CN114853070A - 一种多孔三氧化钨纳米球的制备方法 - Google Patents

一种多孔三氧化钨纳米球的制备方法 Download PDF

Info

Publication number
CN114853070A
CN114853070A CN202110145998.4A CN202110145998A CN114853070A CN 114853070 A CN114853070 A CN 114853070A CN 202110145998 A CN202110145998 A CN 202110145998A CN 114853070 A CN114853070 A CN 114853070A
Authority
CN
China
Prior art keywords
tungsten trioxide
nanospheres
solution
chitosan
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110145998.4A
Other languages
English (en)
Inventor
褚立强
郝明晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202110145998.4A priority Critical patent/CN114853070A/zh
Publication of CN114853070A publication Critical patent/CN114853070A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明涉及一种一步法制备多孔三氧化钨纳米球的方法,它包括如下步骤:1)配制壳聚糖溶液:取1g壳聚糖于烧杯中,溶解于1%醋酸溶液,配制过程中用氢氧化钠溶液调节pH值等于6.0~6.2;2)制备多孔三氧化钨纳米球:取钨酸钠于100mL烧杯中,加入2mL蒸馏水。在搅拌条件下,缓慢向其中倒入与钨酸钠摩尔比为(2~2.5)∶1的0.3M稀盐酸,中速搅拌反应0.5h。之后,向反应混合物中滴加10~50mL壳聚糖溶液,继续快速搅拌反应2~4h,陈化12~24h,80~100℃烘干8~24h,130℃煅烧2h。本发明工艺简单、煅烧温度低,制备的多孔三氧化钨纳米球直径在200~300nm,孔结构明显。

Description

一种多孔三氧化钨纳米球的制备方法
技术领域
本发明涉及一种多孔三氧化钨纳米球的制备方法,属于半导体材料合成领域。
背景技术
三氧化钨是淡黄色斜方晶系结晶粉末,加热时颜色由浅变深,密度为7.16g/cm3(室温下),熔点为1473℃,沸点为1750℃,850℃时显著升华,熔融时呈绿色。在空气中稳定,不溶于水和除氢氟酸外的无机酸,能缓慢溶解于氨水和浓热氢氧化钠溶液。纳米三氧化钨具有纳米材料的比表面积大、孔隙结构好及小尺寸效应等独特性质,在光致变色、电致变色、气体传感器材料方面应用广泛,是一种重要的半导体材料。
目前我国以不同原料制备三氧化钨纳米材料的常用方法是水热法和电化学法。专利 201911347513.9将钨前驱体溶解于冰醋酸中得到前驱液,将前驱液在160~180℃下进行水热反应16~18h,反应结束后自然冷却,所得反应液超声12~16h后离心、洗涤、干燥、500~ 550℃焙烧、自然降温得到三氧化钨粉末,在400~450℃利用H2/Ar还原三氧化钨粉末即得中空介孔缺陷型三氧化钨纳米球。专利201310005246.3采用低温下液相法经水热反应制备出形貌相对均一的三氧化钨纳米片,是将稀硝酸溶液与钨酸钠溶液搅拌混合生成钨酸沉淀,然后经水热法制备而成。该法重现性好,且所用原材料均为无机化合物,价廉易得,符合环境友好要求,由于该方法不需要高温、煅烧之类的前处理,合成温度较低,从而减少了能耗和反应成本,便于批量生产。水热法制备三氧化钨纳米材料存在的问题主要是钨酸沉淀在水热反应中易于团聚。专利202010040044.2金属钨片为阳极,以铂片或钛片为阴极,在氟硼酸钠质量分数为0.25%~1.5%,去离子水与去离子水、乙二醇或丙三醇体积和的百分比为10%~30%的电解液中,在温度15~100℃、电压15~50V条件下,进行恒电位电化学阳极氧化反应,直至金属钨片完全溶解,并氧化为电解液中可见的黄色粉末,反应结束后过滤收集固体粉末,经去离子水洗涤后干燥,得到所述三氧化钨纳米片。缺点是电解液溶液成分复杂,生产成本偏高。
溶胶-凝胶法是制备纳米三氧化钨常用的方法。溶胶-凝胶法主要通过金属醇盐或金属非醇盐的水解和聚合反应初步形成溶胶,经陈化浓缩成三维结构的凝胶,经过干燥热处理后冷却研磨制得金属氧化物纳米粉体。该方法具有反应温度低、产物成分可控、颗粒粒径较小、粒径分布窄且均匀、纯度高等优点;缺点是金属醇盐价格较高,干燥过程中易团聚,合成周期长。
发明内容
本发明所要解决的技术问题是针对上述现有技术中的问题,提供了一种多孔三氧化钨纳米球的制备方法,该方法工艺简单,煅烧温度低,合成的多孔三氧化钨纳米球尺寸均一,比表面积大。
本发明为了解决以上技术问题,采用的技术方案是:
1)配制壳聚糖溶液:取1g壳聚糖于烧杯中,溶解于1%醋酸溶液,配制过程中用氢氧化钠溶液调节pH值为6.0~6.2;
2)多孔三氧化钨纳米球的制备:取钨酸钠于100mL烧杯中,加入2mL蒸馏水。在搅拌条件下,缓慢向其中倒入与钨酸钠摩尔比为(2~2.5)∶1的0.3M稀盐酸,中速搅拌反应0.5小时。之后,向反应混合物中滴加10~20mL壳聚糖溶液,继续快速搅拌反应2~4小时,取出磁子,陈化干燥,130℃煅烧2小时,获得多孔三氧化钨纳米球。
按照上述方案,所述的壳聚糖为购买自山东潍坊的壳聚糖,表观粘度为20mp·s,脱乙酰度为90%。
按照上述方案,所用的稀盐酸的摩尔浓度为0.3~0.5mol/L。
按照上述方案,所用的快速搅拌为大于800转/分钟,中速搅拌为600~800转/分钟。
按照上述方案,所述的陈化时间为12~24小时。
按照上述方案,所用的干燥温度为80~100℃,干燥时间为8~24小时。
开始时,钨酸钠浓溶液与稀盐酸发生反应,形成钨酸溶胶。加入壳聚糖溶液后,两者之间存在pH差,钨酸与壳聚糖链上的-OH和-NH2进行了快速络合反应。在钨酸多时,搅拌下,钨酸在壳聚糖链上进一步自交联和互交联形成一个个小的三维网状结构,烘干煅烧后形成纳米球。
与现有的技术相比,本发明的优点是:
1)本发明在钨酸溶胶中,加入壳聚糖后混合干燥煅烧,直接得到的是分散的三氧化钨纳米球;
2)本发明合成的三氧化钨纳米球之间架构有壳聚糖,可以有效的抑制其在水溶液中的团聚;
3)本发明合成的三氧化钨纳米球尺寸在200~300nm,且纳米球之间有壳聚糖支撑的多孔结构,纳米球成分为WO3·0.5H2O,符合JSPDC卡片44-0363各晶型位置及强度;
4)本发明所用的工艺流程简单,煅烧温度低。
附图说明
图1为制备多孔三氧化钨纳米球的流程图
图2为壳聚糖原样的X射线粉晶衍射(XRD)图
图3为加入10mL壳聚糖溶液制备的三氧化钨的X射线粉晶衍射(XRD)图
图4为加入10mL壳聚糖溶液制备的三氧化钨的扫描电镜(SEM)图
图5为加入10mL壳聚糖溶液制备的三氧化钨的傅里叶红外吸收光谱(FT-IR)图
具体实施方式
下面结合附图和实施例对本发明进一步阐述,但并不因此将本发明限制于本实施例范围之内。
下述实施例中用到的壳聚糖是购买自山东潍坊的壳聚糖,表观粘度为20mp·s,脱乙酰度为90%。
实施例1:
(1)配制壳聚糖溶液
取1g壳聚糖于烧杯中,溶解于1%醋酸溶液,配制过程中用氢氧化钠溶液调节pH=6.0。
(2)制备多孔三氧化钨纳米球
取0.72gNa2WO4·2H2O于烧杯中,加入2mL蒸馏水。在搅拌条件下,缓慢向其中倒入20mL0.3M稀盐酸,搅拌反应0.5h。之后,向反应混合物中滴加12.5mL壳聚糖溶液,继续搅拌反应4h,陈化1d。鼓风干燥箱80℃干燥8h至完全烘干,再在马弗炉中130℃煅烧2h。
实施例2:
(1)配制壳聚糖溶液
取1g壳聚糖于烧杯中,溶解于1%醋酸溶液,配制过程中用氢氧化钠溶液调节pH=6.1。
(2)制备多孔三氧化钨纳米球
取0.72gNa2WO4·2H2O于100mL烧杯中,加入2mL蒸馏水。在搅拌条件下,缓慢向其中倒入20mL0.3M稀盐酸,搅拌反应0.5h。之后,向反应混合物中滴加10mL壳聚糖溶液,继续搅拌反应4h,陈化1d。风干燥箱80℃干燥8h至完全烘干,再在马弗炉中130℃煅烧 2h。
实施例3:
(1)配制壳聚糖溶液
取1g壳聚糖于烧杯中,溶解于1%醋酸溶液,配制过程中用氢氧化钠溶液调节pH=6.2。
(2)制备多孔三氧化钨纳米球
取0.72gNa2WO4·2H2O于100mL烧杯中,加入2mL蒸馏水。在搅拌条件下,缓慢向其中倒入20mL0.3M稀盐酸,搅拌反应0.5h。之后,向反应混合物中滴加15mL壳聚糖溶液,继续搅拌反应4h,陈化1d。风干燥箱80℃干燥8h至完全烘干,再在马弗炉中130℃煅烧 2h。

Claims (5)

1.一种多孔三氧化钨纳米球的制备方法,其特征是:取钨的钠盐,加入无机酸在室温下搅拌,得浅黄绿色溶胶,之后向其中滴加质量体积分数为1%的壳聚糖溶液,继续搅拌反应,陈化,用水洗涤至中性,干燥,130℃煅烧,得到浅黄色的粉体。
2.根据权利要求1所述的多孔三氧化钨纳米球的制备方法,其特征是:所述的钨的钠盐为钨酸钠,取摩尔浓度为1~2M,溶剂为水,向其中加入酸性的水溶液进行水解,得到溶胶。
3.根据权利要求1或2所述的多孔三氧化钨纳米球的制备方法,其特征是:所述的无机酸为盐酸,pH为0.3~0.5。
4.根据权利要求1所述的多孔三氧化钨纳米球的制备方法,其特征是:所用质量体积分数为1%的壳聚糖溶液为1g壳聚糖溶解于1%醋酸溶液得到的,配制过程中用氢氧化钠溶液调节pH为6.0~6.2,用量为10~50mL。
5.一种用以上方法制得的多孔三氧化钨纳米球,其特征是:由三氧化钨纳米微球和壳聚糖组成,具有大比表面积、粒径均匀、高结晶度和高稳定性及多孔分布。
CN202110145998.4A 2021-02-03 2021-02-03 一种多孔三氧化钨纳米球的制备方法 Pending CN114853070A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110145998.4A CN114853070A (zh) 2021-02-03 2021-02-03 一种多孔三氧化钨纳米球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110145998.4A CN114853070A (zh) 2021-02-03 2021-02-03 一种多孔三氧化钨纳米球的制备方法

Publications (1)

Publication Number Publication Date
CN114853070A true CN114853070A (zh) 2022-08-05

Family

ID=82623536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110145998.4A Pending CN114853070A (zh) 2021-02-03 2021-02-03 一种多孔三氧化钨纳米球的制备方法

Country Status (1)

Country Link
CN (1) CN114853070A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375091A (zh) * 2023-06-05 2023-07-04 崇义章源钨业股份有限公司 一种稳定制备针米状纳米氧化钨的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375091A (zh) * 2023-06-05 2023-07-04 崇义章源钨业股份有限公司 一种稳定制备针米状纳米氧化钨的方法
CN116375091B (zh) * 2023-06-05 2023-08-11 崇义章源钨业股份有限公司 一种稳定制备针米状纳米氧化钨的方法

Similar Documents

Publication Publication Date Title
KR100277164B1 (ko) 저온균질침전법을이용한사염화티타늄수용액으로부터의결정성tio₂초미립분말의제조방법
JP5019826B2 (ja) ジルコニアゾル及びその製造方法
KR20080078864A (ko) 금속 산화물 나노 입자의 제조 방법, 및 그 방법으로제조된 나노 입자 및 조제물
CN110436508B (zh) 一种片状纳米氧化铜的制备方法及其应用
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
CN110201655B (zh) 一种一步法制备中空TiO2纳米微球的方法及应用
CN105883910B (zh) 一种钙钛矿SrTiO3多孔纳米颗粒的制备方法及产物
CN114853070A (zh) 一种多孔三氧化钨纳米球的制备方法
US4115144A (en) Method of preparing metal oxide slurries
CN105727922B (zh) 一种Li掺杂SrTiO3十八面体纳米颗粒的制备方法及产物
CN106423162A (zh) 作为光催化剂的锡银共掺杂纳米氧化锌及其制备方法
CN113461054A (zh) 一种BiOCl粉体及其制备方法和应用
CN1212974C (zh) 一种沸石基纳米金属氧化物复合材料及其制备方法
CN104909405B (zh) 基于纤维素基模板的纺锤形纳米二氧化钛及其制备方法
CN112456556A (zh) 一种制备氧化钽纳米球的方法
CN113401940A (zh) 一种富含氧空位的溴氧铋超薄纳米片光致变色材料及其制备方法与应用
CN100369818C (zh) 由偏钛酸制备金红石型纳米TiO2的方法
KR100420275B1 (ko) 무기산을 이용한 사염화티타늄 수용액으로부터 TiO2 초미립 분말의 제조방법
CN106140159B (zh) 一种快速制备棒状AgVO3纳米光催化剂的方法
KR100664751B1 (ko) 티타니아 나노튜브의 제조방법
CN1206021C (zh) 溶胶凝胶法制造纳米NiO材料的方法
JP2003095657A (ja) 有機溶媒分散型酸化チタンゾル及びその製造方法
GB2291052A (en) Production of rutile titanium dioxide
CN112723331A (zh) 一种高纯纳米磷酸钕粉末的制备方法
US2516604A (en) Method of preparing nucleating agent and use of same in hydrolyzing titanium salt solutions in production of titanium oxide product

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220805

WD01 Invention patent application deemed withdrawn after publication