CN114797849B - 一种双功能钙钛矿氧化物催化剂、制备方法及其应用 - Google Patents

一种双功能钙钛矿氧化物催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN114797849B
CN114797849B CN202210142955.5A CN202210142955A CN114797849B CN 114797849 B CN114797849 B CN 114797849B CN 202210142955 A CN202210142955 A CN 202210142955A CN 114797849 B CN114797849 B CN 114797849B
Authority
CN
China
Prior art keywords
catalyst
perovskite oxide
hydrogen production
ball milling
oxide catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210142955.5A
Other languages
English (en)
Other versions
CN114797849A (zh
Inventor
周嵬
费良双
孙海南
韩笑
李宇
邵宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210142955.5A priority Critical patent/CN114797849B/zh
Publication of CN114797849A publication Critical patent/CN114797849A/zh
Application granted granted Critical
Publication of CN114797849B publication Critical patent/CN114797849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了本发明专利公开了一种双功能钙钛矿氧化物催化剂、制备方法及其应用,通过在锶钛基钙钛矿氧化物中掺入少量的铂元素,使得母体钙钛矿氧化物的电催化和光催化产氢性能均有数倍的提升,与传统的复合型双功能电催化光催化产氢催化剂不同,本发明中制备的催化剂为单相催化剂,且合成方法简单,易于大规模使用和扩大研究,对解决当前化石燃料过度使用引起的能源短缺和环境污染问题提供了新的思路。

Description

一种双功能钙钛矿氧化物催化剂、制备方法及其应用
技术领域
本发明属于催化剂技术领域,具体涉及一种双功能钙钛矿氧化物催化剂、制备方法及其应用。
背景技术
化石燃料的过度使用引起的能源短缺和环境污染等问题逐渐引起了全世界对于新型能源体系的关注。氢能在所有的能源载体中具有最高的质量能量密度,因此被认为是最具使用前景的能量载体。通过可再生能源发电驱动的电化学产氢(e-HER)和太阳能驱动的光化学产氢(e-HER)被认为是未来解决能源供应和环境污染的方法。无论是对于电催化还是光催化产氢来说,提升其产氢的效率的关键还是在于高性能催化剂的开发。同时我们还设想,如果单一的催化剂可以同时用于电化学产氢和光化学产氢,这不仅可以有效的可再生能源和太阳能,还可以有效的减少材料的开发成本。
目前,有关双功能电催化和光催化制氢催化剂的报道仍然是有限的,在有效的报道中,主要是有关于复合催化剂。这些催化剂的设计原理主要是将具有单一优异电催化或者光催化性能的材料合二为一性能复合材料,例如Pt/TiO2、Co9S8/Ni3Se2和Pd/MoO3等。然而,该项技术的大规模应用仍然受限于材料复杂的合成方法和高昂的原材料成本。虽然该方面的研究已经取得了一定的进展,进一步拓展催化剂的材料体系仍然是十分必要的。
钙钛矿氧化物作为一种物理化学性质灵活可调的材料已经被广泛的应用于各种领域,对于电催化析氢,有LaCo1-xPtxO3氧化物和Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3-δ氧化物等被开发出来;对于光催化制氢,有Sr1.97La0.03Ti0.97Rh0.03O4氧化物和Sr2TiO4-xFx氧化物等。钙钛矿由于其独特的结构性质也经常被用于对各种反应机理的研究,如果能够将钙钛矿氧化物用作双功能电催化和光化学产氢的催化剂,对于更好的理解催化剂的性能与构效之间的关系也大有裨益,对指导设计开发新型高效的催化剂也有重要意义。然而到目前为止,有关单相的双功能催化剂的报道仍是有限的,仍然有很多可以努力的空间。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种双功能钙钛矿氧化物催化剂、制备方法及其应用,对电化学和光化学制氢都表现出相对优异的性能,且合成方法简单。
为了实现上述目标,本发明采用如下的技术方案:
一种双功能钙钛矿氧化物催化剂,钙钛矿氧化物催化剂的化学式为SrTi1-xPtxO3, 其中0≤x≤0.2。
一种双功能钙钛矿氧化物催化剂的制备方法为固相法、溶胶凝胶法、甘氨酸辅助燃烧法或熔盐法中的一种。
优选地,一种双功能钙钛矿氧化物催化剂的制备方法采用固相法制备,包括如下具体步骤:
S1、分别称取适量SrCO3、TiO2和 Pt倒入球磨罐中,加入适量的乙醇,进行球磨处理,得到分散均匀的前驱体溶液;
S2、将前驱体溶液置于表面皿中,烘干得到前驱体粉末;
S3、取适量的前驱体粉末于氧化铝坩埚中,在空气下于马弗炉中焙烧,自然降温后取出,研磨得到SrTi1-xPtxO3催化剂。
优选地,采用行星式高能球磨机进行球磨处理,所述行星式高能球磨机的转速为400转/min,球磨时间为1h。
优选地,采用钠灯对前驱体溶液进行烘干处理。
优选地,马弗炉的焙烧温度为1200℃,焙烧时间为20h,升温速率为5℃/min。
一种双功能钙钛矿氧化物催化剂的应用,用于电化学制氢和光化学制氢的催化。
本发明的有益之处在于:
(1)本发明提供的单相催化剂氧化物结晶情况良好,粉末呈现灰色状态;通过铂元素的引入调整了钙钛矿氧化物中钛元素的价态,可以有效降低反应的带隙值,提升载流子传输速率和电子空穴复合速度;
(2)本发明掺入少量铂元素使得催化剂中产生了较多的氧空穴,这不仅可以增强催化剂的电子传输能力,还能提高水分子在钙钛矿表面分解成氢气分子的能力,有效的调控了催化剂的电催化产氢性能;锶钛基钙钛矿氧化物本身属于半导体材料,其独特的晶体结构和电子特性在可见光辐射下表现良好,是高效可利用的光催化剂,通过调节其价带导带信息可以进一步对材料的光催化产氢性能进行调控;本发明的双功能催化剂对电化学和光化学制氢都表现出相对优异的性能,性能远优于未掺杂的母体锶钛基催化剂;
(3)本发明制备的催化剂为单相催化剂,且合成方法简单,适用于基础研究以及后续的放大研究。
附图说明
图1是本发明的实施例1和对比例中催化剂的粉末x-射线晶体衍射(XRD)花样;
图2是本发明的实施例1和实施例2中催化剂的粉末x-射线晶体衍射(XRD)花样;
图3是本发明的实施例1和对比例中催化剂的扫描电子显微镜(SEM)图片;
图4是本发明的实施例1和对比例中催化剂的元素分析全谱图;
图5是本发明的实施例1和对比例中催化剂的高分辨率X-射线光电子能谱(XPS)图;
图6是本发明的实施例1和对比例中催化剂的光吸收性能和带隙图;
图7是本发明的实施例1和对比例中催化剂的电催化产氢性能图;
图8是本发明的实施例1和对比例中催化剂电催化产氢的反应动力学(Tafel)和电荷转移能力(EIS)图;
图9是本发明的实施例1中催化剂的电催化产氢稳定性图;
图10是本发明的实施例1和对比例中催化剂的光催化产氢性能图。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
实施例1
本实施例中钙钛矿氧化物催化剂的化学式为SrTi0.95Pt0.05O3,其制备方法包括如下具体步骤:
S1、分别称取0.5905g SrCO3、0.3036g TiO2和 0.039 g Pt倒入球磨罐中,加入适量的乙醇,采用行星式高能球磨机进行球磨处理,球磨机的转速为400转/min,球磨时间为1h,得到分散均匀的前驱体溶液;
S2、将前驱体溶液置于表面皿中,在钠灯下进行烘干得到前驱体粉末;
S3、取适量的前驱体粉末于氧化铝坩埚中,在空气下于马弗炉中焙烧,焙烧温度为1200℃,焙烧时间为20h,升温速率为5℃/min,自然降温后取出,研磨得到SrTi0.95Pt0.05O3催化剂,标记为STP。
实施例2
本实施例中钙钛矿氧化物催化剂的化学式为SrTi0.9Pt0.1O3,其制备方法包括如下具体步骤:
S1、分别称取0.3691g SrCO3、0.1798g TiO2和 0.0488 g Pt倒入球磨罐中,加入适量的乙醇,采用行星式高能球磨机进行球磨处理,球磨机的转速为400转/min,球磨时间为1h,得到分散均匀的前驱体溶液;
S2、将前驱体溶液置于表面皿中,在钠灯下进行烘干得到前驱体粉末;
S3、取适量的前驱体粉末于氧化铝坩埚中,在空气下于马弗炉中焙烧,焙烧温度为1200℃,焙烧时间为20h,升温速率为5℃/min,自然降温后取出,研磨得到SrTi0.95Pt0.05O3催化剂,标记为STP-0.1。
实施例3
本实施例中钙钛矿氧化物催化剂的化学式为SrTi0.8Pt0.2O3,其制备方法包括如下具体步骤:
S1、分别称取0.1476g SrCO3、0.06392g TiO2和 0.039 g Pt倒入球磨罐中,加入适量的乙醇,采用行星式高能球磨机进行球磨处理,球磨机的转速为400转/min,球磨时间为1h,得到分散均匀的前驱体溶液;
S2、将前驱体溶液置于表面皿中,在钠灯下进行烘干得到前驱体粉末;
S3、取适量的前驱体粉末于氧化铝坩埚中,在空气下于马弗炉中焙烧,焙烧温度为1200℃,焙烧时间为20h,升温速率为5℃/min,自然降温后取出,研磨得到SrTi0.95Pt0.05O3催化剂,标记为STP-0.2。
对比例
对比例选用SrTiO3催化剂,其制备方法包括如下具体步骤:
S1、分别称取1.476g SrCO3和0.199g TiO2倒入球磨罐中,加入适量的乙醇,采用行星式高能球磨机进行球磨处理,球磨机的转速为400转/min,球磨时间为1h,得到分散均匀的前驱体溶液;
S2、将前驱体溶液置于表面皿中,在钠灯下进行烘干得到前驱体粉末;
S3、取适量的前驱体粉末于氧化铝坩埚中,在空气下于马弗炉中焙烧,焙烧温度为1000℃,焙烧时间为10h,升温速率为5℃/min,自然降温后取出,研磨得到SrTiO3催化剂,标记为ST。
对实施例1中的催化剂STP和对比例中的催化剂ST分别进行性能表征实验、电催化析氢性能评估实验和光催化析氢性能评估实验,具体实验数据如下:
(一)性能表征实验
1、根据图1中ST和STP催化剂的粉末XRD衍射图可知,掺杂少量的铂进入B位以后催化剂仍然呈现出与ST母体钙钛矿相同的晶型,但是进一步增加铂的含量后,在STP-0.2中会出现少量的Sr2TiO4杂相,如图2所示。
2、如图3所示,通过扫描电子显微镜(SEM)对ST和STP进行表征发现,二者均呈现出微小的颗粒状形貌,且粒径尺寸没有明显的差距,这初步排除了催化剂的比表面积对催化性能的影响。
3、如图4所示,通过ST和STP的X-射线光电子(XPS)扫描全谱中可知,STP中有明显的属于铂元素的信号峰。如图5所示,通过对各种元素进行化学态表征发现,掺入铂之后,钛的特征峰向低处偏移,说明有Ti3+的出现,而铂在钙钛矿中以+2和+4的混合价态出现,在对氧元素进行分峰拟合后发现,掺入铂之后,STP相较于ST产生了较多的氧空穴,氧空穴的存在有利于水分子在钙钛矿表面的解离,进一步有利于电催化过程中的氢气产生。
4、如图6所示,样品的光吸收性能通过UV-vis DRS来测量,与ST相比,STP的光响应区间拓宽且在可见光区域的光吸收强度得到增强,提升了催化剂的吸收能力,有利于催化剂的光催化产氢活性。此外,还可以经过Kubelka-Munk转换得到样品的带隙信息,掺杂后的STP的带隙值(2.64eV)远低于未掺杂的ST(3.16eV),这有利于材料光催化性能的提升。
(二)电催化析氢性能评估实验
1、催化剂电催化产氢性能测试:
催化剂的电化学性能通过标准的三电极体系进行测量,测试时以负载催化剂浆料的玻碳电极为工作电极,汞-硫酸亚汞电极为参比电极,以碳棒为对电极。工作电极的制备过程如下:首先于2mL的菌种瓶中称取10mg的钙钛矿粉末,10mg的导电炭黑,并加入1mL的乙醇(分散剂)和0.1mL的Nafion粘结剂质量分数5%。将上述浆料瓶超声至少半小时得到混合均匀的浆料,然后取5μL的催化剂浆料于干净的铂碳电极表面,静置至少半小时后得到可用于电化学测量的工作电极。电催化测试过程中,以0.5 M H2SO4溶液作为电解液,使用线性扫描伏安法(LSV)得到的材料在析氢过程中的极化曲线,扫面过程中的电压为-0.8~-1.6 V(vs. RHE,可逆氢电极)。催化剂的电荷传输能力通过电化学阻抗谱分析得到,测试过程中的频率范围为0.1~105 Hz,测试电压为-0.8 V(vs. RHE)。
图7展示了催化剂的电催化产氢性能图,从图7中可以看出,STP的起始电位(定义为-1 mA cm-2时的电位)远低于原始的ST,在10 mAcm-2时,STP所需的电压为-133mV,而对于ST来说,则需要-274mV才能达到相同的电流密度,同时可以看出,在-200 mV这一电位下,STP可以达到的电流密度是ST的约5倍之多,进一步说明了掺杂铂对提升ST电催化产氢性能的可靠性。
2、催化剂稳定性能测试:
STP在产氢过程中的稳定性通过计时电电位得到(CP,测试电流密度固定为10mAcm-2),通过图8可以看出在约12小时的测量中,催化剂只在刚开始有些许的性能衰减,在后续的测试时间里能够保持较好的稳定性。
3、催化剂动力学行为和电荷传输能力测试:
为了评价催化剂在催化过程中的动力学行为和电荷传输能力,还进一步画出了ST和STP在催化过程的Tafel和EIS曲线。从图9中可以看出,STP的Tafel斜率值(56mVdec-1)远小于ST的Tafel斜率值(197mVdec-1),这说明了STP在催化的过程中具有很好的反应动力学。采用电化学阻抗谱考察制备催化剂在析氢过程中的电荷传递能力,其半圆直径代表电荷传递过程在阻力,即半圆越小,电荷的传输阻力越小,可以看出STP的电荷传输阻力较ST有较为明显的减小,说明铂的引入有效增加了HER过程中的电荷传递能力。
(三)光催化析氢性能评估实验
催化剂的光催化活性测试通过CEL-PAEM-D8光催化测试系统来评估,测试时采用使用含有0.1 mol L-1的Na2S和0.02 mol L-1的Na2SO3溶液作为反应的吸收牺牲剂。通过热沉积法将Pt负载到样品粉末上作为助催化剂:取适量的H2PtCl6水溶液浸渍到样品表面,然后在90℃加热台上烘干,之后放入马弗炉中180℃煅烧2 h,将H2PtCl6完全分解为Pt纳米颗粒。每次实验前,将真空脂均匀涂抹于阀门上,阀门拧上打开真空泵将反应器中真空度抽至-0.1 MPa。测试可见光下的光催化活性时,在氙灯上装上滤光片(λ≥420 nm)截止紫外光以产生可见光。通过冷却循环系统将反应温度维持在6 ℃,产生的气体通过气相色谱仪自动进样并在线分析,色谱采用高纯氩气作为载气。每次实验取催化剂50 mg,去离子水50mL,以300 W氙灯作为反应的光源模拟太阳光。色谱进样30 min每次,每次实验前以纯氢气做标准曲线,以此来对比分析光催化产氢效率。
如图10所示,ST和STP在整个测试过程中均有持续稳定的氢气产生,但是掺杂之后的催化剂,其产氢量较原始催化剂有较为明显的提升。此外,对整个催化过程中的平均产氢速率进行比较可以发现,ST在5h内的平均产氢速率为8.149μmol/h,而STP在五小时的平均产氢速率为15.939μmol/h,这也说明了掺杂铂对于提升ST钙钛矿氧化物光催化产氢活性的有效性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (3)

1.一种双功能钙钛矿氧化物催化剂在光化学制氢中的应用,其特征在于,所述钙钛矿氧化物催化剂的化学式为SrTi1-xPtxO3, 其中0.05≤x≤0.2;
所述双功能钙钛矿氧化物催化剂的制备方法为固相法,包括如下具体步骤:
S1、分别称取适量SrCO3、TiO2和 Pt倒入球磨罐中,加入适量的乙醇,进行球磨处理,得到分散均匀的前驱体溶液;
S2、将前驱体溶液置于表面皿中,烘干得到前驱体粉末;
S3、取适量的前驱体粉末于氧化铝坩埚中,在空气下于马弗炉中焙烧,自然降温后取出,研磨得到SrTi1-xPtxO3催化剂;
马弗炉的焙烧温度为1200℃,焙烧时间为20h,升温速率为5℃/min。
2.根据权利要求1所述的应用,其特征在于,采用行星式高能球磨机进行球磨处理,所述行星式高能球磨机的转速为400转/min,球磨时间为1h。
3.根据权利要求1所述的应用,其特征在于,采用钠灯对前驱体溶液进行烘干处理。
CN202210142955.5A 2022-02-16 2022-02-16 一种双功能钙钛矿氧化物催化剂、制备方法及其应用 Active CN114797849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210142955.5A CN114797849B (zh) 2022-02-16 2022-02-16 一种双功能钙钛矿氧化物催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210142955.5A CN114797849B (zh) 2022-02-16 2022-02-16 一种双功能钙钛矿氧化物催化剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114797849A CN114797849A (zh) 2022-07-29
CN114797849B true CN114797849B (zh) 2023-05-26

Family

ID=82527365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210142955.5A Active CN114797849B (zh) 2022-02-16 2022-02-16 一种双功能钙钛矿氧化物催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114797849B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1938896A4 (en) * 2005-09-26 2010-10-20 Hitachi Maxell PARTICULAR CARBON FINE PARTICLE, MANUFACTURING METHOD AND ELECTRODE FOR FUEL CELLS
CA2673034A1 (en) * 2006-12-22 2008-07-03 3M Innovative Properties Company Photocatalytic coating
CN102133546B (zh) * 2010-12-20 2013-07-31 昆明理工大学 一种贵金属掺杂复合abo3型催化剂的制备方法
US20160137496A1 (en) * 2013-06-21 2016-05-19 Toto Ltd. Visible light responsive photocatalyst material
JP5869169B1 (ja) * 2015-06-01 2016-02-24 公立大学法人大阪府立大学 酸素発生反応用ペロブスカイト酸化物触媒
CN110860292A (zh) * 2019-10-08 2020-03-06 南京航空航天大学 一种用于析氧反应的阳离子共掺杂钙钛矿催化剂及其制备方法
CN112569948B (zh) * 2020-12-29 2022-03-18 华中科技大学 一种钙钛矿纳米颗粒催化剂及其制备方法与应用
CN113428835A (zh) * 2021-06-24 2021-09-24 清华大学 利用木质纤维素进行光催化制氢的方法

Also Published As

Publication number Publication date
CN114797849A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Han et al. Non-metal fluorine doping in Ruddlesden–Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production
Huang et al. Chalcogens doped BaTiO3 for visible light photocatalytic hydrogen production from water splitting
WO2022188278A1 (zh) 一种金属氧化物负载的铱/钌基催化剂的制备方法及装置
Yang et al. Fabrication and behaviors of CdS on Bi 2 MoO 6 thin film photoanodes
CN112023938B (zh) 一种双金属离子掺杂的纳米复合光催化剂及其制备方法
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
Zhang et al. Amorphous mixed Ir–Mn oxide catalysts for the oxygen evolution reaction in PEM water electrolysis for H2 production
Zhao et al. Mechanism and performance of photocatalytic H2 evolution for carbon self-doped TiO2 derived from MIL-125
CN101511469A (zh) 纳米粉体催化剂及其制备方法
CN109833893B (zh) 一种碳化钛复合磷掺杂氧化钨光电催化剂及其制备方法
CN114797849B (zh) 一种双功能钙钛矿氧化物催化剂、制备方法及其应用
Zhang et al. Tuning the oxygen vacancies and mass transfer of porous conductive ceramic supported IrOx catalyst via polyether-derived composite oxide pyrolysis: Toward a highly efficient oxygen evolution reaction catalyst for water electrolysis
Yang et al. Effect of the Valence State in Co-Based Cocatalyst on the Photocatalytic Oxygen Evolution Reactivity of WO3
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法
CN114768852B (zh) 一种钾离子梯度掺杂氮化碳材料的制备方法
CN113649054B (zh) 一种NiFe@NC/Al-SrTiO3复合光催化剂及其应用
Yang et al. Boosting visible-light-driven water splitting over LaTaON2 via Al doping
CN113174609B (zh) 一种超高性能析氢电解水催化剂的制备方法及应用
CN114570385A (zh) 一种太阳光催化水分解制氢制氧半导体催化剂的制备方法
Ganesan et al. Preparation and Characterization of Pt/NbTiO2 Cathode Catalysts for Unitized Regenerative Fuel Cells (URFCs).
CN112007663A (zh) 一种MoS2@CrOx/La,Al-SrTiO3/CoOOH光催化剂及制备方法
CN113224321B (zh) 一种钒掺杂碳包覆的碳化铁多功能复合电催化剂及其制备方法和应用
CN111992226B (zh) 一种光催化纳米复合催化剂及其制备方法
CN116351478B (zh) 一种氧还原催化剂的制备方法和产品及其应用
CN116920823B (zh) 一种纳米Bi2WO6-TiO2可见光光解水催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant