CN114804874B - 一种四元压电陶瓷及其制备方法和应用 - Google Patents

一种四元压电陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN114804874B
CN114804874B CN202210535921.2A CN202210535921A CN114804874B CN 114804874 B CN114804874 B CN 114804874B CN 202210535921 A CN202210535921 A CN 202210535921A CN 114804874 B CN114804874 B CN 114804874B
Authority
CN
China
Prior art keywords
quaternary
equal
piezoelectric ceramic
ceramic
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210535921.2A
Other languages
English (en)
Other versions
CN114804874A (zh
Inventor
陈骏
陈良
祁核
张智飞
刘观富
余慧芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute For Advanced Material University Of Science & Technology Beijing
Original Assignee
Guangzhou Institute For Advanced Material University Of Science & Technology Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute For Advanced Material University Of Science & Technology Beijing filed Critical Guangzhou Institute For Advanced Material University Of Science & Technology Beijing
Priority to CN202210535921.2A priority Critical patent/CN114804874B/zh
Publication of CN114804874A publication Critical patent/CN114804874A/zh
Application granted granted Critical
Publication of CN114804874B publication Critical patent/CN114804874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种四元压电陶瓷及其制备方法和应用,属于功能陶瓷材料技术领域,所述的四元压电陶瓷含有用通式Pb1‑xSrx(Mn1/3Nb2/3)y(Zn1/3Nb2/3)0.2‑yZr0.8‑zTizO3+a wt.%CeO2+uwt.%MnO2表示且组成满足如下关系的主要组分:0≤x≤0.1,0<y<0.2,0.3≤z≤0.5,0.2≤a≤0.3,0≤u≤0.5。其陶瓷样品采用前驱体合成固相反应法制备而成。能够获得优异的综合性能,所述四元压电陶瓷具有很大的可调性,可应用于接收型换能器、发射型换能器和收发两用型换能器,可以很好的满足各种高端大功率换能器件的应用需求。

Description

一种四元压电陶瓷及其制备方法和应用
技术领域
本发明涉及一种四元压电陶瓷及其制备方法和应用,属于功能陶瓷材料技术领域。
背景技术
近些年来,压电材料在工业与科学领域中占据着越来越重要的地位,尤其是钙钛矿型压电陶瓷材料因其具有良好的化学稳定性、优异的物理性能、易于制备成各种形状、任意极化方向并可通过调节组分改变材料的性能等特点,被广泛应用于传感器、驱动器、变压器和各种类型的水声、电声和超声换能器等。在当今国内科技与工业迅猛发展的时代,已经实现大规模应用的锆钛酸铅基压电陶瓷材料的一些关键性配方和生产工艺技术仍然被国外所垄断,造成了国内在众多领域应用压电陶瓷成本极高和受制于人的局面。
绝大多数压电陶瓷很难在大功率换能器件领域实现实际应用,主要表现在以下几个方面:一是机械品质因数Qm、机电耦合系数kp、介电损耗tanδ和压电常数d33等几个关键性能参数很难兼顾,例如往往高的Qm是以kp和d33降低为代价的;二是通过软硬掺杂改进的陶瓷材料得到良好的综合性能参数表现的稳定性较低,如温度稳定性、机械稳定性等;三是改进后性能好的压电陶瓷成本极高,难以实现大规模生产和应用等。例如MyeongcheolKang等人以铌镍酸铅-锆钛酸铅0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr,Ti)O3为基体掺杂MnO2制备适用于压电超声换能器件的陶瓷材料,其最佳性能d33为342pC/N,Qm为202,kp为0.28,介电常数εr为1827,介电损耗tanδ为0.045(Materials 2019,12,4115;doi:10.3390/ma12244115)。Li-Qian Cheng等人采用放电等离子烧结方法力图在0.95Pb(Zr0.52Ti0.48)O3-0.05Pb(Mn1/3Nb2/3)O3陶瓷中得到高的性能,其最佳性能d33为392pC/N,Qm为582,kp为0.583,介电常数εr为842,介电损耗tanδ为0.0028(Journal of Materials Science:Materialsin Electronics(2019)30:5691-5697,doi.org/10.1007/s10854-019-00862-8)。ZhigangZhu等人采用Yb和Nd对0.05Pb(Mn1/3Sb2/3)O3-0.95Pb(Zr0.52Ti0.48)O3进行掺杂改性来满足大功率压电换能应用,其最佳性能d33为390pC/N,Qm为800,kp为0.61,介电常数εr为1380,介电损耗tanδ为0.0041(Ceramics International 34,(2008),2067-2072,doi:10.1016/j.ceramint.2007.08.008)。但它们的性能相对较低,尤其是Qm很难突破1000,难以满足高端大功率换能器件的应用需求。因此研制高性能的锆钛酸铅基压电陶瓷并对其进行改性调控在大功率换能器中的应用具有重要的现实意义。
发明内容
本发明针对现有技术存在的不足,提供一种四元压电陶瓷及其制备方法和应用,所述的四元压电陶瓷为具有低损耗的铌锌酸铅-铌锰酸铅-锆钛酸铅四元压电陶瓷材料,所述的四元压电陶瓷材料组成同时具有高机械品质因数Qm,kp和εr,可以满足大功率超声换能器。
本发明解决上述技术问题的技术方案如下:一种四元压电陶瓷,所述的四元压电陶瓷含有用通式
Pb1-xSrx(Mn1/3Nb2/3)y(Zn1/3Nb2/3)0.2-yZr0.8-zTizO3+a wt.%CeO2+u wt.%MnO2表示且组成满足如下关系的主要组分:
0≤x≤0.1,0<y<0.2,0.3≤z≤0.5,0.2≤a≤0.3,0≤u≤0.5。
优选的,所述组成满足如下关系的主要组分:0≤x≤0.06,y=0.1,0.41≤2≤0.43,a=0.25,0.15≤u≤0.25。
本发明还公开了所述四元压电陶瓷的制备方法,所述的制备方法包括如下步骤:
S1、制备MnNb2O6和ZnNb2O6前驱体;
S2、将步骤S1制得的前驱体与通式中其他的金属碳酸盐或氧化物按照化学计量比混合,并在介质中研磨、烘干和煅烧合成,得到预合成粉体;
S3、将步骤S2的预合成粉体在介质中研磨、造粒、压制成型、烧结,得到陶瓷样品;
S4、将步骤S3的陶瓷样品经过抛光处理后在两端面涂上银电极,然后极化处理,即得所述四元压电陶瓷。
进一步的,步骤S1中前驱体的制备方法为:按照MnNb2O6和ZnNb2O6的化学式,将相应金属碳酸盐或氧化物原料按化学计量比进行称量配制前驱体的原料混料,所述原料混料在介质中研磨至D90粒径为5-15μm,经烘干后进行煅烧,煅烧合成的温度为900-1200℃,保温时间为2-4小时,并多次重复研磨和煅烧,得到MnNb2O6和ZnNb2O6前驱体。
进一步的,所述原料混料包括锰化合物、铌化合物和锌化合物,所述锰化合物为MnCO3或MnO2中的一种或两种组合,所述铌化合物为Nb2O5,所述锌化合物为ZnCO3或ZnO中的一种或两种组合。
进一步的,步骤S2中所述其他的金属碳酸盐或氧化物包括PbO、SrCO3、ZrO2、TiO2、CeO2和MnO2
进一步的,步骤S2中,将所述金属碳酸盐或氧化物在介质中进行研磨,使其D90粒径为5-15μm后烘干后进行煅烧合成,煅烧合成温度为800-900℃,保温2-4小时,得到预合成粉体。
进一步的,步骤S3中,将所述预合成粉体在介质中研磨至D90粒径为5-15μm后烘干并与粘结剂混合造粒,在300-400MPa的压力下冷压成型,得到陶瓷坯体,将所述陶瓷坯体在空气中,常压下采用埋粉末法提供保护气氛烧结,烧结温度为1200-1300℃,烧结时间为2小时,烧结过程的升温速率为3-5℃/min,得到所述的陶瓷样品。
进一步的,步骤S4中,极化处理的过程为:将涂有银电极的陶瓷样品置于80-120℃的硅油中,在2-4kV/mm的直流电场下保温保压20-30分钟即得所述的四元压电陶瓷。
本发明还公开了所述四元压电陶瓷的应用,所述四元压电陶瓷应用于接收型换能器、发射型换能器和收发两用型换能器。
本发明的有益效果是:
1)Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3三元材料是典型的“硬性材料”,其特点是Qm高,时间稳定性好,Pb(Zn1/3Nb2/3)O3-Pb(Zr,Ti)O3三元材料是典型的“软性材料”其特点是kp高,谐振频率的温度稳定性好,通过将两者复合成四元系固溶体,可以得到Qm和kp都优异的压电材料;但还存在一些问题,在大功率压电陶瓷领域,如何得到同时满足较高Qm,kp,εr,d33及Tm(陶瓷居里温度)等参数,以满足工程化应用亟待解决,本发明提出了一种四元压电陶瓷材料,该材料可以同时满足将上述5种参数维持在较高水平,且利用了各元素间除了自身作用外还包括其相互影响,使得该四元压电陶瓷材料性能优异。
2)本发明通过研究发现原料粒径对于烧绿石相的生成以及Qm影响较大。粒径过大过小均会导致烧绿石相的生成,使得钙钛矿相占比减少,影响压电陶瓷的性能;其次,粒径较大影响陶瓷的致密度,机械品质下降,粒径较小,致密度太大,压电性能下降;本发明通过研究,在该四元压电陶瓷体系下,结合合适的粒径可以进一步提高该压电陶瓷的性能。
3)本发明的四元压电陶瓷可以有效调控大功率压电陶瓷的压电和机电性能,可以同时调控出高d33,高kp,高εr,中等Qm的接收型换能器,中等d33,中等kp,中等εr,超高Qm的发射型换能器以及兼顾高d33,高kp,高εr,高Qm的收发两用型换能器,具有极高的性能可调性,且性能优异,可以满足各种高端大功率换能器件的应用需求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例1,3,4和5所制备的大功率四元压电陶瓷XRD图;
图2为本发明实施例1,3,4和5所制备的大功率四元压电陶瓷的表面SEM形貌图;(a)PMZN-1;(b)PMZN-3;(c)PMZN-4;(d)PMZN-5。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。
本发明中,大功率换能器件领域,陶瓷品质因素FOM是反映压电陶瓷综合性能一个重要参数,FOM越高,表示陶瓷的综合性能越好。为了确定该体系最佳PMN固溶量与最佳烧结温度,计算压电陶瓷品质因数FOM,以此作为基础,比较不同四元压电陶瓷的综合性能,其次结合其他性能参数的水平,综合评价本发明所提供的四元压电陶瓷。
FOM=Qm×kp×εr
实施例1
S1、将化学纯或分析纯的金属碳酸盐或氧化物的原料按化学计量比进行称量配制,其中原料为MnCO3、Nb2O6和ZnO,混合后配制成原料混料,然后以酒精或者水为介质,经球磨混料,使其D90粒径为5-15μm,湿粉烘干后分别在1100-1200℃煅烧2-4小时,然后重复球磨混料和煅烧,得到前驱体MnNb2O6和ZnNb2O6
S2、选取x=0,y=0.10,z=0.42,a=0.25,u=0,按化学计量比称取其他原料作为PMZN-1的配方,其他原料为PbO、ZrO2、TiO2和CeO2;前驱体MnNb2O6和ZnNb2O6研碎后,与其他原料混合,然后以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体放置于氧化铝坩埚中煅烧合成,温度为850℃,保温2小时,得到预合成粉体;
S3、预合成粉体研碎后仍以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体与粘结剂进行混合造粒,在300-400MPa的压力下冷压成型直径10mm、厚度1-1.5mm的圆片,得到陶瓷坯体。在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1275℃,烧结时间为2小时、升温速率为3-5℃/min,得到陶瓷样品;
S4、陶瓷样品经过抛光处理后在两端面涂上银电极,然后置于80℃的硅油中,在3.5kV/mm的直流电场下保温保压30分钟即得所述的大功率四元压电陶瓷。
测量PMZN-1机械及电学性能,其性能测试数据在后文表中进行汇总。
实施例2
与实施例1不同的是:选取x=0.05,y=0.10,z=0.42,a=0.25,u=0,按化学计量比称取其他原料作为PMZN-2的配方
实施例3
S1、将化学纯或分析纯的金属碳酸盐或氧化物的原料按化学计量比进行称量配制,其中原料为MnCO3、Nb2O6和ZnO,混合后配制成原料混料,然后以酒精或者水为介质,经球磨混料,使其D90粒径为5-15μm,湿粉烘干后在900-1000℃煅烧2-4小时,然后重复球磨混料和煅烧,得到前驱体MnNb2O6和ZnNb2O6
S2、选取x=0.05,y=0.10,z=0.42,a=0.25,u=0.2按化学计量比称料作为PMZN-3的配方,其他原料为PbO、SrCO3、ZrO2、TiO2、CeO2和MnO2;前驱体MnNb2O6和ZnNb2O6研碎后,与其他原料混合,以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体放置于氧化铝坩埚中煅烧合成,温度为850℃,保温2小时,得到预合成粉体;
S3、预合成粉体研碎后仍以酒精或者水为介质球磨球磨至其D90粒径为5-15μm,干燥后的粉体与粘结剂进行混合造粒,在300-400MPa的压力下冷压成型直径10mm、厚度1-1.5mm的圆片,得到陶瓷坯体;陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1275℃,烧结时间为2小时、升温速率为3-5℃/min,得到陶瓷样品;
S4、陶瓷样品经过抛光处理后在两端面涂上银电极,然后置于100℃的硅油中,在3.5kV/mm的直流电场下保温保压25分钟即得所述的大功率四元压电陶瓷。
实施例4
S1、将化学纯或分析纯的金属碳酸盐或氧化物的原料按化学计量比进行称量配制,其中原料为MnCO3、Nb2O6和ZnO,混合后配制成原料混料,然后以酒精或者水为介质,经球磨混料,使其D90粒径为5-15μm,湿粉烘干后在1100-1200℃煅烧2-4小时,然后重复球磨混料和煅烧,得到前驱体MnNb2O6和ZnNb2O6
S2、选取x=0.05,y=0.10,z=0.46,a=0.25,u=0.2按化学计量比称料作为PMZN-4的配方,其他原料为PbO、SrCO3、ZrO2、TiO2、CeO2和MnO2;前驱体MnNb2O6和ZnNb2O6研碎后,与其他原料混合,以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体放置于氧化铝坩埚中煅烧合成,温度为850℃,保温2小时,得到预合成粉体;
S3、预合成粉体研碎后仍以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体与粘结剂进行混合造粒,在300-400MPa的压力下冷压成型直径10mm、厚度1-1.5mm的圆片,得到陶瓷坯体;陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1275℃,烧结时间为2小时、升温速率为3-5℃/min,得到陶瓷样品;
S4、陶瓷样品经过抛光处理后在两端面涂上银电极,然后置于100℃的硅油中,在3.5kV/mm的直流电场下保温保压30分钟即得所述的大功率四元压电陶瓷。
实施例5
S1、将化学纯或分析纯的金属碳酸盐或氧化物的原料按化学计量比进行称量配制,其中原料为MnCO3、Nb2O6和ZnO,混合后配制成原料混料,然后以酒精或者水为介质,经球磨混料,使其D90粒径为5-15μm,湿粉烘干后在1000-1100℃煅烧2-4小时,然后重复球磨混料和煅烧,得到前驱体MnNb2O6和ZnNb2O6
S2、选取x=0.05,y=0.10,z=0.40,a=0.25,u=0.2按化学计量比称料作为PMZN-5的配方,其他原料为PbO、SrCO3、ZrO2、TiO2、CeO2和MnO2;前驱体MnNb2O6和ZnNb2O6研碎后,与其他原料混合,然后以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体放置于氧化铝坩埚中煅烧合成,温度为850℃,保温2小时,得到预合成粉体;
S3、预合成粉体研碎后仍以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体与粘结剂进行混合造粒,在300-400MPa的压力下冷压成型直径10mm、厚度1-1.5mm的圆片,得到陶瓷坯体;陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1275℃,烧结时间为2小时、升温速率为3-5℃/min,得到陶瓷样品;
S4、陶瓷样品经过抛光处理后在两端面涂上银电极,然后置于110℃的硅油中,在3.5kV/mm的直流电场下保温保压30分钟即得所述的大功率压电陶瓷。
实施例6
S1、将化学纯或分析纯的金属碳酸盐或氧化物的原料按化学计量比进行称量配制,其中原料为MnCO3、Nb2O6和ZnO,混合后配制成原料混料,然后以酒精或者水为介质,经球磨混料,使其D90粒径为5-15μm,湿粉烘干后在1100-1200℃煅烧2-4小时,然后重复球磨混料和煅烧,得到前驱体MnNb2O6和ZnNb2O6
S2、选取x=0,y=0.05,z=0.42,a=0.25,u=0按化学计量比称料作为PMZN-6的配方,其他原料为PbO、SrCO3、ZrO2、TiO2和CEO2;前驱体MnNb2O6和ZnNb2O6研碎后,与其他原料混合,然后以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体放置于氧化铝坩埚中煅烧合成,温度为850℃,保温2小时,得到预合成粉体;
S3、预合成粉体研碎后仍以酒精或者水为介质球磨至其D90粒径为5-15μm,干燥后的粉体与粘结剂进行混合造粒,在300-400MPa的压力下冷压成型直径10mm、厚度1-1.5mm的圆片,得到陶瓷坯体,陶瓷坯体在空气中常压下采用埋粉末法提供保护气氛烧结,烧结温度为1250℃,烧结时间为2小时、升温速率为3-5℃/min,得到陶瓷样品;
S4、陶瓷样品经过抛光处理后在两端面涂上银电极,然后置于80℃的硅油中,在3.5kV/mm的直流电场下保温保压30分钟即得所述的大功率压电陶瓷。
实施例7
与实施例1不同的是,选取x=0,y=0.15,z=0.42,a=0.25,u=0,按化学计量比称取其他原料作为PMZN-7的配方。
实施例8
与实施例3不同的是,选取x=0.05,y=0.10,z=0.42,a=0.25,u=0.1,按化学计量比称取其他原料作为PMZN-8的配方。
实施例9
与实施例3不同的是,选取x=0.05,y=0.10,z=0.42,a=0.25,u=0.3,按化学计量比称取其他原料作为PMZN-9的配方。
实施例10
与实施例3不同的是,选取x=0,y=0.10,z=0.42,a=0.25,u=0.3,按化学计量比称取其他原料作为PMZN-10的配方。
实施例11
与实施例3不同的是,选取x=0.07,y=0.10,z=0.42,a=0.25,u=0.2,按化学计量比称取其他原料作为PMZN-11的配方。
对比例1
与实施例2不同的是,选取x=0.2,y=0.10,z=0.42,a=0.25,u=0,按化学计量比称取其他原料作为PMZN-12的配方。
对比例2
与实施例1不同的是,选取x=0,y=0.10,z=0.6,a=0.25,u=0,按化学计量比称取其他原料作为PMZN-13的配方。
对比例3
与实施例1不同的是,选取x=0,y=0.10,z=0.42,a=0.25,u=0.7,按化学计量比称取其他原料作为PMZN-14的配方。
对比例4
与实施例1不同的是,在研磨过程中,D90粒径为4μm,作为PMZN1-1的配方。
对比例5
与实施例1不同的是,在研磨过程中,D90粒径为18μm,称为PMZN1-2的配方。
对比例6
与实施例3不同的是,在研磨过程中,D90粒径为4μm,称为PMZN3-1的配方。
对比例7
与实施例3不同的是,在研磨过程中,D90粒径为18μm.称为PMZN3-2的配方。
通过图1中PMZN-1、PMZN-3、PMZN-4和PMZN-5的XRD图(烧结1275℃),可以看出,采用本发明方法制备的四方压电陶瓷均为较为明显的四方相结构。
另外,图2为PMZN-1、PMZN-3、PMZN-4和PMZN-5压电陶瓷表面的SEM形貌图,由图2可看出,采用本发明方法制备的四方压电陶瓷均为致密均匀的微观结构。
实施例1-11和对比例1-7得到的四元压电陶瓷的压电及机电性能参数汇总如下表格:
Figure BDA0003646544760000081
Figure BDA0003646544760000091
表中,PMZN-1~PMZN3-2的性能数据可以看出Pb1-xSrx(Mn1/3Nb2/3)y(Zn1/3Nb2/3)0.2- yZr0.8-zTizO3+a wt.%CeO2+u wt.%MnO2表示且组成满足如下关系的主要组分:0≤x≤0.1,0<y<0.2,0.3≤z≤0.5,0.2≤a≤0.3,0≤u≤0.5。其综合性能较高,FOM大于750000,Tm在250℃以上,d33在200pC/N以上。通过对比PMZN-3和PMZN-10可知当0≤x≤0.06,y=0.1,0.41≤z≤0.43,a=0.25,0.15≤u≤0.25,其FOM在1060000以上,性能明显提高;其次通过比对PMZN-3、PMZN-4和PMZN-5,当0.41≤z≤0.43,FOM达到1060000以上,这是由于一定比例的锆钛比构成准同型相界(MPB),使得体系中三方相与四方相共存。具有MPB组分陶瓷的压电性具有明显的特征,尤其是陶瓷的压电常数d33和机电耦合系数kp都将出现很大的提高。这归因于MPB组分的陶瓷在外加机械负载或电场的情况下,准同型相界的平衡易被破坏,使得体系发生三方相到四方相的转变,从而大大提高了陶瓷的压电、介电性能。本发明的四方压电陶瓷可以有效调控大功率压电陶瓷的压电和机电性能,可以同时调控出高d33,高kp,高εr,中等Qm的接收型换能器,中等d33,中等kp,中等εr,超高Qm的发射型换能器以及兼顾高d33,高kp,高εr,高Qm的收发两用型换能器,具有极高的性能可调性,且性能优异,可以满足各种高端大功率换能器件的应用需求。
基于PMZN-1、PMZN1-1和PMZN1-2以及PMZN-3、PMZN3-1和PMZN3-2可以看出当研磨D90粒径为5-15μm时可以大大提高陶瓷品质因素FOM,原料粒径在5-15μm以外,均有烧绿石相的生成,该相会减少钙钛矿相的占比,影响四元压电陶瓷品质因素;其次,粒径较大影响陶瓷的致密度,机械品质下降;粒径较小,致密度太大,压电性能下降。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1. 一种四元压电陶瓷的制备方法,其特征在于,
所述的四元压电陶瓷含有用通式
Pb1-xSrx(Mn1/3Nb2/3)y(Zn1/3Nb2/3)0.2-yZr0.8-zTizO3+a wt.%CeO2+u wt.%MnO2表示且组成满足如下关系的主要组分:
0≤x≤0.1,0<y<0.2,0.3≤z≤0.5,0.2≤a≤0.3,0≤u≤0.5;
所述的制备方法包括如下步骤:
S1、制备MnNb2O6和ZnNb2O6前驱体;按照MnNb2O6和ZnNb2O6的化学式,将相应金属碳酸盐或氧化物原料按化学计量比进行称量配制前驱体的原料混料,所述原料混料在介质中研磨至D90粒径为5-15µm,烘干后煅烧合成,并经过多次重复研磨和煅烧合成,得到MnNb2O6和ZnNb2O6前驱体;
S2、将步骤S1制得的前驱体与通式中其他的金属碳酸盐或氧化物按照化学计量比混合,并在介质中研磨、烘干和煅烧合成,得到预合成粉体;
S3、将步骤S2的预合成粉体在介质中研磨、造粒、压制成型、烧结,得到陶瓷样品;
S4、将步骤S3的陶瓷样品经过抛光处理后在两端面涂上银电极,然后极化处理,即得所述四元压电陶瓷;
上述步骤的研磨工艺为将物料在介质中研磨至D90粒径为5-15µm。
2.根据权利要求1所述四元压电陶瓷的制备方法,其特征在于,优选地,所述组成满足如下关系的主要组分:0≤x≤0.06,y=0.1,0.41≤z≤0.43,a=0.25,0.15≤u≤0.25。
3.根据权利要求1或2所述四元压电陶瓷的制备方法,其特征在于,所述步骤S1中煅烧合成的温度为900-1200℃,保温时间为2-4小时。
4.根据权利要求1或2所述四元压电陶瓷的制备方法,其特征在于,所述原料混料包括锰化合物、铌化合物和锌化合物,所述锰化合物为MnCO3或MnO2中的一种或两种组合,所述铌化合物为Nb2O5,所述锌化合物为ZnCO3或ZnO中的一种或两种组合。
5.根据权利要求1或2所述四元压电陶瓷的制备方法,其特征在于,步骤S2中所述其他的金属碳酸盐或氧化物包括PbO、SrCO3、ZrO2、TiO2、CeO2和MnO2
6.根据权利要求1或2所述四元压电陶瓷的制备方法,其特征在于,步骤S2中,将所述金属碳酸盐或氧化物在介质中进行研磨,使其D90粒径为5-15µm后烘干后进行煅烧合成,煅烧合成温度为800-900℃,保温2-4小时,得到预合成粉体。
7.根据权利要求1或2所述四元压电陶瓷的制备方法,其特征在于,步骤S3中,将所述预合成粉体在介质中研磨至D90粒径为5-15µm后烘干并与粘结剂混合造粒,在300-400MPa的压力下冷压成型,得到陶瓷坯体,将所述陶瓷坯体在空气中,常压下采用埋粉末法提供保护气氛烧结,烧结温度为1200-1300℃,烧结时间为2小时,烧结过程的升温速率为3-5℃/min,得到所述的陶瓷样品。
8.根据权利要求1或2所述四元压电陶瓷的制备方法,其特征在于,步骤S4中,极化处理的过程为:将涂有银电极的陶瓷样品置于80-120℃的硅油中,在2-4kV/mm的直流电场下保温保压20-30分钟即得所述的四元压电陶瓷。
9.根据权利要求1-8任一所述方法制备的四元压电陶瓷的应用,其特征在于,所述四元压电陶瓷应用于接收型换能器、发射型换能器和收发两用型换能器。
CN202210535921.2A 2022-05-17 2022-05-17 一种四元压电陶瓷及其制备方法和应用 Active CN114804874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210535921.2A CN114804874B (zh) 2022-05-17 2022-05-17 一种四元压电陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210535921.2A CN114804874B (zh) 2022-05-17 2022-05-17 一种四元压电陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114804874A CN114804874A (zh) 2022-07-29
CN114804874B true CN114804874B (zh) 2023-04-18

Family

ID=82515812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210535921.2A Active CN114804874B (zh) 2022-05-17 2022-05-17 一种四元压电陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114804874B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062790A (en) * 1971-02-08 1977-12-13 Matsushita Electric Industrial Co., Ltd. Piezoelectric ceramic compositions
CN101798219B (zh) * 2010-02-26 2012-10-31 上海海事大学 用于水声换能器的压电陶瓷及其制备方法
CN107746257A (zh) * 2017-09-27 2018-03-02 无锡市惠丰电子有限公司 一种压电陶瓷材料的制备方法

Also Published As

Publication number Publication date
CN114804874A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Lin et al. Piezoelectric and ferroelectric properties of KxNa1− xNbO3 lead-free ceramics with MnO2 and CuO doping
Li et al. Electromechanical and dielectric properties of Na0. 5Bi0. 5TiO3–K0. 5Bi0. 5TiO3–BaTiO3 lead-free ceramics
US9543501B2 (en) Metal oxide
EP2598462B1 (en) Ceramic
Chang et al. The effects of sintering temperature on the properties of (Na0. 5K0. 5) NbO3–CaTiO3 based lead-free ceramics
CN102850050A (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN109553413B (zh) 一种织构化压电陶瓷及其制备方法和用途
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
CN111269009A (zh) 一种锆锰酸铋-钪酸铋-钛酸铅系压电陶瓷材料及其制备方法
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
CN115385689A (zh) 一种铌镁酸铅-锆钛酸铅基压电陶瓷材料及其制备方法
Li et al. Dielectric and Piezoelectric Properties of Na 0.5 Bi 0.5 TiO 3-K 0.5 Bi 0.5 TiO 3-NaNbO 3 Lead-Free Ceramics
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
JP2002308672A (ja) 圧電セラミックの製造方法、圧電セラミック、および圧電セラミック素子
KR101635939B1 (ko) 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액추에이터
JP2007084408A (ja) 圧電セラミックス
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
CN113213918A (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN114804874B (zh) 一种四元压电陶瓷及其制备方法和应用
CN103524129B (zh) 一种超声发射型换能器用压电陶瓷材料及其制备方法
KR20130083218A (ko) 비납계 압전 세라믹스 및 그 제조 방법
KOBUNE et al. Effects of MnO2 addition on piezoelectric and ferroelectric properties of PbNi1/3Nb2/3O3-PbTiO3-PbZrO3 ceramics
KR20110043339A (ko) 저온 소성용 무연 압전세라믹 조성물 및 제조방법
JP2811800B2 (ja) アクチュエータ用圧電セラミック組成物
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant