CN114823970B - 一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法 - Google Patents

一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法 Download PDF

Info

Publication number
CN114823970B
CN114823970B CN202210304039.7A CN202210304039A CN114823970B CN 114823970 B CN114823970 B CN 114823970B CN 202210304039 A CN202210304039 A CN 202210304039A CN 114823970 B CN114823970 B CN 114823970B
Authority
CN
China
Prior art keywords
chip
focal plane
superlattice
infrared focal
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210304039.7A
Other languages
English (en)
Other versions
CN114823970A (zh
Inventor
王海澎
木迎春
李东升
龚晓丹
孔金丞
黄佑文
彭秋思
雷晓虹
周旭昌
邓功荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN202210304039.7A priority Critical patent/CN114823970B/zh
Publication of CN114823970A publication Critical patent/CN114823970A/zh
Application granted granted Critical
Publication of CN114823970B publication Critical patent/CN114823970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明公开了一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法。本发明是在超晶格红外焦平面芯片上通过等离子体处理芯片表面,从而增加光刻胶在芯片表面的粘附性,尤其针对较小光刻图形制备时。在超晶格红外焦平面芯片光刻前,首先采用氧等离子体与芯片上残余的有机污染物发生化学反应,生成气态的CO、C02和H20,从而达到去除芯片表面残余有机污染物的目的,其次采用氩等离子体轻微轰击芯片表面,增加芯片表面粗糙度。氧等离子体和氩等离子体先后作用在超晶格红外焦平面芯片上,增加了后续光刻胶在超晶格红外焦平面芯片上附着性,提高了图形完整性,降低了超晶格红外焦平面探测器盲元率。

Description

一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法
技术领域
本发明涉及半导体技术领域,具体涉及一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法。
背景技术
超晶格红外焦平面芯片上的微小结构是通过光刻工艺和刻蚀工艺共同作用形成。常规的光刻工艺首先是在超晶格红外焦平面芯片上旋转涂覆光刻胶,然后将涂覆有光刻胶的超晶格红外焦平面芯片在光刻版下对光刻胶进行选择性曝光,接着进行显影工艺,保留在超晶格红外焦平面芯片上的光刻胶就形成了光刻图形,保护其所覆盖的区域在后续的刻蚀工艺中不被刻蚀。
随着超晶格红外焦平面芯片上关键尺寸的缩小,光刻图形也变得越小,因此光刻胶与超晶格红外焦平面芯片接触面积越来越小,常常由于光刻胶在超晶格红外焦平面芯片附着不牢,在显影过程中,显影液容易钻蚀到光刻胶下方,导致在下一步刻蚀工艺过程中光刻胶脱落,从而在脱落位置的图形缺失,最终表现在超晶格红外焦平面器件上形成盲元,降低超晶格红外焦平面性能。
因此,需要一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法,能够增加小尺寸光刻胶与超晶格红外焦平面芯片粘附性。
发明内容
本发明的主要目的在于提供一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法,以解决超晶格红外焦平面芯片上由于光刻胶附着不牢导致芯片上小尺寸图形缺失的问题。
为实现前述发明目的,本发明采用的技术方案为:一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法,用于光刻前芯片表面处理,采用氧等离子体处理超晶格焦平面芯片表面,与芯片上有机污染物发生化学反应,生成气态的CO、C02和H20,从而去除芯片表面有机污染物;采用氩等离子体处理超晶格焦平面芯片表面,以增加芯片表面粗糙度,达到增加光刻胶在超晶格红外焦平面芯片上附着性的目的。
具体的,该方法包括以下步骤:
步骤S1:将超晶格焦平面芯片放置于感应耦合等离子体设备的基板上;
步骤S2:对基板降温处理,温度范围为10℃-15℃,达到10℃-15℃后持续时间为10min-15min;
步骤S3:设定氧气流量,氧气流量范围为50sccm-80sccm;设定功率的范围为30W-50W;设定压强的范围为20mTorr-40mTorr,设定氧等离子体处理的持续时间范围为30S-60S;
步骤S4:设定氩气流量,氩气流量范围为5sccm-10sccm;设定功率范围为5W-10W;设定压强范围为2mTorr-5mTorr,设定氩等离子体处理的持续时间范围为5S-10S;
步骤S5:先后完成氧等离子体和氩等离子体处理后,对基板进行升温处理,温度范围为20℃-22℃,达到20℃-22℃后持续时间为5min-10min。
与现有技术相比,本发明具有以下优点:
本发明通过氧等离子体处理步骤和氩等离子体处理步骤对超晶格焦平面芯片表面进行处理,首先将芯片上表面有机污染物完全去除,其次增加芯片表面粗糙度。同时,对氧等离子体和氩等离子体处理时的功率、温度、流量、压强和时间参数进行严格控制,避免了氧等离子体和氩等离子对超晶格材料的损伤。
附图说明
图1是处理前超晶格红外焦平面芯片的结构示意图。
图2是经过氧等离子处理后的超晶格红外焦平面芯片结构示意图。
图3是经过氩等离子处理后的超晶格红外焦平面芯片结构示意图。
图4a是未经氧、氩等离子体处理超晶格红外焦平面芯片的显微镜图。
图4b是经过氧、氩等离子体处理超晶格红外焦平面芯片光刻工艺后的显微镜图。
图5a是未经氧、氩等离子体处理超晶格红外焦平面芯片的盲元图。
图5b是经过氧、氩等离子体处理超晶格红外焦平面器件的盲元图。
其中:1-锑化镓衬底;2-超晶格材料;3-芯片表面残余物;4-表面较粗糙的超晶格材料。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面以长波640×512超晶格焦平面芯片为实施例,并结合附图对本发明的具体实施方式做进一步详细说明。
1)如图1所示为长波640×512超晶格红外焦平面芯片处理前的表面示意图。超晶格红外焦平面芯片存在有机污染物(芯片表面残余物3),同时无污染物的区域材料表面较光滑,在制备小图形时光刻胶附着不牢,显影后光刻胶容易脱落,导致光刻图形缺失,在超晶格红外焦平面器件上形成盲元,降低超晶格红外焦平面性能。
1-锑化镓衬底;2-超晶格材料;3-芯片表面残余物;4-表面较粗糙的超晶格材料
2)为解决上述问题,本发明提出在涂覆光刻胶前增加氧等离子体和氩等离子体处理步骤的方法,利用氧等离子体与芯片表面有机污染物反应,生成气态的CO,C02和H20,去除有机污染物(芯片表面残余物3)。其次,再利用氩等离子体轻微轰击芯片表面,增加芯片表面粗糙度,氧等离子体和氩等离子体是通过感应耦合等离子体设备产生,其等离子体的能量可通过压强、功率等参数调节,可避免其对超晶格材料造成损伤。具体的步骤包括:
步骤S1:将长波640×512超晶格红外焦平面芯片放置于感应耦合等离子体设备的硅片基板上;
步骤S2:对基板进行降温处理,温度为12℃,达到12℃后持续时间13min;
步骤S3:设定氧气流量为60sccm;设定功率为40W,设定压强为30mTorr,设定等离子体处理的持续时间为40S
步骤S4:设定氩气流量为7sccm;设定功率为6W,设定压强为3mTorr,设定等离子体处理的持续时间为8S;
步骤S5:完成氧等离子体处理后,对基板进行升温处理,温度为22℃,达到22℃后持续时间为10min。
3)用上述步骤对超晶格红外焦平面芯片进行氧等离子体和氩等离子处理,可以获得最佳效果,使得有机污染物完全去除(如图2所示),同时增加芯片表面粗糙度(如图3所示),在此过程中可有效避免氧等离子体和氩等离子体对超晶格材料造成损伤。
图4所示的是未经氧、氩等离子处理和经氧、氩等离子体处理的长波640×512超晶格芯片台面光刻后的显微镜图,图4a所示未经氧、氩等离子处理的形貌图,存在有台面图形缺失,图4b所示光刻图形前经本发明方法处理的形貌图,无台面图形缺失。
图5所示的是未经氧、氩等离子处理和经氧、氩等离子体处理的长波640×512超晶格器件信号响应图,图5a所示未经氧、氩等离子处理的器件响应信号图,信号图上存在较多的盲元,降低器件性能;图5b所示光刻图形前经本发明方法处理的器件响应信号图,信号图上基本无由于图形缺失造成的盲元,器件性能较好。
应当理解,前面所描述的具体实施例仅用以解释本发明,并不限定本发明。
本发明还可用于其它规格的超晶格焦平面芯片、双色焦平面芯片光刻前的表面处理。

Claims (2)

1.一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法,其特征在于,该方法包括以下步骤:
步骤S1:将超晶格焦平面芯片放置于感应耦合等离子体设备的基板上;
步骤S2:对基板降温至10-15℃处理,达到10-15℃后维持时间10-15min;
步骤S3:采用氧等离子体处理超晶格焦平面芯片表面;在采用氧等离子体处理超晶格芯片表面过程中,氧气流量为50-80sccm,氧等离子体处理的功率为30-50W,压强为20-40mTorr,持续时间为30-60S;
步骤S4:采用氩等离子体处理超晶格焦平面芯片表面;在采用氩等离子体处理超晶格芯片表面过程中,氩气流量为5-10sccm,氩等离子体处理的功率为5-10W,压强为2-5mTorr,持续时间为5-10S;
步骤S5:对基板进行升温至20-22℃处理,达到20-22℃后持续时间为5-10min。
2.如权利要求1所述的方法,其特征在于,所述感应耦合等离子体设备基板为硅片基板。
CN202210304039.7A 2022-03-25 2022-03-25 一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法 Active CN114823970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210304039.7A CN114823970B (zh) 2022-03-25 2022-03-25 一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210304039.7A CN114823970B (zh) 2022-03-25 2022-03-25 一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法

Publications (2)

Publication Number Publication Date
CN114823970A CN114823970A (zh) 2022-07-29
CN114823970B true CN114823970B (zh) 2023-06-20

Family

ID=82531298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210304039.7A Active CN114823970B (zh) 2022-03-25 2022-03-25 一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法

Country Status (1)

Country Link
CN (1) CN114823970B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143666A (en) * 1998-03-30 2000-11-07 Vanguard International Seminconductor Company Plasma surface treatment method for forming patterned TEOS based silicon oxide layer with reliable via and interconnection formed therethrough
CN101273443A (zh) * 2005-09-26 2008-09-24 应用材料公司 改善光刻胶粘附性和重新使用一致性的氢处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365062B1 (en) * 1999-05-07 2002-04-02 United Microelectronics Corp. Treatment on silicon oxynitride
US6423650B2 (en) * 1999-08-09 2002-07-23 Advanced Micro Devices, Inc. Ultra-thin resist coating quality by increasing surface roughness of the substrate
JP3937711B2 (ja) * 2000-09-26 2007-06-27 松下電工株式会社 フリップチップ実装方法
JP3671879B2 (ja) * 2001-07-17 2005-07-13 松下電器産業株式会社 電子部品製造方法および電子部品
US7390753B2 (en) * 2005-11-14 2008-06-24 Taiwan Semiconductor Mfg. Co., Ltd. In-situ plasma treatment of advanced resists in fine pattern definition
US20080268632A1 (en) * 2007-04-30 2008-10-30 Fupo Electronics Corporation. LED epiwafer pad manufacturing process & new construction thereof
CN101374386B (zh) * 2007-08-24 2011-03-23 富葵精密组件(深圳)有限公司 印刷电路板的制作方法
JP5006415B2 (ja) * 2010-01-12 2012-08-22 キヤノンアネルバ株式会社 酸化膜除去のための基板洗浄処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143666A (en) * 1998-03-30 2000-11-07 Vanguard International Seminconductor Company Plasma surface treatment method for forming patterned TEOS based silicon oxide layer with reliable via and interconnection formed therethrough
CN101273443A (zh) * 2005-09-26 2008-09-24 应用材料公司 改善光刻胶粘附性和重新使用一致性的氢处理方法

Also Published As

Publication number Publication date
CN114823970A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US6037243A (en) Method for manufacturing silicon nanometer structure using silicon nitride film
JP2008300704A (ja) レジスト除去方法、半導体製造方法、及びレジスト除去装置
CN101651099B (zh) 去除光刻胶层的方法
WO2000024046A1 (fr) Procede d'attaque au plasma
JP2014090192A (ja) 通常の低k誘電性材料および/または多孔質の低k誘電性材料の存在下でのレジスト剥離のための方法
WO2010008967A2 (en) Improvement of organic line width roughness with h2 plasma treatment
TWI525692B (zh) Plasma etching method, control program and computer memory media
JP2003023000A5 (zh)
US6955177B1 (en) Methods for post polysilicon etch photoresist and polymer removal with minimal gate oxide loss
CN114823970B (zh) 一种增加光刻胶在超晶格红外焦平面芯片上附着性的方法
EP0010138A1 (en) A method of treating aluminium microcircuits
TW201011805A (en) Chamber plasma-cleaning process scheme
US20070202446A1 (en) Semiconductor device fabrication method having step of removing photo-resist film or the like, and photo-resist film removal device
JPS63216346A (ja) 有機物のエツチング方法
TWI786101B (zh) 蝕刻後處理以預防圖案崩塌
JP5642427B2 (ja) プラズマ処理方法
JPS6236826A (ja) アツシング方法
US20060138085A1 (en) Plasma etching method with reduced particles production
JP2000012521A (ja) プラズマアッシング方法
JP4464342B2 (ja) レジスト除去方法
JP4078935B2 (ja) プラズマアッシング方法
JP7202489B2 (ja) プラズマ処理方法
CN106298494B (zh) 一种多晶硅刻蚀方法
CN114141919B (zh) 半导体衬底及其制备方法、半导体器件及其制备方法
US6726800B2 (en) Ashing apparatus, ashing methods, and methods for manufacturing semiconductor devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant