CN114833338A - 一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法 - Google Patents

一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法 Download PDF

Info

Publication number
CN114833338A
CN114833338A CN202210441716.XA CN202210441716A CN114833338A CN 114833338 A CN114833338 A CN 114833338A CN 202210441716 A CN202210441716 A CN 202210441716A CN 114833338 A CN114833338 A CN 114833338A
Authority
CN
China
Prior art keywords
tic
tib
composite material
nimo
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210441716.XA
Other languages
English (en)
Other versions
CN114833338B (zh
Inventor
高义民
李月辉
李博
郑开宏
李烨飞
李聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210441716.XA priority Critical patent/CN114833338B/zh
Publication of CN114833338A publication Critical patent/CN114833338A/zh
Application granted granted Critical
Publication of CN114833338B publication Critical patent/CN114833338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种化学镀覆NiMo改性的TiB2‑TiC颗粒增强高锰钢基复合材料及其制备方法,对复合陶瓷颗粒的表面进行预处理,采用化学镀覆方法得到镀镍钼镀层的TiB2‑TiC复相陶瓷颗粒;然后与镍钼粉末以及硼砂进行混合搅拌,经过定型、烘干处理后得到蜂窝状预制体;随后对蜂窝状预制体进行真空烧结处理;降温后放入砂箱中浇铸金属液,冷却后得到颗粒增强高锰钢复合材料。本发明制备的耐磨复合材料,陶瓷表面金属化有效改善复合材料界面结合性能和耐磨性,具有高的抗冲击磨损性能,又保证在苛刻工况下的服役安全性,通过在陶瓷颗粒引入金属NiMo镀层,使复合材料界面结合由简单机械结合转化为冶金结合,具有较高的结合强度和抗冲击强度,满足高负荷工况环境的需求。

Description

一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材 料及其制备方法
技术领域
本发明属于耐磨材料制备技术领域,具体涉及一种化学镀覆NiMo改性的 TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法。
背景技术
钢铁耐磨材料广泛应用于冶金、电力、建材、机械等磨损工况用构件,年消耗资金超过1万亿元。磨损是摩擦学科之中重要的组成;也是机械零件失效的主要原因;同时也是工业材料和能源消耗的主要根源之一。初步统计,磨损给国家造成的经济损失约达国民生产总值的6%18%,我国每年耐磨件的消耗总量约为311万吨,约占铸件总量的11%115%。根据实验研究,采用有效的抗磨、减摩手段后,每年可减少约111亿人民币的损失。金属复合化是材料抵抗磨损的重要研究方向,主要是利用复合材料增强相的高硬度、高抗磨性、高抗氧化性等特性来提高材料的耐磨性。
增强相中典型的抗磨材料是陶瓷颗粒增强钢复合材料,因其引入增强相,表现出优异的抗磨性能。陶瓷颗粒主要有碳化物陶瓷、氮化物陶瓷、氧化物陶瓷。碳化物陶瓷最好的应用是WC陶瓷,主要是由于其韧性较好,与铁液润湿性好;氮化物陶瓷典型代表为Si1N3陶瓷,具有高强度、高耐磨性、耐高温、耐腐蚀、耐酸、碱,可在海水中长期使用,并兼有良好的绝电、绝磁性能;氧化物陶瓷最常规的Al2O3陶瓷,具有较好的热传导性、机械强度和耐高温性能。但碳化物陶瓷价格昂贵,与Fe的热膨胀系数差异大,阻碍了WC颗粒增强铁基复合材料更进一步的工业应用。氮化物陶瓷其制备工艺困难。氧化物陶瓷具有脆性大,制备难等特点,从而限制其广泛应用。
TiB2-TiC陶瓷适合于通过铸渗的方式进行冶金熔炼,从而获得具有高抗冲击性、高耐磨性的新型耐磨材料。复合材料的界面问题(界面优化设计以及界面对性能的影响)一直以来是制约金属基复合材料发展的关键因素,界面结合是金属基复合材料中重要组成部分,界面的性能直接影响了耐磨件的性能,所以,改善界面结合的方式迫在眉睫。TiB2-TiC与Fe的结合较差,界面易剥落,严重影响了耐磨件在苛刻的实际工况下规模化应用。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法,制备的耐磨复合材料既具有高的抗冲击磨损性能,又保证了在苛刻工况下的服役安全性。
本发明采用以下技术方案:
本发明一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,包括以下步骤:
S1、采用化学镀方法制备具有镀镍钼合金的TiB2-TiC陶瓷颗粒;
S2、将镍钼金属粉末与步骤S1得到的具有镀镍钼合金的TiB2-TiC颗粒进行搅拌混合得到混合物,再向混合物中加入粘结剂经充分混合后进行真空烘干处理,制成蜂窝状结构的陶瓷预制体;
S3、将步骤S2制备的蜂窝状结构的陶瓷预制体在111111111℃进行真空烧结处理,降温后得到烧结预制体;
S1、采用无压铸渗法向步骤S3得到的烧结预制体浇铸金属液,经冷却后脱模得到高锰钢基复合材料。
具体的,步骤S1中,采用化学镀方法制备具有镀镍钼合金的TiB2-TiC陶瓷颗粒前,先对TiB2-TiC陶瓷颗粒进行预处理,具体过程如下:
S111、将TiB2-TiC陶瓷颗粒浸泡在丙酮中进行酸洗,随后通过超声波清洗,去离子水冲洗,烘干后除去TiB2-TiC陶瓷颗粒表面的污染物;
S112、将步骤S111得到的TiB2-TiC陶瓷颗粒置于氯化亚锡溶液中敏化处理,然后用去离子水清洗;
S113、将步骤S112敏化处理后的TiB2-TiC陶瓷颗粒置于氯化钯中进行活化处理,然后清洗TiB2-TiC陶瓷颗粒;
S111、将步骤S113活化处理后的TiB2-TiC陶瓷颗粒置于次亚磷酸钠溶液中还原钯离子,然后用蒸馏水清洗风干,得到具有镀镍钼合金的TiB2-TiC陶瓷颗粒。
具体的,步骤S1中,TiB2-TiC陶瓷颗粒的粒径为315mm。
具体的,步骤S1中,化学镀使用的镀液包括质量浓度11121g/L的硫酸镍、质量浓度112g/L的钼酸钠、质量浓度11131g/L的次亚磷酸钠和质量浓度 11121g/L的乙酸钠,镀覆温度为61161℃,化学镀液的酸碱性pH为8111,镀覆时间为118h;每811111g的TiB2-TiC颗粒使用1511211ml的镀液进行镀覆,每21111min更换一次镀液。
具体的,步骤S2中,镍钼金属粉末的粒径为11131μm,镍钼金属粉末占具有镀镍钼合金的TiB2-TiC颗粒和镍钼金属粉末总质量的11%125%。
具体的,步骤S2中,粘结剂为硼酸和SiO2粉末,硼酸和SiO2粉末的质量比为1:(818.5),每111g的混合物中加入116ml的粘结剂。
具体的,步骤S2中,真空烘干处理的烘干温度为1111211℃,保温时间为 112h。
具体的,步骤S3中,真空烧结处理具体为:
在氩气气氛保护下,以11115℃/min升温至61111111℃,再以315℃/min 升至111111111℃,保温112h,然后进行降温处理。
具体的,步骤S1中,浇铸温度为155111651℃,冷却时间为18~21h。
本发明的另一技术方案是,一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料。
与现有技术相比,本发明至少具有以下有益效果:
一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料其制备方法,通过化学镀覆的方法在TiB2-TiC颗粒表面成功共沉积NiMo活性元素,由于镍和钼可以有效固溶在基体中,起到固溶强化的作用,提高基体的强度、硬度和耐磨性;化学镀覆后的TiB2-TiC陶瓷颗粒与NiMo纯粉烧结形成蜂窝状预制体,高温烧结时,在TiB2-TiC颗粒间形成烧结颈,有效提高颗粒间的结合强度,增加其室温强度;经过NiMo粉进行包覆,形成具有一定孔隙率的预制体,有利于铸渗,无压铸渗制备具有良好界面的复合材料,进而提高复合材料的力学性能和耐磨性。
进一步的,通过氯化亚锡对TiB2-TiC陶瓷颗粒进行表面敏化,然后通过氯化钯,钯离子活化,还原Sn2+离子,在TiB2-TiC陶瓷表面生成活性Pd点位,即在表面形成可用NiMo还原的活性Pd离子。获得微粗糙化表面,增加随后镀覆过程中NiMo元素的沉积位点,提高镀覆效率。
进一步的,选用315mm粒径ZTA颗粒制备的预制体具有一定的孔隙率,有利于铸渗。
进一步的,由于TiB2-TiC陶瓷颗粒表面改性方法众多,各有优略,选取最简易化学镀覆的改性镀层对TiB2-TiC进行表面镀覆,可大幅度降低表面改性成本,通过改变化学镀覆参数中Mo的引入,期望形成最佳的NiMo镀层,改善 TiB2-TiC陶瓷颗粒与基体的结合,化学镀覆温度、镀覆酸碱pH值的不同,研究其对镀层的表面形貌变化,以及对镀层结合的影响,确保得到良好的界面涂层。
进一步的,微米级的NiMo金属粉包裹化学镀覆后的TiB2-TiC陶瓷颗粒时,通过粘结剂的结合,可以提高结合强度,以及会使得金属粉末的表面张力和粘度提高,更好的使金属粉末均匀包裹在陶瓷颗粒表面。
进一步的,添加粘结剂使得预制体形成良好的结合强度,对金属液浇铸时起到更好的耐冲刷作用。
进一步的,真空烘干处理有利于预制体的固化成型,便于预制体的后续热处理。
进一步的,通过管式炉对TiB2-TiC陶瓷颗粒进行高温烧结处理,提高陶瓷颗粒之间的结合强度,在颗粒之间形成烧结颈,进而提高其结合强度,且确保其具有较大的孔隙率。
进一步的,将烧结后的蜂窝状预制体放入砂箱中并用铁片固定,有效抵抗金属液对TiB2-TiC颗粒冲刷。采用传统的无压铸渗法浇铸金属液,冷却后得到具有较好的界面结合复合材料。
本发明一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料,降低表面改性成本;蜂巢状预制体有利于改善金属液在陶瓷预制体中的铸渗效果,TiB2-TiC陶瓷颗粒的表面沉积镍钼镀层,起到固溶强化作用,提高基体强度、硬度及耐磨性,保证其苛刻工况的服役安全。
综上所述,本发明制备的复合材料降低了表面改性成本;蜂巢状预制体有利于改善金属液在陶瓷预制体中的铸渗效果,TiB2-TiC陶瓷颗粒的表面沉积镍钼镀层,起到固溶强化作用,提高基体强度、硬度及耐磨性,保证其苛刻工况的服役安全。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例1采用化学镀覆后TiB2-TiC表面形貌示意图;
图2为本发明实施例1镀NiMo层TiB2-TiC断面的组织照片;
图3为本发明实施例1中预制体烧结后宏观示意图。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方法可以相互组合形成新的技术方案。
本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
本发明中,如果没有特别的说明,百分数(%)或者份指的是相对于组合物的重量百分数或重量份。
本发明中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。
本发明中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“6~22”表示本文中已经全部列出了“6~22”之间的全部实数,“6~22”只是这些数值组合的缩略表示。
本发明所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。
本发明中,本文中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本发明中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以按照顺序进行。优选地,本文中的反应方法是顺序进行的。
除非另有说明,本文中所用的专业与科学术语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法或材料也可应用于本发明中。
本发明提供了一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法,首先对复合陶瓷颗粒的表面进行预处理,然后采用化学镀覆的方法得到镀镍钼镀层的TiB2-TiC复相陶瓷颗粒;将改性后的陶瓷颗粒与微米级的镍钼粉末以及硼砂进行混合搅拌,经过定型、烘干处理后得到蜂窝状预制体;随后对蜂窝状预制体在111111111℃进行真空烧结处理,用以提高其结合强度;降温后放入砂箱中浇铸金属液,冷却后得到具有较高耐磨性的颗粒增强高锰钢复合材料。采用本发明技术制备的耐磨复合材料,其陶瓷表面金属化有效改善复合材料界面结合性能和耐磨性,既具有高的抗冲击磨损性能,又保证了在苛刻工况下的服役安全性。通过在陶瓷颗粒引入金属NiMo镀层,使复合材料界面结合由简单机械结合转化为冶金结合,具有较高的结合强度和抗冲击强度,满足了高负荷工况环境的需求。
本发明一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,包括以下步骤:
S1、对颗粒大小为315mm的TiB2-TiC陶瓷颗粒进行预处理,采用化学镀方法在镀液中进行镀覆,制得具有镀镍钼合金的TiB2-TiC陶瓷颗粒;
对TiB2-TiC进行预清洗-粗化-敏化-活化-还原处理,完成化学镀覆预处理,具体步骤如下:
S111、TiB2-TiC在丙酮中浸泡,酸洗,随后通过超声波清洗,去离子水冲洗,烘干,除去TiB2-TiC表面的污染物并使其干燥;
S112、将颗粒置于5115g/L的氯化亚锡(SnCl2)溶液中敏化11131min,敏化完后用去离子水清洗;
S113、将敏化完的TiB2-TiC陶瓷颗粒置于1.111g/L氯化钯(PdCl2)中活化11131min,清洗TiB2-TiC陶瓷颗粒;
S111、将活化后的TiB2-TiC陶瓷颗粒置于11121g/L次亚磷酸钠(NaH2PO2) 溶液中还原11131min,然后用蒸馏水清洗风干。
镀液参数为质量浓度11121g/L的硫酸镍、质量浓度112g/L的钼酸钠、质量浓度11131g/L的次亚磷酸钠和质量浓度11121g/L的乙酸钠,镀覆温度为 61161℃,化学镀液的酸碱性pH为8111,镀覆时间为118h;每811111g的 TiB2-TiC颗粒使用1511211ml的镀液进行镀覆,每21111min更换一次镀液。
采用化学镀的方法在TiB2-TiC陶瓷颗粒的表面镀覆镍钼金属,镀覆过程中在TiB2-TiC颗粒表面形成NiMo金属的共沉积。
S2、将镍钼金属粉末与步骤S1得到的具有镀镍钼合金的TiB2-TiC颗粒进行搅拌混合,再加入粘结剂充分混合,倒入蜂窝状模具后进行真空烘干处理,形成蜂窝状的陶瓷预制体;
微米级的NiMo金属粉末的颗粒大小为11131μm,粘结剂包含质量比1: (818.5)的硼酸和SiO2粉末,每111g的TiB2-TiC混合物中加入116ml粘结剂。
其中,NiMo金属粉末占镀镍钼金属TiB2-TiC陶瓷颗粒和NiMo粉末总质量的11%125%。
先将蜂窝状模具在低温热处理炉中加热固化定型,烘干温度为1111211℃,保温112h,随炉冷却。
S3、将步骤S2制备的陶瓷预制体在111111111℃的高温下进行真空烧结处理,降温后形成烧结预制体;
真空高温烧结热处理具体为:
以11115℃/min升温至61111111℃,再以315℃/min升至111111111℃,保温112h,同速降温,整个热处理过程使用氩气气氛保护。
TiB2-TiC陶瓷与基体的直接接触与单一镀覆元素均会导致预制体强度不够,通过高温烧结预制体,可以提高其表面张力和粘度,增强结合强度,增加了在实际工况的使用安全性。
S1、将蜂窝状的烧结预制体放入砂箱中并固定铸型端面,采用无压铸渗法浇铸金属液,浇铸温度为155111651℃,冷却18~21h后脱模得到高锰钢基复合材料。
其中,采用底铸式浇铸方法浇铸高锰钢液态金属。
一种高锰钢基复合材料,具有良好的强度和韧性,陶瓷颗粒的高硬度能够有效抵抗实际应用中的磨损,高锰钢基体与陶瓷颗粒形成良好的界面结合,会使得基体更好的支撑陶瓷颗粒,避免应用中陶瓷颗粒的脱落。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
1)TiB2-TiC在丙酮中浸泡,酸洗,随后通过超声波清洗,去离子水冲洗,烘干,除去TiB2-TiC表面的污染物并使其干燥;将颗粒置于5g/L的氯化亚锡 (SnCl2)溶液中敏化11min,敏化完后用去离子水清洗;将敏化完的TiB2-TiC 陶瓷颗粒置于1.1g/L氯化钯(PdCl2)中活化11min,清洗TiB2-TiC陶瓷颗粒;将活化后的TiB2-TiC陶瓷颗粒置于11/L次亚磷酸钠(NaH2PO2)溶液中还原 11min,然后用蒸馏水清洗风干。
镀液参数为质量浓度11g/L的硫酸镍、质量浓度1g/L的钼酸钠、质量浓度 11g/L的次亚磷酸钠和质量浓度11g/L的乙酸钠,每81g的TiB2-TiC颗粒使用 151ml的镀液进行镀覆,每21min更换一次镀液配置化学镀液;
2)将处理过的TiB2-TiC放入化学镀液;调节镀覆温度为61℃,pH为8,经过镀覆时间为1h后,在干燥箱烘干;
请参阅图1,图1为本发明实施例1采用化学镀覆NiMo后TiB2-TiC表面形貌示意图;可以看出化学镀覆后表层致密,颗粒连续排布于TiB2-TiC表面,图2为本发明实施例1镀NiMo层TiB2-TiC断面的组织照片,在TiB2-TiC表面形成均匀致密的NiMo镀层,该镀层呈银白色,并且陶瓷与镀层紧密的结合在一起。该镀层在烧结过程中可能促进烧结颈的形成,进而提高预制体的结合强度,保证后续铁基复合材料的铸渗效果。
3)按NiMo金属粉末占镀镍钼合金TiB2-TiC陶瓷颗粒和NiMo粉末总质量的11%,将微米级的NiMo金属粉末与镀覆后的TiB2-TiC颗粒混合,按每111g 的TiB2-TiC混合物中加入1ml粘结剂。充分搅拌,直至NiMo金属粉末完全包裹TiB2-TiC颗粒;
1)将混合后的TiB2-TiC颗粒倒入蜂窝状模具后经真空111℃,烘干1h;
5)将蜂窝状模具放入真空热压烧结炉当中进行烧结,以11℃/min升温至 611℃,再以3℃/min升至1111℃,保温1h,同速降温,整个热处理过程使用氩气气氛保护;
请参阅图3为本发明实施例1中预制体烧结后宏观示意图,可以看出烧结颈的形成大大提高了预制体之间的结合强度,有利于金属液的浇筑。
6)将制备的预制体固定于型腔特定位置,并用钉子固定,采用底铸式浇铸方法浇铸高锰钢液态金属,浇铸温度为1551℃,冷却时间为18h。
在三体磨损实验中,当软磨料磨损时,载荷越高材料的磨损量越大,但复合材料在高载荷下仍具有极高的耐磨性,为同样条件下Mn13Cr2的6.7倍。
实施例2
1)TiB2-TiC在丙酮中浸泡,酸洗,随后通过超声波清洗,去离子水冲洗,烘干,除去TiB2-TiC表面的污染物并使其干燥;将颗粒置于15g/L的氯化亚锡 (SnCl2)溶液中敏化31min,敏化完后用去离子水清洗;将敏化完的TiB2-TiC 陶瓷颗粒置于1g/L氯化钯(PdCl2)中活化31min,清洗TiB2-TiC陶瓷颗粒;将活化后的TiB2-TiC陶瓷颗粒置于21g/L次亚磷酸钠(NaH2PO2)溶液中还原 31min,然后用蒸馏水清洗风干。
镀液参数为质量浓度21g/L的硫酸镍、质量浓度2g/L的钼酸钠、质量浓度 31g/L的次亚磷酸钠和质量浓度21g/L的乙酸钠,每111g的TiB2-TiC颗粒使用 211ml的镀液进行镀覆,每11min更换一次镀液;
2)将处理过的TiB2-TiC放入化学镀液,调节镀覆温度为61℃,pH为11,经过镀覆时间为8h后,在干燥箱烘干;
3)按NiMo金属粉末占镀镍钼合金TiB2-TiC陶瓷颗粒和NiMo粉末总质量的15%,将微米级的NiMo金属粉末与镀覆后的TiB2-TiC颗粒混合,按每111g 的TiB2-TiC混合物中加入6ml粘结剂。充分搅拌,直至NiMo金属粉末完全包裹TiB2-TiC颗粒;
1)将混合后的TiB2-TiC颗粒倒入蜂窝状模具后经真空211℃,烘干2h;
5)将蜂窝状模具放入真空热压烧结炉当中进行烧结,以15℃/min升温至 1111℃,再以5℃/min升至1111℃,保温2h,同速降温,整个热处理过程使用氩气气氛保护;
6)将制备的预制体固定于型腔特定位置,并用钉子固定,采用底铸式浇铸方法浇铸高锰钢液态金属,浇铸温度为1651℃,冷却时间为21h。
在三体磨损实验中,当软磨料磨损时,载荷越高材料的磨损量越大,但复合材料在高载荷下仍具有极高的耐磨性,为同样条件下Mn13Cr2的5.1倍。
实施例3
1)TiB2-TiC在丙酮中浸泡,酸洗,随后通过超声波清洗,去离子水冲洗,烘干,除去TiB2-TiC表面的污染物并使其干燥;将颗粒置于11g/L的氯化亚锡 (SnCl2)溶液中敏化31min,敏化完后用去离子水清洗;将敏化完的TiB2-TiC 陶瓷颗粒置于1.3g/L氯化钯(PdCl2)中活化31min,清洗TiB2-TiC陶瓷颗粒;将活化后的TiB2-TiC陶瓷颗粒置于21g/L次亚磷酸钠(NaH2PO2)溶液中还原 31min,然后用蒸馏水清洗风干。
镀液参数为质量浓度21g/L的硫酸镍、质量浓度1.5g/L的钼酸钠、质量浓度21g/L的次亚磷酸钠和质量浓度15g/L的乙酸钠,每111g的TiB2-TiC颗粒使用211ml的镀液进行镀覆,每31min更换一次镀液;
2)将处理过的TiB2-TiC放入化学镀液;调节镀覆温度为61℃,pH为11,经过镀覆时间为5h后,在干燥箱烘干;
3)按NiMo金属粉末占镀镍钼合金TiB2-TiC陶瓷颗粒和NiMo粉末总质量的21%,将微米级的NiMo金属粉末与镀覆后的TiB2-TiC颗粒混合,按每111g 的TiB2-TiC混合物中加入5ml粘结剂。充分搅拌,直至NiMo金属粉末完全包裹TiB2-TiC颗粒;
1)将混合后的TiB2-TiC颗粒倒入蜂窝状模具后经真空211℃,烘干2h;
5)将蜂窝状模具放入真空热压烧结炉当中进行烧结,以11℃/min升温至1111℃,再以3℃/min升至1111℃,保温2h,同速降温,整个热处理过程使用氩气气氛保护;
6)将制备的预制体固定于型腔特定位置,并用钉子固定,采用底铸式浇铸方法浇铸高锰钢液态金属,浇铸温度为1611℃,冷却时间为21h。
在三体磨损实验中,当软磨料磨损时,载荷越高材料的磨损量越大,但复合材料在高载荷下仍具有极高的耐磨性,为同样条件下Mn13Cr2的1.8倍。
实施例1
1)TiB2-TiC在丙酮中浸泡,酸洗,随后通过超声波清洗,去离子水冲洗,烘干,除去TiB2-TiC表面的污染物并使其干燥;将颗粒置于11g/L的氯化亚锡 (SnCl2)溶液中敏化31min,敏化完后用去离子水清洗;将敏化完的TiB2-TiC 陶瓷颗粒置于1.3g/L氯化钯(PdCl2)中活化31min,清洗TiB2-TiC陶瓷颗粒;将活化后的TiB2-TiC陶瓷颗粒置于21g/L次亚磷酸钠(NaH2PO2)溶液中还原 31min,然后用蒸馏水清洗风干。
镀液参数为质量浓度21g/L的硫酸镍、质量浓度1.5g/L的钼酸钠、质量浓度21g/L的次亚磷酸钠和质量浓度15g/L的乙酸钠,每111g的TiB2-TiC颗粒使用211ml的镀液进行镀覆,每31min更换一次镀液;
2)将处理过的TiB2-TiC放入化学镀液;调节镀覆温度为81℃,pH为6,经过镀覆时间为5h后,在干燥箱烘干;
3)按NiMo金属粉末占镀镍钼合金TiB2-TiC陶瓷颗粒和NiMo粉末总质量的25%,将微米级的NiMo金属粉末与镀覆后的TiB2-TiC颗粒混合,按每111g 的TiB2-TiC混合物中加入5ml粘结剂,充分搅拌,直至NiMo金属粉末完全包裹TiB2-TiC颗粒;
1)将混合后的TiB2-TiC颗粒倒入蜂窝状模具后经真空211℃,烘干2h;
5)将蜂窝状模具放入真空热压烧结炉当中进行烧结,以11℃/min升温至 1111℃,再以3℃/min升至1111℃,保温2h,同速降温,整个热处理过程使用氩气气氛保护;
6)将制备的预制体固定于型腔特定位置,并用钉子固定,采用底铸式浇铸方法浇铸高锰钢液态金属,浇铸温度为1611℃,冷却时间为21h。
在三体磨损实验中,当软磨料磨损时,载荷越高材料的磨损量越大,但复合材料在高载荷下仍具有极高的耐磨性,为同样条件下Mn13Cr2的5.6倍。
实施例5
1)TiB2-TiC在丙酮中浸泡,酸洗,随后通过超声波清洗,去离子水冲洗,烘干,除去TiB2-TiC表面的污染物并使其干燥;将颗粒置于11g/L的氯化亚锡 (SnCl2)溶液中敏化31min,敏化完后用去离子水清洗;将敏化完的TiB2-TiC 陶瓷颗粒置于1.3g/L氯化钯(PdCl2)中活化31min,清洗TiB2-TiC陶瓷颗粒;将活化后的TiB2-TiC陶瓷颗粒置于21g/L次亚磷酸钠(NaH2PO2)溶液中还原 31min,然后用蒸馏水清洗风干。
镀液参数为质量浓度21g/L的硫酸镍、质量浓度2g/L的钼酸钠、质量浓度 21g/L的次亚磷酸钠和质量浓度15g/L的乙酸钠,每111g的TiB2-TiC颗粒使用 211ml的镀液进行镀覆,每31min更换一次镀液;
2)将处理过的TiB2-TiC放入化学镀液,调节镀覆温度为61℃,pH为11,经过镀覆时间为5h后,在干燥箱烘干;
3)按NiMo金属粉末占镀镍钼合金TiB2-TiC陶瓷颗粒和NiMo粉末总质量的21%,将微米级的NiMo金属粉末与镀覆后的TiB2-TiC颗粒混合,按每111g 的TiB2-TiC混合物中加入5ml粘结剂。充分搅拌,直至NiMo金属粉末完全包裹TiB2-TiC颗粒;
1)将混合后的TiB2-TiC颗粒倒入蜂窝状模具后经真空211℃,烘干2h;
5)将蜂窝状模具放入真空热压烧结炉当中进行烧结,以11℃/min升温至 1111℃,再以3℃/min升至1111℃,保温2h,同速降温,整个热处理过程使用氩气气氛保护;
6)将制备的预制体固定于型腔特定位置,并用钉子固定,采用底铸式浇铸方法浇铸高锰钢液态金属,浇铸温度为1651℃,冷却时间为21h。
在三体磨损实验中,当软磨料磨损时,载荷越高材料的磨损量越大,但复合材料在高载荷下仍具有极高的耐磨性,为同样条件下Mn13Cr2的1.6。
实施例6
1)TiB2-TiC在丙酮中浸泡,酸洗,随后通过超声波清洗,去离子水冲洗,烘干,除去TiB2-TiC表面的污染物并使其干燥;将颗粒置于11g/L的氯化亚锡 (SnCl2)溶液中敏化31min,敏化完后用去离子水清洗;将敏化完的TiB2-TiC 陶瓷颗粒置于1.5g/L氯化钯(PdCl2)中活化31min,清洗TiB2-TiC陶瓷颗粒;将活化后的TiB2-TiC陶瓷颗粒置于21g/L次亚磷酸钠(NaH2PO2)溶液中还原 31min,然后用蒸馏水清洗风干。
镀液参数为质量浓度25g/L的硫酸镍、质量浓度1.5g/L的钼酸钠、质量浓度21g/L的次亚磷酸钠和质量浓度15g/L的乙酸钠,每111g的TiB2-TiC颗粒使用211ml的镀液进行镀覆,每31min更换一次镀液;
2)将处理过的TiB2-TiC放入化学镀液,调节镀覆温度为81℃,pH为11,经过镀覆时间为5h后,在干燥箱烘干;
3)按NiMo金属粉末占镀镍钼合金TiB2-TiC陶瓷颗粒和NiMo粉末总质量的21%,将微米级的NiMo金属粉末与镀覆后的TiB2-TiC颗粒混合,按每111g 的TiB2-TiC混合物中加入5ml粘结剂。充分搅拌,直至NiMo金属粉末完全包裹TiB2-TiC颗粒;
1)将混合后的TiB2-TiC颗粒倒入蜂窝状模具后经真空211℃,烘干2h;
5)将蜂窝状模具放入真空热压烧结炉当中进行烧结,以11℃/min升温至 1111℃,再以3℃/min升至1111℃,保温2h,同速降温,整个热处理过程使用氩气气氛保护;
6)将制备的预制体固定于型腔特定位置,并用钉子固定,采用底铸式浇铸方法浇铸高锰钢液态金属,浇铸温度为1611℃,冷却时间为21h。
在三体磨损实验中,当软磨料磨损时,载荷越高材料的磨损量越大,但复合材料在高载荷下仍具有极高的耐磨性,为同样条件下Mn13Cr2的8.3倍。
通过以上6个实施例与较传统的Mn13Cr2相比较可知,在化学镀覆改性 TiB2-TiC中,采用镀覆温度81℃,pH等于11,镀覆5h后,包裹21wt.%的NiMo 粉烧结后,在1111℃烧结预制体,然后制备得到的复合材料耐磨性是同时制备的纯Mn13Cr2的8.3倍,更具耐磨性;陶瓷颗粒在基体的有效支撑下更好的抵抗磨损;本发明通过化学镀覆对TiB2-TiC镀覆Ni-Mo双元素镀层,是一种具有低廉简易的操作方法;Ni、Mo元素本身对基体有一定的强韧作用,在实现双镀层的基础下,在界面实现有效的缓和层,使其与基体实现更好的结合。对预制体的烧结处理使得粉末具有更好的表面张力和粘度,使预制体的强度提高,可以有效抵抗金属液的冲刷作用。在砂型中固定预制体进行浇铸高锰钢基体,形成具有良好结合界面的复合材料。采用本发明技术制备的耐磨复合材料既具有高的抗冲击磨损性能,又保证了在苛刻工况下的服役安全。
综上所述,本发明一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法,将增强体设计成多孔的蜂窝状,使得金属液完全铸渗,形成良好的界面,磨损时陶瓷颗粒可以保护基体的大量磨损,而基体与陶瓷颗粒的良好结合,有效支撑陶瓷颗粒,改善了复合材料的耐磨性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,包括以下步骤:
S1、采用化学镀方法制备具有镀镍钼合金的TiB2-TiC陶瓷颗粒;
S2、将镍钼金属粉末与步骤S1得到的具有镀镍钼合金的TiB2-TiC颗粒进行搅拌混合得到混合物,再向混合物中加入粘结剂经充分混合后进行真空烘干处理,制成蜂窝状结构的陶瓷预制体;
S3、将步骤S2制备的蜂窝状结构的陶瓷预制体在1100~1400℃进行真空烧结处理,降温后得到烧结预制体;
S4、采用无压铸渗法向步骤S3得到的烧结预制体浇铸金属液,经冷却后脱模得到高锰钢基复合材料。
2.根据权利要求1所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S1中,采用化学镀方法制备具有镀镍钼合金的TiB2-TiC陶瓷颗粒前,先对TiB2-TiC陶瓷颗粒进行预处理,具体过程如下:
S101、将TiB2-TiC陶瓷颗粒浸泡在丙酮中进行酸洗,随后通过超声波清洗,去离子水冲洗,烘干后除去TiB2-TiC陶瓷颗粒表面的污染物;
S102、将步骤S101得到的TiB2-TiC陶瓷颗粒置于氯化亚锡溶液中敏化处理,然后用去离子水清洗;
S103、将步骤S102敏化处理后的TiB2-TiC陶瓷颗粒置于氯化钯中进行活化处理,然后清洗TiB2-TiC陶瓷颗粒;
S104、将步骤S103活化处理后的TiB2-TiC陶瓷颗粒置于次亚磷酸钠溶液中还原钯离子,然后用蒸馏水清洗风干,得到具有镀镍钼合金的TiB2-TiC陶瓷颗粒。
3.根据权利要求1或2所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S1中,TiB2-TiC陶瓷颗粒的粒径为3~5mm。
4.根据权利要求1所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S1中,化学镀使用的镀液包括质量浓度10~20g/L的硫酸镍、质量浓度1~2g/L的钼酸钠、质量浓度10~30g/L的次亚磷酸钠和质量浓度10~20g/L的乙酸钠,镀覆温度为60~90℃,化学镀液的酸碱性pH为8~11,镀覆时间为4~8h;每80~100g的TiB2-TiC颗粒使用150~200ml的镀液进行镀覆,每20~40min更换一次镀液。
5.根据权利要求1所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S2中,镍钼金属粉末的粒径为10~30μm,镍钼金属粉末占具有镀镍钼合金的TiB2-TiC颗粒和镍钼金属粉末总质量的10%~25%。
6.根据权利要求1所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S2中,粘结剂为硼酸和SiO2粉末,硼酸和SiO2粉末的质量比为1:(8~8.5),每100g的混合物中加入4~6ml的粘结剂。
7.根据权利要求1所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S2中,真空烘干处理的烘干温度为100~200℃,保温时间为1~2h。
8.根据权利要求1所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S3中,真空烧结处理具体为:
在氩气气氛保护下,以10~15℃/min升温至900~1000℃,再以3~5℃/min升至1100~1400℃,保温1~2h,然后进行降温处理。
9.根据权利要求1所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法,其特征在于,步骤S4中,浇铸温度为1550~1650℃,冷却时间为18~24h。
10.一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料,其特征在于,利用权利要求1至9中任一项所述的化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料制备方法制备而成。
CN202210441716.XA 2022-04-25 2022-04-25 一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法 Active CN114833338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210441716.XA CN114833338B (zh) 2022-04-25 2022-04-25 一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210441716.XA CN114833338B (zh) 2022-04-25 2022-04-25 一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114833338A true CN114833338A (zh) 2022-08-02
CN114833338B CN114833338B (zh) 2023-06-13

Family

ID=82566676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210441716.XA Active CN114833338B (zh) 2022-04-25 2022-04-25 一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114833338B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673329A (zh) * 2022-10-25 2023-02-03 中铁宝桥集团有限公司 一种高锰钢复合强化用增强体及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161374A (zh) * 2007-11-27 2008-04-16 吉林大学 复相混杂TiB2-TiC陶瓷颗粒梯度增强金属基复合材料的制备方法
CN101905185A (zh) * 2010-04-12 2010-12-08 吉林大学 一种破碎机用原位陶瓷局部增强复合材料锤头及制备方法
CN103801858A (zh) * 2013-12-16 2014-05-21 湖北工业大学 点焊电极表面电火花熔敷TiB2-TiC复相涂层用的熔敷棒其制备方法
WO2017035920A1 (zh) * 2015-08-28 2017-03-09 南通高欣耐磨科技股份有限公司 一种低成本、高耐磨陶瓷合金复合衬板的制造方法
WO2017035921A1 (zh) * 2015-08-28 2017-03-09 南通高欣耐磨科技股份有限公司 一种可拆卸式陶瓷合金复合磨辊的制造方法
CN109706438A (zh) * 2018-12-28 2019-05-03 西安交通大学 一种表面改性zta陶瓷颗粒增强钢铁基复合材料的制备方法
US20190390301A1 (en) * 2017-02-01 2019-12-26 Brunel University London Methods and process to improve mechanical properties of cast aluminum alloys at ambient temperature and at elevated temperatures
WO2020094642A1 (en) * 2018-11-06 2020-05-14 Atotech Deutschland Gmbh Electroless nickel plating solution
CN111590053A (zh) * 2020-04-22 2020-08-28 南通高欣耐磨科技股份有限公司 一种易加工、可修复高耐磨金属陶瓷复合磨辊的制造方法
CN111621690A (zh) * 2020-04-22 2020-09-04 华能国际电力股份有限公司海门电厂 一种金属陶瓷复合磨辊的制备方法
CN112658229A (zh) * 2020-11-27 2021-04-16 中国船舶重工集团公司第十二研究所 一种zta陶瓷增强耐磨零件的制备方法
CN112695320A (zh) * 2020-12-11 2021-04-23 西安交通大学 一种松装陶瓷预制体的高通量制备方法
CN113560540A (zh) * 2021-07-06 2021-10-29 太原理工大学 制备zta陶瓷颗粒增强高铬铸铁基耐磨复合材料的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161374A (zh) * 2007-11-27 2008-04-16 吉林大学 复相混杂TiB2-TiC陶瓷颗粒梯度增强金属基复合材料的制备方法
CN101905185A (zh) * 2010-04-12 2010-12-08 吉林大学 一种破碎机用原位陶瓷局部增强复合材料锤头及制备方法
CN103801858A (zh) * 2013-12-16 2014-05-21 湖北工业大学 点焊电极表面电火花熔敷TiB2-TiC复相涂层用的熔敷棒其制备方法
WO2017035920A1 (zh) * 2015-08-28 2017-03-09 南通高欣耐磨科技股份有限公司 一种低成本、高耐磨陶瓷合金复合衬板的制造方法
WO2017035921A1 (zh) * 2015-08-28 2017-03-09 南通高欣耐磨科技股份有限公司 一种可拆卸式陶瓷合金复合磨辊的制造方法
US20190390301A1 (en) * 2017-02-01 2019-12-26 Brunel University London Methods and process to improve mechanical properties of cast aluminum alloys at ambient temperature and at elevated temperatures
WO2020094642A1 (en) * 2018-11-06 2020-05-14 Atotech Deutschland Gmbh Electroless nickel plating solution
CN109706438A (zh) * 2018-12-28 2019-05-03 西安交通大学 一种表面改性zta陶瓷颗粒增强钢铁基复合材料的制备方法
CN111590053A (zh) * 2020-04-22 2020-08-28 南通高欣耐磨科技股份有限公司 一种易加工、可修复高耐磨金属陶瓷复合磨辊的制造方法
CN111621690A (zh) * 2020-04-22 2020-09-04 华能国际电力股份有限公司海门电厂 一种金属陶瓷复合磨辊的制备方法
CN112658229A (zh) * 2020-11-27 2021-04-16 中国船舶重工集团公司第十二研究所 一种zta陶瓷增强耐磨零件的制备方法
CN112695320A (zh) * 2020-12-11 2021-04-23 西安交通大学 一种松装陶瓷预制体的高通量制备方法
CN113560540A (zh) * 2021-07-06 2021-10-29 太原理工大学 制备zta陶瓷颗粒增强高铬铸铁基耐磨复合材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾德麟: "《粉末冶金材料》", 30 November 1989, 冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673329A (zh) * 2022-10-25 2023-02-03 中铁宝桥集团有限公司 一种高锰钢复合强化用增强体及其制备方法

Also Published As

Publication number Publication date
CN114833338B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CN109706438B (zh) 一种表面改性zta陶瓷颗粒增强钢铁基复合材料的制备方法
CN109014192B (zh) 优化粒径陶瓷增强金属基复合材料及其制备方法和应用
CN111809100B (zh) 一种NiCrAlY高温烧结ZTA颗粒增强钢铁基复合材料及其制备方法
CN102581259B (zh) 陶瓷柱阵列增强金属基复合材料或部件制备方法
CN113292318A (zh) 一种zta/高铬铸铁复合耐磨材料的制备方法
CN111455249B (zh) 一种锰钢基复相颗粒增强金属陶瓷表面复合材料、铸件及其制造方法
AU2022224725A1 (en) Preparation method of in-situ synthesized zirconia toughened alumina (ZTA) ceramic particles-reinforced steel matrix structural composite
CN108441791A (zh) 一种碳纤维增强的金属陶瓷基复合材料
CN113579208A (zh) 一种高铬铸铁基陶瓷复合磨辊的制备方法
CN114833338A (zh) 一种化学镀覆NiMo改性的TiB2-TiC颗粒增强高锰钢基复合材料及其制备方法
CN112481541A (zh) 一种高性能陶瓷增强铁基复合材料的制备方法
CN110747378B (zh) 一种Ti3AlC2-Al3Ti双相增强Al基复合材料及其热压制备方法
CN109513905B (zh) 一种表面处理zta颗粒增强钢铁基复合耐磨件的制备方法
CN111804907B (zh) 一种改性陶瓷颗粒增强铁基复合材料及其制备方法
CN107598136B (zh) 一种陶瓷颗粒金属复合材料的制备方法
CN1408494A (zh) 挤压铸渗烧结工艺生产复合材料及设备
CN103042208B (zh) 铁和碳化钛混合料及其在冷压模具表面制作涂层的方法
CN112501523A (zh) 一种改性碳纤维和碳化锆增强铝基复合材料的制备方法
CN112679212A (zh) 一种渣浆泵用氮化物结合碳化硅耐磨陶瓷件的制备方法
CN109468494B (zh) 一种耐磨损网状Cr3C2增强NiAl合金的制备方法
CN112207273B (zh) 一种耐磨、使用寿命长的金属陶瓷复合材料及其制备方法
CN114871382A (zh) 一种微粉包覆六棱柱形ZTA/Fe复合材料制备方法
CN109987938B (zh) 一种碳化锆/碳化铝复合陶瓷及其制备方法与应用
CN103436795B (zh) 一种抗高温磨蚀合金钢及其制备方法
CN111689783A (zh) 含纳米碳的脱硫搅拌器用耐火浇注料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant