(100X)10mL/L,葡萄糖20g/L(固体培养基配制时添加20g/L的琼脂粉)。
缺陷氨基酸母液(100X):腺嘌呤硫酸盐0.25g,精氨酸0.12g,天冬氨酸0.6g,谷氨酸0.6g,组氨酸0.12g,亮氨酸0.36g,赖氨酸0.18g,甲硫氨酸0.12g,苯丙氨酸0.3g,丝氨酸2.25g,苏氨酸1.2g,色氨酸0.24g,酪氨酸0.18g,缬氨酸0.9g,尿嘧啶0.12g,用蒸馏水定容到57mL,根据需要可不加任意一种氨基酸配置成缺陷氨基酸母液(100X)。上述原料均购买自Sigma-Aldrich。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 滨州医学院
<120> 代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用
<141> 2022-05-16
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1590
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
aaggcactct ggcacccagt tttggaactg cagttttaaa agtcataaat tgaatgaaaa 60
tgatagcaaa ggtggaggtt tttaaagagc tatttatagg tccctggaca gcatcttttt 120
tcaattaggc agcaaccttt ttgccctatg ccgtaacctg tgtctgcaac ttcctctaat 180
tgggaaatag ttaagcagat tcatagagct gaatgataaa attgtactac gagatgcact 240
gggactcaac gtgaccttat caagtgagca ggcttggtgc atttgacact tcatgatatc 300
agccaaagtg gaactaaaaa cagctcctgg aagaggacta tgacatcatc aggttgggag 360
tctccaggga cagcggaccc tttggaaaag gactagaaag tgtgaaatct attagtcttc 420
gatatgaaat tctctgtctc tgtaaaagca tttcatattt acaagacaca ggcctactcc 480
tagggcagca aaaagtggca acaggcaagc agagggaaaa gagatcatga ggcatttcag 540
agtgcactgt cttttcatat atttctcaat gccgtatgtt tggttttatt ttggccaagc 600
ataacaatct gctcaagaaa aaaaaatctg gagaaaacaa aggtgccttt gccaatgtta 660
tgtttctttt tgacaagccc tgagatttct gaggggaatt cacataaatg ggatcaggtc 720
attcatttac gttgtgtgca aatatgattt aaagatacaa cctttgcaga gagcatgctt 780
tcctaagggt aggcacgtgg aggactaagg gtaaagcatt cttcaagatc agttaatcaa 840
gaaaggtgct ctttgcattc tgaaatgccc ttgttgcaaa tattggttat attgattaaa 900
tttacactta atggaaacaa cctttaactt acagatgaac aaacccacaa aagcaaaaaa 960
tcaaaagccc tacctatgat ttcatatttt ctgtgtaact ggattaaagg attcctgctt 1020
gcttttgggc ataaatgata atggaatatt tccaggtatt gtttaaaatg agggcccatc 1080
tacaaattct tagcaatact ttggataatt ctaaaattca gctggacatt gtctaattgt 1140
tttttatata catctttgct agaatttcaa attttaagta tgtgaattta gttaattagc 1200
tgtgctgatc aattcaaaaa cattactttc ctaaatttta gactatgaag gtcataaatt 1260
caacaaatat atctacacat acaattatag attgtttttc attataatgt cttcatctta 1320
acagaattgt ctttgtgatt gtttttagaa aactgagagt tttaattcat aattacttga 1380
tcaaaaaatt gtgggaacaa tccagcatta attgtatgtg attgttttta tgtacataag 1440
gagtcttaag cttggtgcct tgaagtcttt tgtacttagt cccatgttta aaattactac 1500
tttatatcta aagcatttat gtttttcaat tcaatttaca tgatgctaat tatggcaatt 1560
ataacaaata ttaaagattt cgaaatagaa 1590
<210> 2
<211> 1365
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atggattttt ttcgggtagt ggaaaaccag cagcctcccg cgacgatgcc cctcaacgtt 60
agcttcacca acaggaacta tgacctcgac tacgactcgg tgcagccgta tttctactgc 120
gacgaggagg agaacttcta ccagcagcag cagcagagcg agctgcagcc cccggcgccc 180
agcgaggata tctggaagaa attcgagctg ctgcccaccc cgcccctgtc ccctagccgc 240
cgctccgggc tctgctcgcc ctcctacgtt gcggtcacac ccttctccct tcggggagac 300
aacgacggcg gtggcgggag cttctccacg gccgaccagc tggagatggt gaccgagctg 360
ctgggaggag acatggtgaa ccagagtttc atctgcgacc cggacgacga gaccttcatc 420
aaaaacatca tcatccagga ctgtatgtgg agcggcttct cggccgccgc caagctcgtc 480
tcagagaagc tggcctccta ccaggctgcg cgcaaagaca gcggcagccc gaaccccgcc 540
cgcggccaca gcgtctgctc cacctccagc ttgtacctgc aggatctgag cgccgccgcc 600
tcagagtgca tcgacccctc ggtggtcttc ccctaccctc tcaacgacag cagctcgccc 660
aagtcctgcg cctcgcaaga ctccagcgcc ttctctccgt cctcggattc tctgctctcc 720
tcgacggagt cctccccgca gggcagcccc gagcccctgg tgctccatga ggagacaccg 780
cccaccacca gcagcgactc tgaggaggaa caagaagatg aggaagaaat cgatgttgtt 840
tctgtggaaa agaggcaggc tcctggcaaa aggtcagagt ctggatcacc ttctgctgga 900
ggccacagca aacctcctca cagcccactg gtcctcaaga ggtgccacgt ctccacacat 960
cagcacaact acgcagcgcc tccctccact cggaaggact atcctgctgc caagagggtc 1020
aagttggaca gtgtcagagt cctgagacag atcagcaaca accgaaaatg caccagcccc 1080
aggtcctcgg acaccgagga gaatgtcaag aggcgaacac acaacgtctt ggagcgccag 1140
aggaggaacg agctaaaacg gagctttttt gccctgcgtg accagatccc ggagttggaa 1200
aacaatgaaa aggcccccaa ggtagttatc cttaaaaaag ccacagcata catcctgtcc 1260
gtccaagcag aggagcaaaa gctcatttct gaagaggact tgttgcggaa acgacgagaa 1320
cagttgaaac acaaacttga acagctacgg aactcttgtg cgtaa 1365
<210> 3
<211> 1584
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggctgcag accaattggt gaaaactgaa gtcaccaaga agtcttttac tgctcctgta 60
caaaaggctt ctacaccagt tttaaccaat aaaacagtca tttctggatc gaaagtcaaa 120
agtttatcat ctgcgcaatc gagctcatca ggaccttcat catctagtga ggaagatgat 180
tcccgcgata ttgaaagctt ggataagaaa atacgtcctt tagaagaatt agaagcatta 240
ttaagtagtg gaaatacaaa acaattgaag aacaaagagg tcgctgcctt ggttattcac 300
ggtaagttac ctttgtacgc tttggagaaa aaattaggtg atactacgag agcggttgcg 360
gtacgtagga aggctctttc aattttggca gaagctcctg tattagcatc tgatcgttta 420
ccatataaaa attatgacta cgaccgcgta tttggcgctt gttgtgaaaa tgttataggt 480
tacatgcctt tgcccgttgg tgttataggc cccttggtta tcgatggtac atcttatcat 540
ataccaatgg caactacaga gggttgtttg gtagcttctg ccatgcgtgg ctgtaaggca 600
atcaatgctg gcggtggtgc aacaactgtt ttaactaagg atggtatgac aagaggccca 660
gtagtccgtt tcccaacttt gaaaagatct ggtgcctgta agatatggtt agactcagaa 720
gagggacaaa acgcaattaa aaaagctttt aactctacat caagatttgc acgtctgcaa 780
catattcaaa cttgtctagc aggagattta ctcttcatga gatttagaac aactactggt 840
gacgcaatgg gtatgaatat gatttctaaa ggtgtcgaat actcattaaa gcaaatggta 900
gaagagtatg gctgggaaga tatggaggtt gtctccgttt ctggtaacta ctgtaccgac 960
aaaaaaccag ctgccatcaa ctggatcgaa ggtcgtggta agagtgtcgt cgcagaagct 1020
actattcctg gtgatgttgt cagaaaagtg ttaaaaagtg atgtttccgc attggttgag 1080
ttgaacattg ctaagaattt ggttggatct gcaatggctg ggtctgttgg tggatttaac 1140
gcacatgcag ctaatttagt gacagctgtt ttcttggcat taggacaaga tcctgcacaa 1200
aatgttgaaa gttccaactg tataacattg atgaaagaag tggacggtga tttgagaatt 1260
tccgtatcca tgccatccat cgaagtaggt accatcggtg gtggtactgt tctagaacca 1320
caaggtgcca tgttggactt attaggtgta agaggcccgc atgctaccgc tcctggtacc 1380
aacgcacgtc aattagcaag aatagttgcc tgtgccgtct tggcaggtga attatcctta 1440
tgtgctgccc tagcagccgg ccatttggtt caaagtcata tgacccacaa caggaaacct 1500
gctgaaccaa caaaacctaa caatttggac gccactgata taaatcgttt gaaagatggg 1560
tccgtcacct gcattaaatc ctaa 1584
<210> 4
<211> 2742
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atgagcgaag tcggtataca gaatcacaag aaagcggtga caaaacccag aagaagagaa 60
aaagtcatcg agctaattga agtggacggc aaaaaggtga gtacgacttc aaccggtaaa 120
cgtaaattcc ataacaaatc aaagaatggg tgcgataact gtaaaagaag aagagttaag 180
tgtgatgaag ggaagccagc ctgtaggaag tgcacaaata tgaagttgga atgtcagtat 240
acaccaatcc atttaaggaa aggtagagga gcaacagtag tgaagtatgt cacgagaaag 300
gcagacggta gcgtggagtc tgattcatcg gtagatttac ctcctacgat caagaaggag 360
cagacaccgt tcaatgatat ccaatcagcg gtaaaagctt caggctcatc caatgattcc 420
tttccatcaa gcgcctctac aactaagagt gagagcgagg aaaagtcatc ggcccctata 480
gaggacaaaa acaatatgac tcctctaagt atgggcctcc agggtaccat caataagaaa 540
gatatgatga ataacttttt ctctcaaaat ggcactattg gttttggttc tcctgaaaga 600
ttgaattcag gtatcgatgg cttactatta ccgccattgc cttctggaaa tatgggtgcg 660
ttccaacttc agcaacagca gcaagtgcag cagcaatctc aaccacagac ccaagcgcag 720
caagcaagtg gaactccaaa cgagagatat ggttcattcg atcttgcggg tagtcctgca 780
ttgcaatcca cgggaatgag cttatcaaat agtctaagcg ggatgttact atgtaacagg 840
attccttccg gccaaaacta cactcaacaa caattacaat atcaattaca ccagcagctg 900
caattgcaac agcatcagca agttcagctg cagcagtatc aacaattacg tcaggaacaa 960
caccaacaag ttcagcaaca acaacaggaa caactccagc aataccaaca acattttttg 1020
caacagcagc aacaagtact gcttcagcaa gagcaacaac ctaacgatga ggaaggtggc 1080
gttcaggaag aaaacagcaa aaaggtaaag gaagggcctt tacaatcaca aacaagcgaa 1140
actactttaa acagcgatgc tgctacatta caagctgatg cattatctca gttaagtaag 1200
atggggctaa gcctaaagtc gttaagtacc tttccaacag ctggtattgg tggtgtttcc 1260
tatgactttc aggaactgtt aggtattaag tttccaataa ataacggcaa ttcaagagct 1320
actaaggcca gcaacgcaga ggaagctttg gccaatatgc aagagcatca tgaacgtgca 1380
gctgcttctg taaaggagaa tgatggtcag ctctctgata cgaagagtcc agcgccatcg 1440
aataacgccc aagggggaag tgctagtatt atggaacctc aggcggctga tgcggtttcg 1500
acaatggcgc ctatatcaat gattgaaaga aacatgaaca gaaacagcaa catttctcca 1560
tcaacgccct ctgcagtgtt gaatgatagg caagagatgc aagattctat aagttctcta 1620
ggaaatctga caaaagcagc cttggagaac aacgaaccaa cgataagttt acaaacatca 1680
cagacagaga atgaagacga tgcatcgcgg caagacatga cctcaaaaat taataacgaa 1740
gctgaccgaa gttctgtttc tgctggtacc agtaacatcg ctaagctttt agatctttct 1800
accaaaggca atctgaacct gatagacatg aaactgtttc atcattattg cacaaaggtc 1860
tggcctacga ttacagcggc caaagtttct gggcctgaaa tatggaggga ctacataccg 1920
gagttagcat ttgactatcc atttttaatg cacgctttgt tggcattcag tgccacccat 1980
ctttcgagga ctgaaactgg actggagcaa tacgtttcat ctcaccgcct agacgctctg 2040
agattattaa gagaagctgt tttagaaata tctgagaata acaccgatgc gctagttgcc 2100
agcgccctga tactaatcat ggactcgtta gcaaatgcta gtggtaacgg cactgtagga 2160
aaccaaagtt tgaatagcat gtcaccaagc gcttggatct ttcatgtcaa aggtgctgca 2220
acaattttaa ccgctgtgtg gcctttgagt gaaagatcta aatttcataa cattatatct 2280
gttgatctta gcgatttagg cgatgtcatt aaccctgatg ttggaacaat tactgaattg 2340
gtatgttttg atgaaagtat tgccgatttg tatcctgtcg gcttagattc gccatatttg 2400
ataacactag cttatttaga taaattgcac cgtgaaaaaa accagggtga ttttattctg 2460
cgggtattta catttccagc attgctagac aagacattcc tggcattact gatgacaggt 2520
gatttaggtg caatgagaat tatgagatca tattataaac tacttcgagg atttgccaca 2580
gaggtcaagg ataaagtctg gtttctcgaa ggagtcacgc aggtgctgcc tcaagatgtt 2640
gacgaataca gtggaggtgg tgatatgcat atgatgctag atttcctcgg tggcggatta 2700
ccatcgatga caacaacaaa tttctctgat ttttcgttat ga 2742
<210> 5
<211> 2742
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atgagcgaag tcggtataca gaatcacaag aaagcggtga caaaacccag aagaagagaa 60
aaagtcatcg agctaattga agtggacggc aaaaaggtga gtacgacttc aaccggtaaa 120
cgtaaattcc ataacaaatc aaagaatggg tgcgataact gtaaaagaag aagagttaag 180
tgtgatgaag ggaagccagc ctgtaggaag tgcacaaata tgaagttgga atgtcagtat 240
acaccaatcc atttaaggaa aggtagagga gcaacagtag tgaagtatgt cacgagaaag 300
gcagacggta gcgtggagtc tgattcatcg gtagatttac ctcctacgat caagaaggag 360
cagacaccgt tcaatgatat ccaatcagcg gtaaaagctt caggctcatc caatgattcc 420
tttccatcaa gcgcctctac aactaagagt gagagcgagg aaaagtcatc ggcccctata 480
gaggacaaaa acaatatgac tcctctaagt atgggcctcc agggtaccat caataagaaa 540
gatatgatga ataacttttt ctctcaaaat ggcactattg gttttggttc tcctgaaaga 600
ttgaattcag gtatcgatgg cttactatta ccgccattgc cttctggaaa tatgggtgcg 660
ttccaacttc agcaacagca gcaagtgcag cagcaatctc aaccacagac ccaagcgcag 720
caagcaagtg gaactccaaa cgagagatat ggttcattcg atcttgcggg tagtcctgca 780
ttgcaatcca cgggaatgag cttatcaaat agtctaagcg ggatgttact atgtaacagg 840
attccttccg gccaaaacta cactcaacaa caattacaat atcaattaca ccagcagctg 900
caattgcaac agcatcagca agttcagctg cagcagtatc aacaattacg tcaggaacaa 960
caccaacaag ttcagcaaca acaacaggaa caactccagc aataccaaca acattttttg 1020
caacagcagc aacaagtact gcttcagcaa gagcaacaac ctaacgatga ggaaggtggc 1080
gttcaggaag aaaacagcaa aaaggtaaag gaagggcctt tacaatcaca aacaagcgaa 1140
actactttaa acagcgatgc tgctacatta caagctgatg cattatctca gttaagtaag 1200
atggggctaa gcctaaagtc gttaagtacc tttccaacag ctggtattgg tggtgtttcc 1260
tatgactttc aggaactgtt aggtattaag tttccaataa ataacggcaa ttcaagagct 1320
actaaggcca gcaacgcaga ggaagctttg gccaatatgc aagagcatca tgaacgtgca 1380
gctgcttctg taaaggagaa tgatggtcag ctctctgata cgaagagtcc agcgccatcg 1440
aataacgccc aagggggaag tgctagtatt atggaacctc aggcggctga tgcggtttcg 1500
acaatggcgc ctatatcaat gattgaaaga aacatgaaca gaaacagcaa catttctcca 1560
tcaacgccct ctgcagtgtt gaatgatagg caagagatgc aagattctat aagttctcta 1620
ggaaatctga caaaagcagc cttggagaac aacgaaccaa cgataagttt acaaacatca 1680
cagacagaga atgaagacga tgcatcgcgg caagacatga cctcaaaaat taataacgaa 1740
gctgaccgaa gttctgtttc tgctggtacc agtaacatcg ctaagctttt agatctttct 1800
accaaaggca atctgaacct gatagacatg aaactgtttc atcattattg cacaaaggtc 1860
tggcctacga ttacagcggc caaagtttct gggcctgaaa tatggaggga ctacataccg 1920
gagttagcat ttgactatcc atttttaatg cacgctttgt tggcattcag tgccacccat 1980
ctttcgagga ctgaaactgg actggagcaa tacgtttcat ctcaccgcct agacgctctg 2040
agattattaa gagaagctgt tttagaaata tctgagaata acaccgatgc gctagttgcc 2100
agcgccctga tactaatcat ggactcgtta gcaaatgcta gtggtaacgg cactgtagga 2160
aaccaaagtt tgaatagcat gtcaccaagc gcttggatct ttcatgtcaa aggtgctgca 2220
acaattttaa ccgctgtgtg gcctttgagt gaaagatcta aatttcataa cattatatct 2280
gttgatctta gcgatttagg cgatgtcatt aaccctgatg ttggaacaat tactgaattg 2340
gtatgttttg atgaaagtat tgccgatttg tatcctgtcg gcttagattc gccatatttg 2400
ataacactag cttatttaga taaattgcac cgtgaaaaaa accagggtga ttttattctg 2460
cgggtattta catttccagc attgctagac aagacattcc tggcattact gatgacaggt 2520
gatttaggtg caatgagaat tatgagatca tattataaac tacttcgagg atttgccaca 2580
gaggtcaagg ataaagtctg gtttctcgaa ggagtcacgc aggtgctgcc tcaagatgtt 2640
gacgaataca gtggaggtgg tggtatgcat atgatgctag atttcctcgg tggcggatta 2700
ccatcgatga caacaacaaa tttctctgat ttttcgttat ga 2742
<210> 6
<211> 926
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tcttcaagaa ttggggatct acgtatggtc attcttcttc agattccctc atggagaagt 60
gcggcagatg tatatgacag agtcgccagt ttccaagaga ctttattcag gcacttccat 120
gataggcaag agagaagacc cagagatgtt gttgtcctag ttacacatgg tatttattcc 180
agagtattcc tgatgaaatg gtttagatgg acatacgaag agtttgaatc gtttaccaat 240
gttcctaacg ggagcgtaat ggtgatggaa ctggacgaat ccatcaatag atacgtcctg 300
aggaccgtgc tacccaaatg gactgattgt gagggagacc taactacata gtgtttaaag 360
attacggata tttaacttac ttagaataat gccatttttt tgagttataa taatcctacg 420
ttagtgtgag cgggatttaa actgtgagga cctcaataca ttcagacact tctgacggta 480
tcaccctact tattcccttc gagattatat ctaggaaccc atcaggttgg tggaagatta 540
cccgttctaa gacttttcag cttcctctat tgatgttaca ctcggacacc ccttttctgg 600
catccagttt ttaatcttca gtggcatgtg agattctccg aaattaatta aagcaatcac 660
acaattctct cggataccac ctcggttgaa actgacaggt ggtttgttac gcatgctaat 720
gcaaaggagc ctatatacct ttggctcggc tgctgtaaca gggaatataa agggcagcat 780
aatttaggag tttagtgaac ttgcaacatt tactattttc ccttcttacg taaatatttt 840
tctttttaat tctaaatcaa tctttttcaa ttttttgttt gtattctttt cttgcttaaa 900
tctataacta caaaaaacac atacag 926
<210> 7
<211> 1123
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tgcaggtctc atctggaata taattccccc ctcctgaagc aaatttttcc tttgagccgg 60
aatttttgat attccgagtt ctttttttcc attcgcggag gttattccat tcctaaacga 120
gtggccacaa tgaaacttca attcatatcg accgactatt tttctccgaa ccaaaaaaat 180
agcagggcga gattggagct gcggaaaaaa gaggaaaaaa ttttttcgta gttttcttgt 240
gcaaattagg gtgtaaggtt tctagggctt attggttcaa gcagaagaga caacaattgt 300
aggtcctaaa ttcaaggcgg atgtaaggag tattggtttc gaaagttttt ccgaagcggc 360
atggcaggga ctacttgcgc atgcgctcgg attatcttca tttttgcttg caaaaacgta 420
gaatcatggt aaattacatg aagaattctc tttttttttt tttttttttt ttttttacct 480
ctaaagagtg ttgaccaact gaaaaaaccc ttcttcaaga gagttaaact aagactaacc 540
atcataactt ccaaggaatt aatcgatatc ttgcactcct gatttttctt caaagagaca 600
gcgcaaagga ttatgacact gttgcattga gtcaaaagtt tttccgaagt gacccagtgc 660
tctttttttt tttccgtgaa ggactgacaa atatgcgcac aagatccaat acgtaatgga 720
aattcggaaa aactaggaag aaatgctgca gggcattgcc gtgccgatct tttgtctttc 780
agatatatga gaaaaagaat attcatcaag tgctgataga agaataccac tcatatgacg 840
tgggcagaag acagcaaacg taaacatgag ctgctgcgac atttgatggc ttttatccga 900
caagccagga aactccacca ttatctaatg tagcaaaata tttcttaaca cccgaagttg 960
cgtgtccccc tcacgttttt aatcatttga attagtatat tgaaattata tataaaggca 1020
acaatgtccc cataatcaat tccatctggg gtctcatgtt ctttccccac cttaaaatct 1080
ataaagatat cataatcgtc aactagttga tatacgtaaa atc 1123
<210> 8
<211> 984
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ggaagtacct tcaaagaatg gggtcttatc ttgttttgca agtaccactg agcaggataa 60
taatagaaat gataatatac tatagtagag ataacgtcga tgacttccca tactgtaatt 120
gcttttagtt gtgtattttt agtgtgcaag tttctgtaaa tcgattaatt tttttttctt 180
tcctcttttt attaacctta atttttattt tagattcctg acttcaactc aagacgcaca 240
gatattataa catctgcata ataggcattt gcaagaatta ctcgtgagta aggaaagagt 300
gaggaactat cgcatacctg catttaaaga tgccgatttg ggcgcgaatc ctttattttg 360
gcttcaccct catactatta tcagggccag aaaaaggaag tgtttccctc cttcttgaat 420
tgatgttacc ctcataaagc acgtggcctc ttatcgagaa agaaattacc gtcgctcgtg 480
atttgtttgc aaaaagaaca aaactgaaaa aacccagaca cgctcgactt cctgtcttcc 540
tattgattgc agcttccaat ttcgtcacac aacaaggtcc tagcgacggc tcacaggttt 600
tgtaacaagc aatcgaaggt tctggaatgg cgggaaaggg tttagtacca catgctatga 660
tgcccactgt gatctccaga gcaaagttcg ttcgatcgta ctgttactct ctctctttca 720
aacagaattg tccgaatcgt gtgacaacaa cagcctgttc tcacacactc ttttcttcta 780
accaaggggg tggtttagtt tagtagaacc tcgtgaaact tacatttaca tatatataaa 840
cttgcataaa ttggtcaatg caagaaatac atatttggtc ttttctaatt cgtagttttt 900
caagttctta gatgctttct ttttctcttt tttacagatc atcaaggaag taattatcta 960
ctttttacaa caaatataaa acaa 984
<210> 9
<211> 420
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gcacacacca tagcttcaaa atgtttctac tcctttttta ctcttccaga ttttctcgga 60
ctccgcgcat cgccgtacca cttcaaaaca cccaagcaca gcatactaaa tttcccctct 120
ttcttcctct agggtgtcgt taattacccg tactaaaggt ttggaaaaga aaaaagagac 180
cgcctcgttt ctttttcttc gtcgaaaaag gcaataaaaa tttttatcac gtttcttttt 240
cttgaaaatt tttttttttg atttttttct ctttcgatga cctcccattg atatttaagt 300
taataaacgg tcttcaattt ctcaagtttc agtttcattt ttcttgttct attacaactt 360
tttttacttc ttgctcatta gaaagaaagc atagcaatct aatctaagtt ttaattacaa 420
<210> 10
<211> 455
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
agtacggatt agaagccgcc gagcgggtga cagccctccg aaggaagact ctcctccgtg 60
cgtcctcgtc ttcaccggtc gcgttcctga aacgcagatg tgcctcgcgc cgcactgctc 120
cgaacaataa agattctaca atactagctt ttatggttat gaagaggaaa aattggcagt 180
aacctggccc cacaaacctt caaatgaacg aatcaaatta acaaccatag gatgataatg 240
cgattagttt tttagcctta tttctggggt aattaatcag cgaagcgatg atttttgatc 300
tattaacaga tatataaatg caaaaactgc ataaccactt taactaatac tttcaacatt 360
ttcggtttgt attacttctt attcaaatgt aataaaagta tcaacaaaaa attgttaata 420
tacctctata ctttaacgtc aaggagaaaa aaccc 455
<210> 11
<211> 212
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
tcaatatagc aatgagcagt taagcgtatt actgaaagtt ccaaagagaa ggttttttta 60
ggctaagata atggggctct ttacatttcc acaacatata agtaagatta gatatggata 120
tgtatatgga tatgtatatg gtggtaatgc catgtaatat gattattaaa cttctttgcg 180
tccatccaaa aaaaaagtaa gaatttttga aa 212
<210> 12
<211> 190
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
atccgctcta accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt 60
ttttatagtt atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct 120
gtacagacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg 180
acgctcgaag 190
<210> 13
<211> 165
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
cgaatttctt atgatttatg atttttatta ttaaataagt tataaaaaaa ataagtgtat 60
acaaatttta aagtgactct taggttttaa aacgaaaatt cttattcttg agtaactctt 120
tcctgtaggt caggttgctt tctcaggtat agcatgaggt cgctc 165
<210> 14
<211> 1165
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
cttaactatg cggcatcaga gcagattgta ctgagagtgc accataaatt cccgttttaa 60
gagcttggtg agcgctagga gtcactgcca ggtatcgttt gaacacggca ttagtcaggg 120
aagtcataac acagtccttt cccgcaattt tctttttcta ttactcttgg cctcctctag 180
tacactctat atttttttat gcctcggtaa tgattttcat tttttttttt cccctagcgg 240
atgactcttt ttttttctta gcgattggca ttatcacata atgaattata cattatataa 300
agtaatgtga tttcttcgaa gaatatacta aaaaatgagc aggcaagata aacgaaggca 360
aagatgacag agcagaaagc cctagtaaag cgtattacaa atgaaaccaa gattcagatt 420
gcgatctctt taaagggtgg tcccctagcg atagagcact cgatcttccc agaaaaagag 480
gcagaagcag tagcagaaca ggccacacaa tcgcaagtga ttaacgtcca cacaggtata 540
gggtttctgg accatatgat acatgctctg gccaagcatt ccggctggtc gctaatcgtt 600
gagtgcattg gtgacttaca catagacgac catcacacca ctgaagactg cgggattgct 660
ctcggtcaag cttttaaaga ggccctactg gcgcgtggag taaaaaggtt tggatcagga 720
tttgcgcctt tggatgaggc actttccaga gcggtggtag atctttcgaa caggccgtac 780
gcagttgtcg aacttggttt gcaaagggag aaagtaggag atctctcttg cgagatgatc 840
ccgcattttc ttgaaagctt tgcagaggct agcagaatta ccctccacgt tgattgtctg 900
cgaggcaaga atgatcatca ccgtagtgag agtgcgttca aggctcttgc ggttgccata 960
agagaagcca cctcgcccaa tggtaccaac gatgttccct ccaccaaagg tgttcttatg 1020
tagtgacacc gattatttaa agctgcagca tacgatatat atacatgtgt atatatgtat 1080
acctatgaat gtcagtaagt atgtatacga acagtatgat actgaagatg acaaggtaat 1140
gcatcattct atacgtgtca ttctg 1165
<210> 15
<211> 2228
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
tcgaggagaa cttctagtat atccacatac ctaatattat tgccttatta aaaatggaat 60
cccaacaatt acatcaaaat ccacattctc ttcaaaatca attgtcctgt acttccttgt 120
tcatgtgtgt tcaaaaacgt tatatttata ggataattat actctatttc tcaacaagta 180
attggttgtt tggccgagcg gtctaaggcg cctgattcaa gaaatatctt gaccgcagtt 240
aactgtggga atactcaggt atcgtaagat gcaagagttc gaatctctta gcaaccatta 300
tttttttcct caacataacg agaacacaca ggggcgctat cgcacagaat caaattcgat 360
gactggaaat tttttgttaa tttcagaggt cgcctgacgc atataccttt ttcaactgaa 420
aaattgggag aaaaaggaaa ggtgagaggc cggaaccggc ttttcatata gaatagagaa 480
gcgttcatga ctaaatgctt gcatcacaat acttgaagtt gacaatatta tttaaggacc 540
tattgttttt tccaataggt ggttagcaat cgtcttactt tctaactttt cttacctttt 600
acatttcagc aatatatata tatatttcaa ggatatacca ttctaatgtc tgcccctatg 660
tctgccccta agaagatcgt cgttttgcca ggtgaccacg ttggtcaaga aatcacagcc 720
gaagccatta aggttcttaa agctatttct gatgttcgtt ccaatgtcaa gttcgatttc 780
gaaaatcatt taattggtgg tgctgctatc gatgctacag gtgtcccact tccagatgag 840
gcgctggaag cctccaagaa ggttgatgcc gttttgttag gtgctgtggc tggtcctaaa 900
tggggtaccg gtagtgttag acctgaacaa ggtttactaa aaatccgtaa agaacttcaa 960
ttgtacgcca acttaagacc atgtaacttt gcatccgact ctcttttaga cttatctcca 1020
atcaagccac aatttgctaa aggtactgac ttcgttgttg tcagagaatt agtgggaggt 1080
atttactttg gtaagagaaa ggaagacgat ggtgatggtg tcgcttggga tagtgaacaa 1140
tacaccgttc cagaagtgca aagaatcaca agaatggccg ctttcatggc cctacaacat 1200
gagccaccat tgcctatttg gtccttggat aaagctaatc ttttggcctc ttcaagatta 1260
tggagaaaaa ctgtggagga aaccatcaag aacgaattcc ctacattgaa ggttcaacat 1320
caattgattg attctgccgc catgatccta gttaagaacc caacccacct aaatggtatt 1380
ataatcacca gcaacatgtt tggtgatatc atctccgatg aagcctccgt tatcccaggt 1440
tccttgggtt tgttgccatc tgcgtccttg gcctctttgc cagacaagaa caccgcattt 1500
ggtttgtacg aaccatgcca cggttctgct ccagatttgc caaagaataa ggttgaccct 1560
atcgccacta tcttgtctgc tgcaatgatg ttgaaattgt cattgaactt gcctgaagaa 1620
ggtaaggcca ttgaagatgc agttaaaaag gttttggatg caggtatcag aactggtgat 1680
ttaggtggtt ccaacagtac caccgaagtc ggtgatgctg tcgccgaaga agttaagaaa 1740
atccttgctt aaaaagattc tcttttttta tgatatttgt acataaactt tataaatgaa 1800
attcataata gaaacgacac gaaattacaa aatggaatat gttcataggg tagacgaaac 1860
tatatacgca atctacatac atttatcaag aaggagaaaa aggaggatag taaaggaata 1920
caggtaagca aattgatact aatggctcaa cgtgataagg aaaaagaatt gcactttaac 1980
attaatattg acaaggagga gggcaccaca caaaaagtta ggtgtaacag aaaatcatga 2040
aactacgatt cctaatttga tattggagga ttttctctaa aaaaaaaaaa atacaacaaa 2100
taaaaaacac tcaatgacct gaccatttga tggagtttaa gtcaatacct tcttgaagca 2160
tttcccataa tggtgaaagt tccctcaaga attttactct gtcagaaacg gccttacgac 2220
gtagtcga 2228
<210> 16
<211> 2842
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataaatt cccgttttaa gagcttggtg agcgctagga gtcactgcca attatttttt 240
gctttttctc ttgaggtcac atgatcgcaa aatggcaaat ggcacgtgaa gctgtcgata 300
ttggggaact gtggtggttg gcaaatgact aattaagtta gtcaaggcgc catcctcatg 360
aaaactgtgt aacataataa ccgaagtgtc gaaaaggtgg caccttgtcc aattgaacac 420
gctcgatgaa aaaaataaga tatatataag gttaagtaaa gcgtctgtta gaaaggaagt 480
ttttcctttt tcttgctctc ttgtcttttc atctactatt tccttcgtgt aatacagggt 540
cgtcagatac atagatacaa ttctattacc cccatccata caatgccatc tcatttcgat 600
actgttcaac tacacgccgg ccaagagaac cctggtgaca atgctcacag atccagagct 660
gtaccaattt acgccaccac ttcttatgtt ttcgaaaact ctaagcatgg ttcgcaattg 720
tttggtctag aagttccagg ttacgtctat tcccgtttcc aaaacccaac cagtaatgtt 780
ttggaagaaa gaattgctgc tttagaaggt ggtgctgctg ctttggctgt ttcctccggt 840
caagccgctc aaacccttgc catccaaggt ttggcacaca ctggtgacaa catcgtttcc 900
acttcttact tatacggtgg tacttataac cagttcaaaa tctcgttcaa aagatttggt 960
atcgaggcta gatttgttga aggtgacaat ccagaagaat tcgaaaaggt ctttgatgaa 1020
agaaccaagg ctgtttattt ggaaaccatt ggtaatccaa agtacaatgt tccggatttt 1080
gaaaaaattg ttgcaattgc tcacaaacac ggtattccag ttgtcgttga caacacattt 1140
ggtgccggtg gttacttctg tcagccaatt aaatacggtg ctgatattgt aacacattct 1200
gctaccaaat ggattggtgg tcatggtact actatcggtg gtattattgt tgactctggt 1260
aagttcccat ggaaggacta cccagaaaag ttccctcaat tctctcaacc tgccgaagga 1320
tatcacggta ctatctacaa tgaagcctac ggtaacttgg catacatcgt tcatgttaga 1380
actgaactat taagagattt gggtccattg atgaacccat ttgcctcttt cttgctacta 1440
caaggtgttg aaacattatc tttgagagct gaaagacacg gtgaaaatgc attgaagtta 1500
gccaaatggt tagaacaatc cccatacgta tcttgggttt cataccctgg tttagcatct 1560
cattctcatc atgaaaatgc taagaagtat ctatctaacg gtttcggtgg tgtcttatct 1620
ttcggtgtaa aagacttacc aaatgccgac aaggaaactg acccattcaa actttctggt 1680
gctcaagttg ttgacaattt aaagcttgcc tctaacttgg ccaatgttgg tgatgccaag 1740
accttagtca ttgctccata cttcactacc cacaaacaat taaatgacaa agaaaagttg 1800
gcatctggtg ttaccaagga cttaattcgt gtctctgttg gtatcgaatt tattgatgac 1860
attattgcag acttccagca atcttttgaa actgttttcg ctggccaaaa accatgagtg 1920
tgcgtaatga gttgtaaaat tatgtataaa cctactttct ctcacaagta ctatactttt 1980
ataaaacgaa ctttattgaa atgaatatcc tttttttccc ttgttacatg tcgtgactcg 2040
tactttgaac ctaaattgtt ctaacatcaa agaacagtgt taattcgcag tcgagaagaa 2100
aaatatggtg aacaagactc atctacttca tgagactact ttacgcctcc tataaagctg 2160
tcacactgga taaatttatt gtaggaccaa gttacaaaag aggatgatgg aggtttcttt 2220
acaataaaga agcacatgtg tgttaacgtt tttagtattt gcttgttatg taaatcagga 2280
aaacttcgcg ggatttggtt ggatgctact ttccatacaa taaatattat agatctaaaa 2340
agccaaatta caagtaaaga ttagtaaagc tgttggaatt ccatcgttga taaaaatgtt 2400
agttattaaa tataaaagtc agaataggtg aacttggatt taattgttgg catttcgttg 2460
ctgctagagg ccataatatt agatagccag gacatactag ttctcctcgt ggtataggaa 2520
tccataaaat ggaattggtg attctatgtg atatattcac attcttacta cattatcaat 2580
ccttgcactt cagcttcctc taacctcgat gacatcttct cataacttat gtcatcatct 2640
aacgccgtct attataatat attgatagta taagtattag ttgatagaca atagtggatt 2700
tttattccaa cagtgtcttt gttcgtctca gatatagtcg gattgccctt ttaagcaatc 2760
aatagtgttt tatttgcaac aatgtcgtca tagtttaata tgtcctataa gatgttaact 2820
tgctcaacat tcaacaaagt tt 2842

Claims (10)

1.一种基于长非编码RNA和原癌基因的代谢工程方法,其特征在于,所述代谢工程方法为过表达PCGEM1基因和c-Myc基因;其中,
所述PCGEM1基因为长非编码RNA编码基因,其核苷酸序列如SEQ ID NO.1所示;
所述c-Myc基因为原癌基因,其核苷酸序列如SEQ ID NO.2所示。
2.一种根据权利要求1所述的基于长非编码RNA和原癌基因的代谢工程方法在构建酿酒酵母工程菌中的应用。
3.一种产角鲨烯工程菌,其特征在于,所述产角鲨烯工程菌以酿酒酵母为出发菌株,过表达PCGEM1、c-Myc、tHMGR、UPC2-1和ERG9基因;其中,
PCGEM1和c-Myc基因整合到酵母基因组NDT80位点;
tHMGR和UPC2-1基因整合到酿酒酵母染色体TY3位点;
ERG9基因启动子为组成型强启动子TPI1p。
4.根据权利要求3所述的产角鲨烯工程菌,其特征在于,所述tHMGR和UPC2基因的核苷酸序列分别如SEQ ID NO.3~4所示;
所述UPC2-1基因是基于PCR的定点突变技术将转录因子基因UPC2突变为UPC2-1,核苷酸序列如SEQ ID NO.5所示;
所述TPI1p启动子的核苷酸序列如SEQ ID NO.6所示。
5.一种产橙花叔醇工程菌,其特征在于,所述产橙花叔醇工程菌以酿酒酵母为出发菌株,过表达PCGEM1、c-Myc、tHMGR和UPC2-1基因,抑制ERG9基因;其中,
PCGEM1和c-Myc基因整合到酵母基因组NDT80位点;
tHMGR和UPC2-1基因整合到酿酒酵母染色体TY3位点;
ERG9基因启动子为葡萄糖抑制型启动子HXT1p。
6.根据权利要求5所述的产橙花叔醇工程菌,其特征在于,所述tHMGR和UPC2基因的核苷酸序列分别如SEQ ID NO.3~4所示;
所述UPC2-1基因是基于PCR的定点突变技术将转录因子基因UPC2突变为UPC2-1,核苷酸序列如SEQ ID NO.5所示;
所述HXT1p启动子的核苷酸序列如SEQ ID NO.7所示。
7.一种产角鲨烯工程菌的构建方法,其特征在于,包括:
将PGK1p、PCGEM1和CYC1t连接,构建基因表达模块PGK1p-PCGEM1-CYC1t,命名为模块I;
将TEF1p、c-Myc和ADH1t连接,构建基因表达模块TEF1p-c-Myc-ADH1t,命名为模块II;
将筛选标记HIS表达框、模块I和模块II连接,构建基因表达模块HIS-PGK1p-PCGEM1-CYC1t-TEF1p-c-Myc-ADH1t,命名为模块III;
将GAL1p、tHMGR和ADH1t连接,构建基因表达模块GAL1p-tHMGR-ADH1t,命名为模块IV;
将GAL10p、UPC2-1和CYC1t连接,构建基因表达模块GAL10p-UPC2-1-CYC1t,命名为模块V;
将模块V和模块VI连接,构建基因表达模块GAL1p-tHMGR-ADH1t-GAL10p-UPC2-1-CYC1t,命名为模块VI;
将筛选标记LEU和后动子TPI1p连接,构建基因表达模块LEU-TPI1p,命名为模块VII;
将模块III转化酵母菌株,整合到基因组的NDT80位点,得到菌株1;
将模块VI插入到载体pCfB2988的SfaSI酶切位点,得到整合表达载体pCfB2988-VI;
用限制性核酸内切酶Not I酶切整合表达载体pCfB2988-VI,得到DNA整合片段S1;
将DNA整合片段S1整合到菌株1染色体的TY1位点,得到菌株2;
将模块VII转化菌株2,整合到ERG9基因的后动子位置,得到产角鲨烯工程菌。
8.一种产橙花叔醇工程菌的构建方法,其特征在于,包括:
将PGK1p、PCGEM1和CYC1t连接,构建基因表达模块PGK1p-PCGEM1-CYC1t,命名为模块I;
将TEF1p、c-Myc和ADH1t连接,构建基因表达模块TEF1p-c-Myc-ADH1t,命名为模块II;
将筛选标记HIS表达框、模块I和模块II连接,构建基因表达模块HIS-PGK1p-PCGEM1-CYC1t-TEF1p-c-Myc-ADH1t,命名为模块III;
将GAL1p、tHMGR和ADH1t连接,构建基因表达模块GAL1p-tHMGR-ADH1t,命名为模块IV;
将GAL10p、UPC2-1和CYC1t连接,构建基因表达模块GAL10p-UPC2-1-CYC1t,命名为模块V;
将模块V和模块VI连接,构建基因表达模块GAL1p-tHMGR-ADH1t-GAL10p-UPC2-1-CYC1t,命名为模块VI;
将筛选标记MET和后动子HXT1p连接,构建基因表达模块MET-HXT1p,命名为模块VIII;
将模块III转化酵母菌株,整合到基因组的NDT80位点,得到菌株1;
将模块VI插入到载体pCfB2988的SfaSI酶切位点,得到整合表达载体pCfB2988-VI;
用限制性核酸内切酶Not I酶切整合表达载体pCfB2988-VI,得到DNA整合片段S1;
将DNA整合片段S1整合到菌株1染色体的TY1位点,得到菌株2;
将模块VIII转化菌株2,整合到ERG9基因的后动子位置,得到产橙花叔醇工程菌。
9.根据权利要求7所述的产角鲨烯工程菌的构建方法或者权利要求8所述的产橙花叔醇工程菌的构建方法,其特征在于,
所述后动子PGK1p、TEF1p、GAL1p和GAL10p的核苷酸序列分别如SEQ ID NO.8~11所示;
所述终止子CYC1t和ADH1t的核苷酸序列分别如SEQ ID NO.12~13所示;
所述筛选标记HIS、LEU和MET的核苷酸序列分别如SEQ ID NO.14~16所示;
所述酵母菌株为BY4741。
10.一种根据权利要求1所述的基于长非编码RNA和原癌基因的代谢工程方法在高产倍半萜化合物橙花叔醇和三萜化合物角鲨烯,以及其他倍半萜和三萜类化合物生产中的应用。
CN202210527238.4A 2022-05-16 2022-05-16 代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用 Pending CN114854751A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210527238.4A CN114854751A (zh) 2022-05-16 2022-05-16 代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210527238.4A CN114854751A (zh) 2022-05-16 2022-05-16 代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用

Publications (1)

Publication Number Publication Date
CN114854751A true CN114854751A (zh) 2022-08-05

Family

ID=82638136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210527238.4A Pending CN114854751A (zh) 2022-05-16 2022-05-16 代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用

Country Status (1)

Country Link
CN (1) CN114854751A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117402763A (zh) * 2023-09-26 2024-01-16 广州中医药大学(广州中医药研究院) 一种产角鲨烯的酿酒酵母工程菌株及其构建方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117402763A (zh) * 2023-09-26 2024-01-16 广州中医药大学(广州中医药研究院) 一种产角鲨烯的酿酒酵母工程菌株及其构建方法和应用
CN117402763B (zh) * 2023-09-26 2024-03-19 广州中医药大学(广州中医药研究院) 一种产角鲨烯的酿酒酵母工程菌株及其构建方法和应用

Similar Documents

Publication Publication Date Title
CN112063647B (zh) 酿酒酵母重组菌Cuol01的构建方法、酿酒酵母重组菌Cuol02及应用
CN107287272A (zh) 一种牛磺熊去氧胆酸的制备方法
CN112280698B (zh) 高产雅槛蓝醇型倍半萜的酿酒酵母工程菌及其构建方法与应用
CN106929439B (zh) 一种重组酿酒酵母及其构建方法与应用
CN113604472B (zh) 一种应用于里氏木霉的CRISPR/Cas基因编辑系统
CN113832044A (zh) 一种重组解脂耶氏酵母菌、其构建方法以及应用
CN114854751A (zh) 代谢工程方法、产角鲨烯工程菌、产橙花叔醇工程菌及其构建方法、应用
CN111088254B (zh) 一种内源搭载的外源基因高效可控表达系统
CN112941119A (zh) 一种提高酿酒酵母工程菌脂肪酸乙酯产量的方法
CN115161208B (zh) 酿酒酵母基因工程菌及其生产葫芦素中间体的应用
CN115851810A (zh) 酿酒酵母从头合成柚皮素工程菌株及其构建方法与应用
CN111088175A (zh) 一种产红没药烯的解脂耶氏酵母及其构建方法与用途
CN104611303B (zh) 一种能提高达玛烯二醇转化效率的融合蛋白质及构建方法及应用
CN109097342A (zh) 蓝色犁头霉中甾类11β-羟化酶及其编码基因与应用
CN116396876B (zh) 一种生产人参皂苷Rd的酿酒酵母工程菌及其构建方法
CN114525215B (zh) 产萜类化合物的重组菌株及其构建方法和发酵产萜类化合物的方法及应用
CN112760338B (zh) 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用
CN114774299A (zh) 代谢工程方法、产羊毛甾醇工程菌及其构建方法、应用
CN104450769B (zh) 能提高达玛烯二醇转化效率的融合蛋白质及构建方法
CN113684191A (zh) 梨头霉甾体11β-羟化酶CYP5311B2突变体构建及其应用
CN114958637B (zh) 一种产β-桉叶醇工程菌及其构建方法、应用
CN107903227B (zh) 琥珀酸酐类化合物、与其相关的基因和蛋白及其制备方法
JPWO2016060171A1 (ja) キシロースからエタノールを生産する酵母
CN116622532B (zh) 合成阿魏酸的酵母菌株和构建方法及其在制备阿魏酸及胡椒代谢物中的应用
CN113136347B (zh) 高产松柏醇的酿酒酵母工程菌及其构建和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination