CN114824822A - 一种透镜、该透镜的设计方法及应用该透镜的透镜天线 - Google Patents

一种透镜、该透镜的设计方法及应用该透镜的透镜天线 Download PDF

Info

Publication number
CN114824822A
CN114824822A CN202210503985.4A CN202210503985A CN114824822A CN 114824822 A CN114824822 A CN 114824822A CN 202210503985 A CN202210503985 A CN 202210503985A CN 114824822 A CN114824822 A CN 114824822A
Authority
CN
China
Prior art keywords
lens
dielectric
plates
thickness
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210503985.4A
Other languages
English (en)
Other versions
CN114824822B (zh
Inventor
李澍
孙健
梁启迪
华彦平
王惠兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hengxin Technology Co Ltd
Jiangsu Hengxin Wireless Technology Co Ltd
Original Assignee
Jiangsu Hengxin Technology Co Ltd
Jiangsu Hengxin Wireless Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hengxin Technology Co Ltd, Jiangsu Hengxin Wireless Technology Co Ltd filed Critical Jiangsu Hengxin Technology Co Ltd
Priority to CN202210503985.4A priority Critical patent/CN114824822B/zh
Publication of CN114824822A publication Critical patent/CN114824822A/zh
Application granted granted Critical
Publication of CN114824822B publication Critical patent/CN114824822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明提供了一种透镜,其能解决现有通信天线用透镜制作复杂、成本高的问题。其包括N块材质相同、形状结构相同的介质板且N≥3,N块介质板以相等的间距d沿介质板的厚度直线方向平行排列且N块介质板的几何中心共线,间距d为相邻两块所述介质板的厚度中心线之间的垂线距离,N块介质板由中心层和镜向对称地设置于中心层两侧的端侧层构成,N块介质板沿排列的直线方向自中心层向端侧层板厚度逐渐变薄、板平面尺寸逐渐减小,N块介质板的外轮廓能拟合包络形成球面或圆柱面,且N块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的圆形包络曲线。

Description

一种透镜、该透镜的设计方法及应用该透镜的透镜天线
技术领域
本发明涉及移动通信天线领域,尤其是涉及透镜天线领域,具体为一种透镜、该透镜的设计方法及应用该透镜的透镜天线。
背景技术
随着移动通信技术的发展,特别是5G通信技术的应用,在满足常规信号覆盖的基础上,一些诸如大型场馆、商业广场、高铁、隧道等特殊场景的信号覆盖成为通信环境改善所关注的重点。
为了满足特殊场景下信号覆盖的具体要求,阵列排布的波束赋性天线被作为常规解决方案大量使用;但在高铁沿线、大型演唱会、互动现场等需要点状波束(spot beam)的应用场景下,传统的阵列天线口径面效率低的劣势被无限放大。基于此,近年来具有高增益及高口径面效率优点的透镜天线开始逐渐替代传统的阵列天线来应用于民用基站。
但作为透镜天线的透镜部分,其对材料要求极其苛刻,材料成本居高不下,诸如龙勃透镜,菲涅尔透镜等特殊结构,即便随着3D打印技术及发泡技术等新兴技术的成熟,其制作成本也依然高昂,成为制约透镜天线普及于民用的关键因素。
发明内容
针对上述问题,本发明提供了一种透镜,其能解决现有通信天线用透镜制作复杂、成本高的问题;为此,本发明还提供了该种透镜的设计方法及应用该种透镜的透镜天线。
本发明的一种透镜,其技术方案为:其包括N块材质相同、形状结构相同的介质板且N≥3,所述介质板的介电常数≥1.6,N块介质板以相等的间距d沿介质板的厚度直线方向平行排列且所述N块介质板的几何中心共线,所述间距d为相邻两块所述介质板的厚度中心线之间的垂线距离,所述N块介质板由中心层和镜向对称地设置于中心层两侧的端侧层构成,所述N块介质板沿排列的直线方向自中心层向端侧层板厚度逐渐变薄、板平面尺寸逐渐减小,所述N块介质板的外轮廓能拟合包络形成球面或圆柱面,且所述N块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的圆形包络曲线。
进一步的,所述中心层为单块所述介质板或为两块厚度相等的所述介质板;当所述中心层为两块厚度相等的介质板时,该两块厚度相等的介质板的板厚度中心线之间的垂线距离为d。
进一步的,所述介质板为圆形,N块呈圆形的介质板同心设置且以相等的间距d沿厚度方向间隔平行排列,N块呈圆形的介质板沿排列的直线方向厚度逐渐变薄、直径逐渐减小。
进一步的,所述介质板呈矩形,N块呈矩形的介质板沿厚度方向、以相等的间距d平行间隔排布且各介质板的几何中心共线,N块呈矩形的介质板沿排列的直线方向厚度逐渐变薄、板平面内任一直线方向尺寸逐渐减小。
更进一步的,N块呈矩形的介质板沿排列的直线方向长度或宽度逐渐减小。
一种透镜天线,其包括天线罩和上述透镜,构成透镜的所述介质板呈矩形,所述天线罩与介质板的材质相同,所述天线罩与构成上述透镜的各介质板通过拉挤成型的方式一体化成型。
进一步的,所述透镜中的介质板的数量为(N+1)/2或N/2,且该数量的介质板仅由中心层及设置于中心层一侧的端层构成,所有介质板的外轮廓能拟合包络形成半球面或半圆柱面,且所有介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的半圆形包络曲线。
进一步的,其还包括用于对各所述介质板进行限位固定的固定装置。
更进一步的,所述固定装置为内部支撑柱,所述介质板之间通过所述内部支撑柱连接限位固定。
更进一步的,所述固定装置为外部卡合件,所述外部卡合件包括固定外框,所述固定外框相向的一对侧面上对称地设有卡合台阶结构,所述卡合台阶结构与所述介质板的端面卡合定位。
本发明还提供了上述透镜的设计方法,其包括以下步骤:
步骤1,根据设计要求确定所述圆形包络曲线的直径D;
步骤2,根据对天线方向性系数的要求选定常数e,且e的取值范围为1.6~2.5;
步骤3,确定介质板材料的相对介电常数εr,εr≥e;
步骤4,根据步骤1所确定的圆形包络曲线的直径D确定所述介质板的数量N;
步骤5,计算相邻介质板的厚度中心线的间距d=D/N;
步骤6,计算每块介质板的厚度T(M)
Figure BDA0003636610140000021
{M=1~[N/2]}
其中,[N/2]取整,R=D/2。
本发明还提供了一种透镜天线,其特征在于:其包括上述透镜,所述透镜的底部设置有馈电单元,所述馈电单元的辐射方向指向所述透镜。
进一步的,所述馈电单元为振子或振子阵列。
进一步的,所述馈电单元设置于所述透镜的正下方。
进一步的,所述馈电单元呈角度地偏置于所述透镜下方。
本发明一种透镜的有益效果在于:其由数块材质相同、形状结构相同的介质板以相等的间距d沿介质板的厚度直线方向平行排列而成,且介质板沿排列的直线方向自中心层向端侧层板厚度逐渐变薄、板平面尺寸逐渐减小,数块介质板的外轮廓能拟合包络形成球面或圆柱面,且数块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的圆形包络曲线;其不仅整体结构简单,而且由于采用了材质完全相同的常规介质板材质,因而一方面能大大降低透镜对材质的要求、有效节约材料成本,另一方面也有效降低其加工生产难度、提高生产效率。
附图说明
图1为本发明一种透镜的实施例一的立体结构示意图;
图2为本发明一种透镜的实施例一在几何中心处的垂直截面示意图以及构成透镜各介质板的外轮廓拟合包络形成的直径为D的圆形包络曲线示意图;
图3为本发明一种透镜的实施例一的俯视结构示意图;
图4为本发明一种透镜的实施例二的立体结构示意图;
图5为本发明一种透镜中固定装置采用外部卡合件的结构示意图;
图6为本发明一种透镜中采用外部卡合件作为固定装置的装配分解示意图;
图7为本发明一种透镜天线的结构示意图;
图8为本发明一种透镜天线的另一种实施例的结构示意图;
图9为本发明一种透镜的设计方法的设计流程示意图;
图10为本发明一种透镜天线的电磁波进行方向示意图;
图11为本发明一种透镜天线的仿真结果对比图;
图12为本发明一种透镜天线的第三种实施例的结构示意图。
具体实施方式
因传统透镜对材料的相对介电常数要求通常在1~2范围内,因此材料选取成为制约透镜天线发展的最大问题;而已有技术则是通过高介电常数材料发泡、镂空等复杂工艺使其区域内的相对介电常数降低来实现透镜功能。
本发明提供了一种基于现有材料的新型透镜,用于解决现有透镜对材料要求苛刻、制作工艺复杂、成本高昂等问题。
本发明的一种透镜,其包括N块材质相同、形状结构相同的介质板且N≥3,N块介质板以相等的间距d沿介质板的厚度直线方向平行排列且所述N块介质板的几何中心共线,间距d为相邻两块所述介质板的厚度中心线之间的垂线距离,N块介质板由中心层和镜向对称地设置于中心层两侧的端侧层构成,N块介质板沿排列的直线方向自中心层向端侧层板厚度逐渐变薄、板平面尺寸逐渐减小,N块介质板的外轮廓能拟合包络形成球面或圆柱面,且N块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的圆形包络曲线。
进一步的优选的技术方案,其中的中心层为单块所质板或为两块厚度相等的介质板;当中心层为两块厚度相等的介质板时,该两块厚度相等的介质板的板厚度中心线之间的垂线距离为d。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:见图1~图3,本实施例透镜100包括十三块材质相同、形状结构相同的介质板110,且该十三块介质板110呈圆形,介质板的介电常数≥1.6,十三块介质板110以相等的间距d沿介质板的厚度直线方向平行排列且十三块介质板110同心设置,其中间距d为相邻两块介质板110的厚度中心线之间的垂线距离,十三块介质板由中心层和镜向对称地设置于中心层两侧的端侧层构成,本实施例中,中心层为单块介质板110a,则在单块介质板110a的两侧分别镜向对称地设有六块作为端侧层的介质板110b~110g,十三块介质板110沿排列的直线方向自中心层向端侧层板厚度逐渐变薄、直径逐渐减小,十三块块介质板的外轮廓能拟合包络形成球面,且十三块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的圆形包络曲线S。
若中心层为两块厚度相等的介质板,即构成透镜的介质板的数量为大于等于3的偶数块时,则该两块厚度相等的介质板的板厚度中心线之间的垂线距离为d。
实施例二:
作为本发明透镜的第二种实施例,其与实施例一的区别在于:本实施例透镜200,其采用呈矩形的介质板210,见图4,十三块呈矩形的介质板210沿厚度方向、以相等的间距d平行间隔排布且各介质板的几何中心共线,十三块呈矩形的介质板210沿排列的直线方向厚度逐渐变薄、板平面内任一直线方向尺寸逐渐减小;本实施例中,十三块呈矩形的介质板210沿排列的直线方向的宽度逐渐减小,十三块块介质板的外轮廓能拟合包络形成圆柱面,且十三块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的圆形包络曲线S。
一种透镜天线,见图12,其包括天线罩600和上述第二种实施例中的透镜200,其天线罩600与构成透镜的介质板210的材质相同,天线罩600与构成透镜的各介质板210通过拉挤成型的方式一体化成型;作为进一步优选的技术方案,各介质板210之间能通过龙骨结构140来提高各介质板210之间的结构稳定。采用上述透镜与天线罩一体化成型的技术方案,能够大量减少透镜天线的生产和组装成本。
在本发明上述透镜结构的基础上,在实际的通信天线应用中本发明结构的透镜可以仅由中心层及位于中心层一侧的端侧层构成,由此构成透镜的介质板的数量实际可以为N/2或(N+1)/2,这些介质板的外轮廓能拟合包络形成半球面或半圆柱面,且N/2块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的半圆形包络曲线。具体来说,结合实施例一,在实际的通信天线应用中,构成透镜的介质板110的数量为七块,该七块介质板110同样以相等的间距d沿厚度方向排列,并且该七块介质板自中心层向端侧层板厚度逐渐变薄、直径逐渐减小,该七块介质板的外轮廓能拟合包络形成半球面或半圆柱面,且该七块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的半圆形包络曲线。
作为优选的技术方案,本发明上述两个实施例的透镜均还包括用于对各介质板110进行限位固定的固定装置,从而能够使得各介质板之间保持一定的间距以及结构的稳定。
见图1~图4,本发明透镜的实施例一和实施例二中,其固定装置分别内部支撑柱120、220,实施例一中介质板110之间通过内部支撑柱120连接限位固定,实施例二中介质板210之间通过内部支撑柱210连接限位固定。
见图5和图6,其固定装置为外部卡合件130,外部卡合件包括固定外框,固定外框相向的一对侧面上对称地设有卡合台阶结构,卡合台阶结构与所述介质板的端面卡合定位。
本发明还提供了上述透镜的设计方法,其包括以下步骤:见图9,
步骤1,根据设计要求确定圆形包络曲线S的直径D;
步骤2,根据对天线方向性系数的要求选定常数e,且e的取值范围为1.6~2.5;当e为1.6时,透镜所构成天线增益随频率变化斜度最高,即随着频率增高,透镜天线增益增幅达到最大。当e取值为2.5时,透镜所构成的透镜天线在各频点方向图一致性最高,即天线增益随频率增高变化最小,波束宽度一致性最高;
步骤3,确定介质板材料的相对介电常数εr,εr≥e并由此选取符合条件的介质板材料;
步骤4,根据步骤1所确定的圆形包络曲线的直径D确定所述介质板的数量N;
步骤5,计算相邻介质板的厚度中心线的间距d=D/N;
步骤6,计算每块介质板的厚度T(M)
Figure BDA0003636610140000051
{M=1~[N/2]}
其中,定义M=1为作为中心层的介质板,M=2~[N/2]定义为自中心层开始沿排列直线方向依次设置的端侧层,且[N/2]必须取整,在本实施例中N=13,则[N/2]=[13/2]=6.5,取整则为7;另外,上述公式中定义R=D/2。
为了进一步说明本发明透镜的设计方法,以前述实施例一的透镜为例具体描述其设计过程:
上述透镜的实施例一中,选择介质板的形状为圆形,根据设计要求确定圆形包络曲线S的直径D为100mm,由于该圆形包络曲线S为构成透镜的所有介质板在几何中心处垂直截面拟合包络形成,因此确定该圆形包络曲线S的直径D的大小即相当于确定了作为中心层的介质板110的直径;然后,根据对天线方向性系数的要求选定常数e=2.5;再根据介质板材料的相对介电常数εr≥e,选取介质板材料的相对介电常数εr=3.8;选取N=13并计算相邻介质板的厚度中心线的间距d=D/N=110/13,根据公式
Figure BDA0003636610140000061
{M=1~[N/2]}计算每一块介质板的厚度,公式中R=D/2=100/2=50mm;
当M=1,计算作为中心层的介质板110a的厚度
Figure BDA0003636610140000062
当M=2,计算的是镜向对称地位于作为中心层的介质板110a两侧的两块介质板110b的厚度
Figure BDA0003636610140000063
当M=3,计算的是镜向对称地位于两块介质板110b两外侧的两块介质板110c的厚度
Figure BDA0003636610140000064
以次类推,分别计算两块介质板110d的厚度
Figure BDA0003636610140000065
两块介质板110e的厚度
Figure BDA0003636610140000066
两块介质板110f厚度
Figure BDA0003636610140000067
两块介质板110g厚度
Figure BDA0003636610140000068
本发明所提供的透镜100设计方法仅用于实现上述透镜100结构的电气性能。由其他方法设计所得上述透镜100结构亦在本专利保护范围内。
本发明还提供了一种透镜天线,见图7,本实施例的透镜天线包括上述实施例一的透镜100,透镜100的底部设置有馈电单元300,馈电单元300的辐射方向指向透镜100;馈电单元300可为振子或振子阵列;其能采用任何天线结构:如单极子天线、偶极子天线、微带天线、缝隙天线、喇叭天线等;本实施例中,馈电单元300设置于透镜100的正下方。
作为另一种馈电单元的排布方式,见图8,馈电单元300设有两个,且该两个馈电单元300均呈角度地偏置于透镜100下方,同时两个馈电单元的辐射方向指向透镜100。
图10展示了馈电单元300所产生电磁波通过本发明透镜100时的进行方向;馈电单元300所发出的等相位电磁波为球面波,电磁波进行方向400指向透镜。球面波中心位置经过介质板110时方向不发生变化,相位发生延迟,向边缘辐射的电磁波经过不同的介质板110时发生折射,越靠近边缘,发生折射次数越多。同时,向边缘辐射的电磁波的相位亦发生延迟,越靠近边缘其经过的介质板110越少,相位延迟越低。经历以上过程后,球面波最终在通过透镜100后被展开为平面波。
本发明通过仿真软件CST进行了仿真验证。仿真透镜100半径为125mm。图11展示了透镜天线的仿真方向图500。馈电单元方向图510显示其增益为8.05dBi,由此馈电单元300构成的透镜天线方向图520显示当馈电单元300经过半径为125mm球形透镜100时,其增益提升至14.5dBi。
采用本发明上述设计方法得到的透镜,其透镜结构对于透镜材料的要求大幅降低,能够有效节约材料成本,且本发明的透镜在生产制备过程中无需再对材料进行如发泡、填充、打孔等二次加工以获取等效龙勃透镜的结构,因而能够节约大量加工和制造成本。
而采用本发明上述透镜制备的透镜天线有着高增益、方向图高一致性以及高口径面效率的特点,能够为透镜天线的普及应用起到关键作用。
以上对本发明的具体实施进行了详细说明,但内容仅为本发明创造的较佳实施方案,不能被认为用于限定本发明创造的实施范围。凡依本发明创造申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (15)

1.一种透镜,其特征在于:其包括N块材质相同、形状结构相同的介质板且N≥3,N块介质板以相等的间距d沿介质板的厚度直线方向平行排列且所述N块介质板的几何中心共线,所述间距d为相邻两块所述介质板的厚度中心线之间的垂线距离,所述N块介质板由中心层和镜向对称地设置于中心层两侧的端侧层构成,所述N块介质板沿排列的直线方向自中心层向端侧层板厚度逐渐变薄、板平面尺寸逐渐减小,所述N块介质板的外轮廓能拟合包络形成球面或圆柱面,且所述N块介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的圆形包络曲线。
2.根据权利要求1所述的一种透镜,其特征在于:所述中心层为单块所述介质板或为两块厚度相等的所述介质板;当所述中心层为两块厚度相等的介质板时,该两块厚度相等的介质板的板厚度中心线之间的垂线距离为d。
3.根据权利要求2所述的一种透镜,其特征在于:所述介质板为圆形,N块呈圆形的介质板同心设置且以相等的间距d沿厚度方向间隔平行排列,N块呈圆形的介质板沿排列的直线方向厚度逐渐变薄、直径逐渐减小。
4.根据权利要求2所述的一种透镜,其特征在于:所述介质板呈矩形,N块呈矩形的介质板沿厚度方向、以相等的间距d平行间隔排布且各介质板的几何中心共线,N块呈矩形的介质板沿排列的直线方向厚度逐渐变薄、板平面内任一直线方向尺寸逐渐减小。
5.根据权利要求4所述的一种透镜,其特征在于:N块呈矩形的介质板沿排列的直线方向长度或宽度逐渐减小。
6.根据权利要求1所述的一种透镜,其特征在于:其还包括用于对各所述介质板进行限位固定的固定装置。
7.根据权利要求6所述的一种透镜,其特征在于:所述固定装置为内部支撑柱,所述介质板之间通过所述内部支撑柱连接限位固定。
8.根据权利要求6所述的一种透镜,其特征在于:所述固定装置为外部卡合件,所述外部卡合件包括固定外框,所述固定外框相向的一对侧面上对称地设有卡合台阶结构,所述卡合台阶结构与所述介质板的端面卡合定位。
9.权利要求1~5中任一所述的一种透镜的设计方法,其特征在于:其包括以下步骤,
步骤1,根据设计要求确定所述圆形包络曲线的直径D;
步骤2,根据对天线方向性系数的要求选定常数e,且e的取值范围为1.6~2.5;
步骤3,确定介质板材料的相对介电常数εr,εr≥e;
步骤4,根据步骤1所确定的圆形包络曲线的直径D确定所述介质板的数量N;
步骤5,计算相邻介质板的厚度中心线的间距d=D/N;
步骤6,计算每块介质板的厚度T(M)
Figure FDA0003636610130000021
其中,[N/2]取整,R=D/2。
10.一种透镜天线,其特征在于:其包括权利要求1~8中任一所述的透镜,所述透镜中的介质板的数量为(N+1)/2或N/2,且该数量的介质板仅由中心层及设置于中心层一侧的端层构成,所有介质板的外轮廓能拟合包络形成半球面或半圆柱面,且所有介质板在几何中心处的垂直截面的外轮廓拟合包络形成直径为D的半圆形包络曲线。
11.一种透镜天线,其特征在于:其包括天线罩和权利要求4或5所述的透镜,所述天线罩与介质板的材质相同,所述天线罩与构成透镜的各介质板通过拉挤成型的方式一体化成型。
12.一种透镜天线,其特征在于:其包括权利要求1~8中任一所述的透镜,所述透镜的底部设置有馈电单元,所述馈电单元的辐射方向指向所述透镜。
13.根据权利要求12所述一种透镜天线,其特征在于:所述馈电单元为振子或振子阵列。
14.根据权利要求13所述一种透镜天线,其特征在于:所述馈电单元设置于所述透镜的正下方。
15.根据权利要求13所述一种透镜天线,其特征在于:所述馈电单元呈角度地偏置于所述透镜下方。
CN202210503985.4A 2022-05-10 2022-05-10 一种透镜、该透镜的设计方法及应用该透镜的透镜天线 Active CN114824822B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210503985.4A CN114824822B (zh) 2022-05-10 2022-05-10 一种透镜、该透镜的设计方法及应用该透镜的透镜天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210503985.4A CN114824822B (zh) 2022-05-10 2022-05-10 一种透镜、该透镜的设计方法及应用该透镜的透镜天线

Publications (2)

Publication Number Publication Date
CN114824822A true CN114824822A (zh) 2022-07-29
CN114824822B CN114824822B (zh) 2023-07-14

Family

ID=82513519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210503985.4A Active CN114824822B (zh) 2022-05-10 2022-05-10 一种透镜、该透镜的设计方法及应用该透镜的透镜天线

Country Status (1)

Country Link
CN (1) CN114824822B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130951A (zh) * 2022-12-12 2023-05-16 江苏亨鑫科技有限公司 一种具有层叠介质的排气管天线
CN117410722A (zh) * 2023-12-16 2024-01-16 广东福顺天际通信有限公司 一种可伸缩折叠式电磁波透镜及电磁波透镜天线

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124222A (ja) * 2004-11-01 2005-05-12 Murata Mfg Co Ltd 誘電体レンズアンテナおよびそれを用いた無線装置
US20100295744A1 (en) * 2007-10-16 2010-11-25 Erik Lofbom Waveguide Array
CN102176545A (zh) * 2011-01-12 2011-09-07 电子科技大学 一种分层数目最少的电大尺寸高效龙伯透镜天线
CN103036066A (zh) * 2011-09-29 2013-04-10 深圳光启高等理工研究院 一种龙伯透镜天线
RU2485646C1 (ru) * 2012-03-12 2013-06-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Устройство для фокусировки типа "линза люнеберга"
CN207134483U (zh) * 2017-07-21 2018-03-23 桂林电子科技大学 基于高折射率人工电磁材料的渐变折射率透镜天线
CN109638473A (zh) * 2019-01-14 2019-04-16 北京交通大学 透镜天线及透镜天线制作方法
CN109687158A (zh) * 2018-12-27 2019-04-26 北京理工大学 适于3d打印的全介质多波束扫描龙勃透镜结构及打印方法
US20210091847A1 (en) * 2019-09-23 2021-03-25 Amphenol Antenna Solutions, Inc. High gain single lens repeater platform
CN113270724A (zh) * 2021-05-18 2021-08-17 电子科技大学 基于龙伯透镜的高增益宽角扫描多波束井盖天线
CN113451782A (zh) * 2021-06-03 2021-09-28 中山大学 一种具备宽扫描角度的平面龙伯透镜天线
CN113471682A (zh) * 2021-07-05 2021-10-01 广东曼克维通信科技有限公司 一种透镜天线
US20210384638A1 (en) * 2020-06-04 2021-12-09 City University Of Hong Kong 3-d focus-steering lens antenna
CN215896696U (zh) * 2021-07-05 2022-02-22 广东曼克维通信科技有限公司 一种透镜天线
CN114421182A (zh) * 2021-12-07 2022-04-29 中国电子科技集团公司第三十九研究所 一种透镜天线

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124222A (ja) * 2004-11-01 2005-05-12 Murata Mfg Co Ltd 誘電体レンズアンテナおよびそれを用いた無線装置
US20100295744A1 (en) * 2007-10-16 2010-11-25 Erik Lofbom Waveguide Array
CN102176545A (zh) * 2011-01-12 2011-09-07 电子科技大学 一种分层数目最少的电大尺寸高效龙伯透镜天线
CN103036066A (zh) * 2011-09-29 2013-04-10 深圳光启高等理工研究院 一种龙伯透镜天线
RU2485646C1 (ru) * 2012-03-12 2013-06-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Устройство для фокусировки типа "линза люнеберга"
CN207134483U (zh) * 2017-07-21 2018-03-23 桂林电子科技大学 基于高折射率人工电磁材料的渐变折射率透镜天线
CN109687158A (zh) * 2018-12-27 2019-04-26 北京理工大学 适于3d打印的全介质多波束扫描龙勃透镜结构及打印方法
CN109638473A (zh) * 2019-01-14 2019-04-16 北京交通大学 透镜天线及透镜天线制作方法
US20210091847A1 (en) * 2019-09-23 2021-03-25 Amphenol Antenna Solutions, Inc. High gain single lens repeater platform
US20210384638A1 (en) * 2020-06-04 2021-12-09 City University Of Hong Kong 3-d focus-steering lens antenna
CN113270724A (zh) * 2021-05-18 2021-08-17 电子科技大学 基于龙伯透镜的高增益宽角扫描多波束井盖天线
CN113451782A (zh) * 2021-06-03 2021-09-28 中山大学 一种具备宽扫描角度的平面龙伯透镜天线
CN113471682A (zh) * 2021-07-05 2021-10-01 广东曼克维通信科技有限公司 一种透镜天线
CN215896696U (zh) * 2021-07-05 2022-02-22 广东曼克维通信科技有限公司 一种透镜天线
CN114421182A (zh) * 2021-12-07 2022-04-29 中国电子科技集团公司第三十九研究所 一种透镜天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130951A (zh) * 2022-12-12 2023-05-16 江苏亨鑫科技有限公司 一种具有层叠介质的排气管天线
CN116130951B (zh) * 2022-12-12 2023-09-22 江苏亨鑫科技有限公司 一种具有层叠介质的排气管天线
CN117410722A (zh) * 2023-12-16 2024-01-16 广东福顺天际通信有限公司 一种可伸缩折叠式电磁波透镜及电磁波透镜天线
CN117410722B (zh) * 2023-12-16 2024-03-08 广东福顺天际通信有限公司 一种可伸缩折叠式电磁波透镜及电磁波透镜天线

Also Published As

Publication number Publication date
CN114824822B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN114824822A (zh) 一种透镜、该透镜的设计方法及应用该透镜的透镜天线
CN201515017U (zh) 一种透镜天线
CN203589218U (zh) 天线
WO2013013465A1 (zh) 后馈式雷达天线
CN109378585B (zh) 半空间波束覆盖的圆极化龙伯透镜天线
CN203589220U (zh) 天线
CN203013936U (zh) 一种多波束平面贴片透镜天线
CN114639967B (zh) 复合型人工介质透镜天线及制作方法
CN101916902A (zh) 一种宽频双极化定向基站天线的微带耦合辐射单元
CN105552573A (zh) 双极化波导缝隙馈源对称介质填充柱透镜天线
CN103050782A (zh) 多波束平面贴片透镜天线
WO2013029326A1 (zh) 基站天线
CN114142246A (zh) 一种基于渐变阻抗的宽频大角度超材料吸波体及制备方法
US20220247067A1 (en) Base station antenna
WO2021226669A1 (en) Lens arrangement
JPWO2003041222A1 (ja) アンテナ
CN113517558A (zh) 一种高隔离度5g基站天线、无线通信终端
CN112271444A (zh) 一种高增益双极化siw-cts天线阵
WO2013029327A1 (zh) 基站天线
EP2738872B1 (en) Front feed satellite television antenna and satellite television receiver system thereof
CN201741789U (zh) 一种宽频双极化定向基站天线的微带耦合辐射单元
CN111048893B (zh) 一种低剖面宽带双极化介质填充微带天线
CN208460991U (zh) 一种基于风车结构的平面反射阵列天线
CN103036064A (zh) 一种卡塞格伦型超材料天线
WO2013029322A1 (zh) 基站天线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant