CN114796784A - 流量治疗设备的流动路径感测 - Google Patents

流量治疗设备的流动路径感测 Download PDF

Info

Publication number
CN114796784A
CN114796784A CN202210269592.1A CN202210269592A CN114796784A CN 114796784 A CN114796784 A CN 114796784A CN 202210269592 A CN202210269592 A CN 202210269592A CN 114796784 A CN114796784 A CN 114796784A
Authority
CN
China
Prior art keywords
flow
gas
sensor
flow path
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210269592.1A
Other languages
English (en)
Inventor
拉塞尔·威廉·布格斯
杰斯·爱德华·唐纳利
迪恩·安东尼·巴克
菲利普·约翰·迪金森
安德烈·范·沙尔克维克
约珥·迈克尔·劳森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisher and Paykel Healthcare Ltd
Original Assignee
Fisher and Paykel Healthcare Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisher and Paykel Healthcare Ltd filed Critical Fisher and Paykel Healthcare Ltd
Publication of CN114796784A publication Critical patent/CN114796784A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • A61M16/026Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/1055Filters bacterial
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1075Preparation of respiratory gases or vapours by influencing the temperature
    • A61M16/109Preparation of respiratory gases or vapours by influencing the temperature the humidifying liquid or the beneficial agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1075Preparation of respiratory gases or vapours by influencing the temperature
    • A61M16/1095Preparation of respiratory gases or vapours by influencing the temperature in the connecting tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/204Proportional used for inhalation control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M16/101Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • A61M16/161Devices to humidify the respiration air with means for measuring the humidity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • A61M2016/102Measuring a parameter of the content of the delivered gas
    • A61M2016/1025Measuring a parameter of the content of the delivered gas the O2 concentration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3553Range remote, e.g. between patient's home and doctor's office
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/42Reducing noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • A61M2205/702General characteristics of the apparatus with testing or calibration facilities automatically during use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/02Equipment for testing the apparatus

Abstract

本发明提供了流量治疗设备的流动路径感测,该流量治疗设备包括测量提供给患者的气体流量的感测腔室。该感测腔室可以位于鼓风机和/或混合器之后。该感测腔室可以包括超声换能器、温度传感器、加热式温度感测元件、和/或气体浓度传感器。与传感器系统结合使用的气体流动路径防止在该气体流量中产生可能在流量测量中产生异常的不希望的涡旋。

Description

流量治疗设备的流动路径感测
分案申请说明
本申请是申请日为2016年12月2日、申请号为201680079350.9、题为“流量治疗设备的流动路径感测”的中国发明专利申请的分案申请。
技术领域
本披露涉及用于向患者输送气体的流量治疗设备中用于流动路径感测的方法和系统。
背景技术
呼吸辅助设备用于多种不同环境中,例如医院、医疗机构、居家护理、或家庭环境等,以向用户或患者输送气体流量。呼吸辅助设备或流量治疗设备可以包括用于输送氧气与气体流量的阀、和/或用于输送加热和加湿的气体的加湿设备。流量治疗设备可以允许调节和控制气流的特性,包括流率、温度、气体浓度、湿度、压力等。使用传感器诸如加热式温度感测元件和/或热敏电阻来测量气体的这些性质。
发明内容
本披露描述了一种流量治疗设备,其中,通过流动路径的至少一部分来测量气体流量。流动路径的该部分可以被配置为连续弯曲,使得没有明显的角度。该流动路径可以包括入口、水平部分、和出口,其中,入口和出口可以沿垂直相反的方向定位,并且水平部分被定位在入口和出口之间。该水平部分可以沿水平部分的整个长度具有平滑的曲线。该流动路径可以进一步包括一个或多个传感器,该一个或多个传感器被定位在该流动路径内并且被配置为测量穿过该流动路径的该部分的气体的流量。该一个或多个传感器可以包括超声换能器或气体浓度传感器中的一者或多者。该一个或多个传感器可以被配置为感测流率和/或氧气浓度。该一个或多个传感器可以位于传感器模块中。
该流动路径可以被进一步配置为具有介于50mm和150mm之间的总流动距离。该流动路径还可以被进一步配置为具有介于10mm和20mm 之间的平均截面直径。
该流动路径可以进一步包括在流动路径的第一端部处的第一截面积;在流动路径的第二端部处的第二截面积;以及流动路径的第一端部和第二端部之间的中间截面积,其中,该中间截面积可以小于第一截面积,并且其中,该中间截面积可以小于第二截面积。
该一个或多个传感器可以位于鼓风机之后。该鼓风机可以是混合器。该一个或多个传感器可以进一步包括被配置为测量气体的流率、和/或温度、湿度、湿度及温度的加热式温度感测元件、和/或压力传感器。
还描述了用于防止在气体流量中出现在测量流率时可能产生异常的不希望的涡旋的气体流动路径。该流动路径可以与超声波传感器系统一起使用。
本披露描述了一种流量治疗设备,该流量治疗设备可以包括:入口端口,该入口端口接纳来自至少两个不同气体源的气体流量;鼓风机,该鼓风机接纳来自入口端口的气体流量,其中,该鼓风机被配置为混合来自不同气体源的气体流量以产生混合气体;气体流动路径,该气体流动路径接纳来自鼓风机的混合气体并引导这些气体流经传感器腔室;以及一个或多个传感器,其中,这些传感器被配置为测量流经气体流动路径的气体流量的一种或多种性质。该一个或多个传感器可以位于鼓风机之后。该鼓风机可以是混合器。该一个或多个传感器可以位于传感器模块中。
不同的气体源可以包括氧气,并且入口端口可以包括被配置为将氧气流量输送至鼓风机的阀。该阀可以包括比例阀。
该一个或多个传感器可以包括两个或更多个超声换能器。该一个或多个传感器还可以包括气体浓度传感器。
这些超声换能器可以被配置为确定气体浓度。这些超声换能器可以被配置为确定流率。
该一个或多个传感器可以包括被配置为测量气体流率的加热式温度感测元件。
本披露描述了流量治疗设备中的感测腔室,该流量治疗设备可以包括被配置为容纳气体流量的流动路径;以及一个或多个传感器,该一个或多个传感器被配置为测量流经流动路径的气体流量的性质,其中,这些传感器可以包括定位在流动路径的下游部分处的第一超声换能器和定位在流动路径的上游部分处的第二超声换能器,并且其中,该流动路径可以被配置为在第一超声换能器和第二超声换能器之间具有弯曲的形状。该弯曲的形状可以被配置为减少气体流动中的无效空间。
这些传感器可以进一步包括一个或多个温度传感器,该一个或多个温度传感器被配置为测量流动路径中的气体的温度。
该温度传感器可以位于流动路径中。
该感测腔室进一步包括感测电路板,其中,该感测电路板的第一部分至少部分地定位在流动路径内。
该感测电路板可以被进一步配置为实现气流和温度传感器之间的热传导,并且阻碍感测腔室的壁和温度传感器之间的热传导。
该感测电路板可以进一步包括定位在流动路径外部的感测电路板的至少第二部分。
该感测腔室可以进一步包括将感测电路板的第一部分与感测电路板的第二部分分开的密封件。该密封件可以是气动密封件。
该流动路径可以被进一步配置为具有介于50mm和150mm之间的总流动距离。
该流动路径可以被进一步配置为具有介于10mm和20mm之间的平均截面直径。
该流动路径可以被进一步配置为沿着流动路径的长度具有不变的截面形状。
流动路径可以包括在流动路径的第一端部处的第一截面积;在流动路径的第二端部处的第二截面积;以及流动路径的第一端部和第二端部之间的中间截面积,其中,该中间截面积可以小于第一截面积,并且其中,该中间截面积可以小于第二截面积。该流动路径可以被配置为在第一超声换能器和第二超声换能器之间整个地弯曲。
本披露描述了用于确定沿着从感测腔室的第一端部到感测腔室的第二端部的气体流动路径流经感测腔室的气体的特性的方法,其中,该感测腔室包括定位在第一端部处的第一超声换能器和定位在第二端部处的第二超声换能器,沿着气体流动路径从第一端部到第二端部限定的下游方向,以及沿着气体流动路径从第二端部到第一端部限定的上游方向。该方法包括从第一超声换能器发射向下游的声脉冲,并且在第二超声换能器处检测该向下游的声脉冲;至少部分地基于该向下游的声脉冲确定下游飞行时间;从第二超声换能器发射向上游的声脉冲,并且在第一超声换能器处检测该向上游的声脉冲;至少部分地基于该向上游的声脉冲确定上游飞行时间;以及通过考虑第一超声换能器和第二超声换能器之间的无效空间来确定气体的特性。
确定气体的特性可以包括使用以下等式来确定气体速度:
Figure RE-GDA0003690258340000041
以及
Figure RE-GDA0003690258340000042
其中c表示声速,D表示第一超声换能器与第二超声换能器之间存在气流的距离,D0表示第一超声换能器与第二超声换能器之间没有气流的距离,t1表示下游飞行时间,以及t2表示上游飞行时间。
本披露描述了用于确定沿着从感测腔室的第一端部到感测腔室的第二端部的气体流动路径流经感测腔室的气体的特性的方法,其中,该感测腔室包括定位在第一端部处的第一超声换能器和定位在第二端部处的第二超声换能器,沿着气体流动路径从第一端部到第二端部限定的下游方向,以及沿着气体流动路径从第二端部到第一端部限定的上游方向。该方法可以包括从第一超声换能器发射向下游的声脉冲,并且在第二超声换能器处检测该向下游的声脉冲。该方法可以进一步包括测量整个接收到的超声波形。该方法可以进一步包括执行所接收的波形和参考之间的互相关以产生飞行时间测量。可以提前记录或事先定义参考。该参考可以是单独的或先前的波形。该互相关可以包括产生差分飞行时间,使得可以计算流率。气体可以包括氦氧化物或二氧化碳。该互相关可以包括突出显示操作期间的异常。
本披露描述了一种用于校准流量治疗设备中的测量模块的系统。该系统可以包括鼓风机,该鼓风机被配置为以预定的操作参数输送气体流量;第一传感器,该第一传感器被配置为确定气体特性的第一值;第一存储器,该第一存储器被配置为存储该第一值;以及控制系统,该控制系统被配置为改变来自鼓风机的气体流量;以及至少部分地基于第一值与处于预定操作参数的参考值之间的比较来调整校准参数。该参考值可以从查找表、用户输入、或计算值中的一者或多者中获得。
该第一传感器可以包括一对超声换能器。
该校准系统可以进一步包括被配置为输送第二气体的流量的阀,其中,该控制系统可以被进一步配置为改变第二气体的流量。该第二气体可以包含氧气。
该系统可以进一步包括被配置为确定气体特性的第二值的第二传感器,其中,该控制系统可以被进一步配置为将第一值与第二值进行比较。
该第二传感器可以包括温度传感器。该第二传感器可以包括被配置为测量气体流率的加热式温度感测元件。该第二传感器可以包括湿度传感器。该第二传感器可以进一步包括压力传感器。
该气体特性可以是流率。该气体特性可以是氧浓度或其他气体浓度。该气体特性可以是温度。该气体特性可以是湿度。该气体特性可以是压力。
本披露描述了流量治疗设备中的感测腔室。该感测腔室可以包括被配置为测量气体性质的一个或多个传感器,该一个或多个传感器包括在流动路径的下游部分处的第一超声换能器和在流动路径的上游部分处的第二超声换能器,以及被配置为测量气体流率的加热式温度感测元件。该加热式温度感测元件可以提供流量测量的冗余度,该冗余度包括第一超声换能器和第二超声换能器在低流量下的快速流量测量,以及由加热式温度感测元件在低流量下的准确流量测量。该冗余度可以帮助校准流率。
该加热式温度感测元件可以调整超声换能器的校准参数。该加热式温度感测元件可以调整超声换能器的读数。该调整可以是连续的调整。该调整可以是预定的量、速率、或加权的流率或其他感测参数。
本披露描述了流量治疗设备中的感测腔室。该感测腔室可以包括一个或多个传感器,该一个或多个传感器被配置为测量气体性质,该一个或多个传感器包括在流动路径的下游部分处的第一超声换能器和在流动路径的上游部分处的第二超声换能器,其中,该一个或多个传感器可以直接安装到感测电路板上。该感测腔室可以进一步包括定位成接近超声波传感器的超声波电路系统。该超声波电路系统可以与一个或多个传感器在环境上隔离。该腔室可以进一步包括将超声波电路系统与一个或多个传感器隔离的密封件。该密封件可以是气动密封件。一个或多个传感器中的至少一个传感器可以位于感测电路板上。
本披露描述了一种气体输送系统。该系统可以包括被配置为确定气体性质的一个或多个传感器、被配置为确定第一绝对压力的第一压力传感器,其中,该第一绝对压力可以被配置为确定环境压力的估计;以及被配置为确定第二绝对压力的第二压力传感器,其中,第一绝对压力和第二绝对压力之间的差可以确定计算的压差,并且其中,可以至少部分地基于环境压力的变化来调整气体性质的计算。
该系统可以进一步包括鼓风机。该第二绝对压力传感器可以位于鼓风机的下游。气体源产生的压力可以从计算出的压差中估算出来。
被配置为确定气体性质的一个或多个传感器可以包括超声波传感器。环境压力读数可以允许将质量流率与体积流率进行比较。第一绝对压力传感器可以定位在气体输送系统的外壳内。第二压力传感器可以定位在感测腔室或传感器模块内,并且在气体已经被气体源加压之后检测气体流量的压力。
附图说明
图1以图表形式示出了呈流量治疗设备形式的呼吸辅助设备。
图2是带有就位的加湿器腔室和升高的柄部/杆的流量治疗设备的正视图。
图3是对应于图2的俯视图。
图4是对应于图2的右侧视图。
图5是对应于图2的左侧视图。
图6是对应于图2的后视图。
图7是对应于图2的左前透视图。
图8是对应于图2的右前透视图。
图9是对应于图2的仰视图。
图10示出了流量治疗设备的空气和氧气入口安排的第一构型。
图11示出了流量治疗设备的空气和氧气入口安排的第二构型。
图12是示出图11的空气和氧气入口安排的进一步细节的横向截面图。
图13是示出图11的空气和氧气入口安排的进一步细节的另一横向截面图。
图14是示出图11的空气和氧气入口安排的进一步细节的纵向截面图。
图15是流量治疗设备的主外壳的上部和下部机壳部件的分解图。
图16是主外壳的下部机壳的左前侧透视图,示出了用于接纳马达和/ 或传感器模块子组件的外壳。
图17A是流量治疗设备的主外壳的第一下侧透视图,示出了用于马达和/或传感器模块子组件的外壳内部的凹部。
图17B是流量治疗设备的主外壳的第二下侧透视图,示出了用于马达和/或传感器模块子组件的凹部。
图18展示了根据本披露的实施例的控制系统与呼吸辅助系统的部件进行交互和/或向其提供控制和引导的框图。
图19展示了根据本披露的实施例的控制器的框图。
图20展示了根据本披露的实施例的电动马达和/或传感器模块的框图。
图21展示了根据本披露的实施例的感测腔室。
图22A展示了根据本披露的实施例的感测腔室内的感测电路板。
图22B展示了根据本披露的另一实施例的感测腔室内的感测电路板。
图22C展示了根据本披露的另一实施例的感测腔室内的感测电路板。
图23A展示了根据本披露的实施例的实现换能器信号传输的电路表示。
图23B展示了根据本披露的实施例的实现双向换能器信号传输的电路表示。
图24A示意性地展示了换能器信号脉冲。
图24B展示了在其被发射时和被接收时的传播的换能器信号。
图24C示意性地展示了被设计成减少振铃的示例性转换器脉冲。
图25A展示了超声波感测模型的框图。
图25B展示了包括无效空间的超声波感测模型的框图。
图26A是展示根据本披露的实施例的校准系统的流程图。
图26B是展示根据本披露的另一实施例的校准系统的流程图。
图27A展示了感测腔室内的具有轨迹的感测电路板。
图27B展示了图27a的放大部分,示出了轨迹的进一步细节。
图28是展示使用两个绝对压力传感器来确定表压的流程图。
图29至图33展示了流量治疗设备的其他实施例的多个不同视图。
具体实施方式
在图1中示出了流量治疗设备10。一般而言,设备10包括主外壳 100,该主外壳包含电动马达/叶轮安排形式的流量发生器11、可选的加湿器12、控制器13、和用户I/O接口14(包括例如显示器和一个或多个输入装置,例如一个或多个按钮、触摸屏、触摸屏与一个或多个按钮的组合等等)。控制器13被配置或编程为控制设备的部件,包括:操作流量发生器11以产生用于输送至患者的气体流量(气流)、操作加湿器12(如果存在)以加湿和/或加热产生的气流、从用户接口14接收用户输入以用于设备10的重新配置和/或用户定义的操作,并且(例如在显示器上)向用户输出信息。用户可以是患者、医疗专业人员、或对使用该设备感兴趣的任何人。
患者呼吸导管16联接至流量治疗设备10的外壳100中的气流输出端 21,并且联接至患者接口17,例如带有歧管19和鼻叉18的鼻插管。另外地或替代性地,患者呼吸导管16可以联接至面罩或气管造口接口。由流量治疗设备10产生的可以被加湿的气流经由患者导管16穿过插管17被输送至患者。患者导管16可以具有加热器线16a以加热流经至患者的气流。加热器线16a受控制器13控制。患者导管16和/或患者接口17可以被认为是流量治疗设备10的部分,或者替代性地在其外周。流量治疗设备 10、呼吸导管16、和患者接口17一起形成流量治疗系统。
流量治疗呼吸设备10的一般操作将为本领域的技术人员所知,并且因此在此不需要详细描述。然而,一般而言,控制器13控制流量发生器 11产生期望流率的气流、控制一个或多个阀以控制空气和氧气或其他替代性气体的混合、以及/或者控制加湿器12(如果存在)将气流加湿和/或将气流加热至适当的水平。气流通过患者导管16和套管17被引导至患者。控制器13还可以控制加湿器12中的加热元件和/或患者导管16中的加热元件16a,以将气体加热至达到期望水平的治疗和/或患者舒适程度的期望温度。控制器13可以被编程为具有或可以确定气流的合适目标温度。
操作传感器3a、操作传感器3b、操作传感器3c、操作传感器20、操作传感器25,例如流量传感器、温度传感器、湿度传感器、和/或压力传感器可以放置在流量治疗设备10和/或患者导管16、和/或套管17中的多个不同位置。来自传感器的输出可以由控制器13接收,以帮助该控制器来以提供合适的治疗的方式操作流量治疗设备10。在一些构型中,提供合适的治疗包括满足患者的吸气需求。设备10可以具有发射器和/或接收器 15以使控制器13能够从传感器接收8个信号,以及/或者控制流量治疗设备10的多个不同部件,包括但不限于流量发生器11、加湿器12、和加热器线16a、或与流量治疗设备10相关联的附属件或外围装置。另外地或替代性地,发射器和/或接收器15可以将数据传递至远程服务器或使得能够远程控制设备10。
患者接口可以是非密封接口,例如鼻插管。
包括主外壳描述的概述
流量治疗设备的一些实施例在2016年6月24日提交的标题为“呼吸辅助设备[BREATHING ASSISTANCE APPARATUS]”的国际专利申请号 PCT/IB2016/053761中描述,该专利申请通过援引以其全文并入本文。图 29至图33展示了那些实施例中的一些。图2至图17B示出了包括主外壳 100的流量治疗设备10的另一实施例。主外壳100具有主外壳上部机壳 102和主外壳下部机壳202。
主外壳上部机壳102具有周壁安排106。该周壁安排限定用于接纳可移除加湿腔室300的加湿器或加湿腔室隔间108。可移除加湿腔室300包含合适的液体(例如水),用于对将被输送至患者的气体进行加湿。
在所示出的形式中,主外壳上部机壳102的周壁安排106包括沿主外壳100的前后方向定向的、基本上竖直的左侧外壁110,沿主外壳100的前后方向定向的、基本上竖直的左侧内壁112,以及互连壁114,该互连壁在左侧外壁110的上端和左侧内壁112的上端之间延伸并将它们互连。主外壳上部机壳102进一步包括沿主外壳100的前后方向定向的、基本上竖直的右侧外壁116,沿主外壳100的前后方向定向的、基本上竖直的右侧内壁118,以及互连壁120,该互连壁在右侧外壁116的上端和右侧内壁118的上端之间延伸并将它们互连。互连壁114、互连壁120朝向主外壳100的相应外边缘成角度,但是可以替代性地基本上水平或向内成角度。
主外壳上部机壳102进一步包括基本上竖直的后部外壁122。主外壳上部机壳102的上部部分包括向前成角度的表面124。表面124具有用于接纳显示器和用户接口模块14的凹部126。互连壁128在后外壁122的上端和表面124的后边缘之间延伸并将它们互连。
基本上竖直的壁部分130从表面124的前端向下延伸。基本上水平的壁部分132从壁部分130的下端向前延伸以形成壁架。基本上竖直的壁部分134从壁部分132的前端向下延伸并且终止于加湿腔室隔间108的基本上水平的底部部分136。左侧内壁112、右侧内壁118、壁部分134、和底部部分136一起限定加湿腔室隔间108。加湿腔室隔间108的底部部分136具有凹部138以接纳加热器安排例如加热板140,或其他合适的加热元件,用于加热加湿腔室300中的液体以在加湿过程中使用。
主外壳下部机壳202可以通过合适的紧固件或集成附接特征结构(例如夹子)附接至上部机壳102。主外壳下部机壳202包括基本上竖直的左侧外壁210,该基本上竖直的左侧外壁沿主外壳100的前后方向定向并且与上部机壳102的左侧外壁110邻接,以及基本上竖直的右侧外壁216,该基本上竖直的右侧外壁沿主外壳100的前后方向定向并且与上部机壳102的右侧外壁116邻接。主外壳下部机壳202进一步包括与上部机壳102 的后部外壁122邻接的、基本上竖直的后部外壁222。
下部外壳机壳202具有与上部外壳机壳102的唇缘142邻接的唇缘 242,并且还形成用于接纳杆500的柄部部分506的凹部的一部分。下部唇缘242包括向前指向的突起243,该突起用作杆500的柄部部分506的保持器。
下部外壳机壳202的下侧包括底壁230。各个互连壁214、互连壁 220、互连壁228在基本上竖直的壁210、壁216、壁222、和底壁230之间延伸并且将它们互连。底壁230包括格栅232,该格栅包括多个孔以在从加湿腔室300泄漏(例如来自溢出物)的情况下使液体排出。底壁230 另外包括细长的向前向后定向的狭槽234。狭槽234还使得在从加湿腔室 300泄漏的情况下能够排出液体而没有液体进入电子器件外壳。在所展示的构型中,加热器板140不由底壁230的外部支撑,并且因此狭槽234可以相对于格栅232的孔是宽且细长以将液体的排出最大化。
如图17a至图17b所示,下部机壳202具有用于接纳可移除马达和/或传感器模块的马达凹部250。凹部开口251在底壁230中提供,与该底壁的后边缘相邻,用于接纳可移除的马达/传感器模块。连续、不透气、完整的周壁252与下部机壳202的底壁230一体地形成并且从开口251的外周向上延伸。周壁252的后部254具有第一高度,并且周壁252的前部256 具有大于第一高度的第二高度。周壁252的后部254终止于基本上水平的台阶258,该台阶继而终止于周壁252的上部辅助后部260。周壁252的前部256和上部辅助后部260终止于顶板262。除了气体流动通道之外,所有的壁和顶板262是连续的、不透气的、并且是完整的。因此,除了气体流动通道之外,整个马达凹部250是不透气且完整的。
在替代性构型中,包括物项252、物项254、物项256、物项258、物项260、物项264的马达凹部可以与下部机壳202分开形成。包括凹部的马达组件可以被插入凹部开口251中并且可附接至下部机壳202。在将马达组件和凹部插入下部机壳202中时,气流通道管264将延伸穿过向下延伸管133并且被软密封件密封。
设备10包括连接歧管安排320,用于将加湿腔室300流体联接至设备 10。加湿腔室300可以从外壳100的前部的位置沿朝向外壳100的后部的方向,沿加湿腔室300的进入腔室隔间108的向后方向以线性滑动运动流体联接至设备10。连接歧管安排320包括歧管气体出口端口322,该歧管气体出口端口经由固定的L形弯管324与来自马达/叶轮单元402的气体流动通道流体连通。
连接歧管安排320进一步包括体现在可移除弯管中的歧管气体入口端口340(加湿气体返回)。可移除弯管是L形的,并且进一步包括用于联接至患者导管16以将气体输送至患者接口17的患者出口端口344。歧管气体出口端口322、歧管气体入口端口340、和患者出口端口344各自包括软密封件,例如O形环密封件或T形密封件,以在设备10、加湿腔室 300、和患者导管16之间提供密封气体通路。
加湿腔室气体入口端口306与连接歧管气体出口端口322互补,并且加湿腔室气体出口端口308与连接歧管气体入口端口340互补。这些端口的轴线优选地平行,以使加湿腔室300能够以线性运动插入腔室隔间108 中。
设备10具有与马达流体连通的空气和氧气(或替代性的辅助气体) 入口,以使马达能够将空气、氧气、或其合适的混合物输送至加湿腔室300并由此输送至患者。如图10所示,设备10可以具有组合的空气/氧气 (或替代性的辅助气体)入口安排350。该安排包括进入外壳100的组合的空气/氧气端口352、过滤器354、和盖356,该盖具有与氧气源流体连通的、横向延伸的氧气管358。端口352与马达402流体联接。例如,端口352可以经由端口352与马达和/或传感器模块400中的入口孔或端口之间的气体流动通道(该气体流动通道继而通向马达),与马达和/或传感器模块400联接。该安排可以具有2014年5月23日提交的、公开为US 2014/0345615的美国专利申请号US 14/286,590中描述的类型,并且该说明书通过援引以其全文并入本文。
替代性地,设备10可以具有图11至图14中所示的安排,以使马达能够将空气、氧气(或替代性的辅助气体)或其合适的混合物输送至加湿腔室300并由此输送至患者。该安排包括外壳100的下部机壳202的后壁 222中的空气入口356'。进气口356'包括具有孔和/或狭槽的合适格栅安排的刚性板。隔音泡沫可以被提供为在板的内侧与板相邻。空气过滤器箱 354'被定位成在主外壳100内部,与空气入口356'相邻,并且包括空气出口端口360以经由马达和/或传感器模块400中的空气入口端口404将经过滤的空气输送至马达。空气过滤器盒354'可以包括被配置为从气流中去除微粒(例如灰尘)和/或病原体(例如病毒或细菌)的过滤器。在空气出口端口360和空气入口端口404之间提供软密封件(例如O形环密封件)以在这些部件之间进行密封。设备10包括定位成在外壳100的后端处与其一侧相邻的一个单独的氧气入口端口358',该氧气端口358'用于接纳来自氧气源例如罐或管道式氧气源的氧气。氧气入口端口358'与阀362流体连通。阀362可以适当地是电磁阀,该阀使得能够控制添加到输送至加湿腔室300的气流的氧量。应当理解,在替代性构型中,氧气端口358'和阀362可以与其他辅助气体一起使用以控制对气流的其他辅助气体的添加。其他辅助气体可以包括用于气体治疗的许多气体中的任何一种或多种,包括但不限于氦氧化物和一氧化氮。关于阀和过滤器的更多细节在2016年 10月18日提交的标题为“阀门模块与过滤器[VALVE MODULE AND FILTER]”的美国临时申请号62/409543中描述,该专利申请通过援引以其全文并入本文。
如图13至图16所示,下部外壳机壳202承载合适的电子器件板 272。该电子器件板可以被定位成与下部外壳机壳202的相应外侧壁210、外侧壁216相邻。电子器件板272可以包含或可以与合适的电部件或电子部件(例如但不限于微处理器、电容器、电阻器、二极管、运算放大器、比较器、和开关)电连接。可以使用传感器。电子器件板272(例如但不限于一个或多个微处理器)的部件可以充当设备的控制器13。
电子器件板272中的一者或两者可以与设备10的包括显示单元和用户接口14、马达、阀362、和加热器板140等的电部件电连通,以操作马达来提供期望的气体流率、操作加湿器12来加湿和加热气流至适当的水平、并且向气流供应适量的氧气(或者在替代性构型中,供应适量的替代性辅助气体)。
电子器件板272可以与从上部外壳机壳102的后壁122突出的连接器安排274电连通。连接器安排274可以联接至护士警报器、脉搏血氧测量端口、和/或其他合适的附件。电子器件板272还可以与同样提供在上部外壳机壳102的后壁122中的电连接器276电连通,以向设备10的部件提供主电源或电池功率。
如上所述,操作传感器例如流量传感器、温度传感器、湿度传感器、和/或压力传感器可以放置在流量治疗设备10和/或患者导管16、和/或套管17中的多个不同位置。电子器件板272可以与那些传感器电连通。来自传感器的输出可以由控制器13接收,以帮助控制器13以提供最佳治疗 (包括满足吸气需求)的方式操作流量治疗设备10。
如上所述,电子器件板272和其他电部件和电子部件可以与气流路径气动隔离,以提高安全性并消除火灾风险。该密封还防止水进入。
控制系统
图18展示了能够检测患者病症并且控制包括气体源的流量治疗设备的操作的控制系统520的实施例的框图。在实施例中,控制系统520管理气体在被输送至患者时流经流量治疗设备的流率532。控制系统520可以通过控制搅拌器中鼓风机或阀的马达速度来增加或减少流率。如下所述,控制系统520针对特定患者可以自动确定流率的设定值或个性化值。在一些实施例中,可以通过控制系统520优化流率以改善患者的舒适度和治疗。
控制系统520还可以生成音频和/或视频输出534。例如,流量治疗设备可以包括显示器630(参见图19),该显示器可以进一步包括扬声器。显示器630可以向医师指示由控制系统520生成的任何警告或警报。显示器630还可以指示能够由医师调整的控制参数。例如,控制系统520可以针对特定患者自动推荐流率。控制系统520还可以生成患者的恢复状态并将其发送至显示器。
在一些实施例中,控制系统520可以改变加热元件中的一者的温度设定点530,以控制输送至患者的气体的输出条件。控制系统520还可以改变加热元件的操作或占空比。
控制系统520可以基于一个或多个所接收的输入502至输入510来确定输出530至输出534。输入502至输入508可以对应于由控制器600自动接收的传感器测量。在所示实施例中,控制系统520接收传感器输入,这些传感器输入对应于胸腹异步(TAA)传感器输入502、呼吸率传感器输入504、呼吸功传感器输入506、以及CO2传感器输入508、和/或上述流量治疗设备中的其他传感器(压力传感器、环境传感器、脉搏血氧仪传感器)。在实施例中,控制系统520还可以接收来自用户的输入或存储器 624中的存储值。控制系统520可以在患者治疗期间动态调整针对患者的流率532。在实施例中,控制系统520可以连续检测系统参数和患者参数。
控制器
控制系统520可以包括用于检测输入条件和控制输出条件的编程指令。该编程指令可以被存储在控制器600的存储器624中,如图19所示。在一些实施例中,该编程指令对应于本文中描述的方法、过程、和功能。控制系统520可以由控制器600的一个或多个硬件处理器622执行。编程指令可以用C、C++、JAVA、或任何其他合适的编程语言来实现。在一些实施例中,控制系统520的一些部分或所有部分可以在专用电路系统628 例如ASIC和FPGA中实现。
如图18所示,控制系统520可以接收来自流量治疗设备的多个部件的输入。并非图18中所示的所有输入502至输入510都可以存在。输入端 502至输入端510和输出端530至输出端534可能不一定出现在所有实施例中。例如,在一些实施例中,控制系统520可以仅接收呼吸功(WOB) 和/或呼吸率传感器输入506并生成流量控制测量532。取决于配置,对应于输入的一些部件可以不包括在流量治疗设备中。控制系统520可以使用缺少输入本身来确定输入或系统状况。
图19展示了控制器600的实施例的框图。控制器可以包括可以执行存储在存储器626中的指令的硬件处理器622。在实施例中,控制系统 520作为编程指令被存储在存储器626中。控制器还可以包括用于接收传感器信号的电路628。控制器可以进一步包括用于传输患者和呼吸辅助系统的状态的显示器630。显示器630还可以显示警告。控制器还可以经由用户接口(例如显示器630)来接收用户输入。用户接口可以替代性地或另外地包括按钮或拨号盘。用户接口可以替代性地或另外地包括触摸屏。
马达和/或传感器模块
图20展示了由流量治疗设备中的凹部250接纳的马达和/或传感器模块2000的框图。马达和/或传感器模块包括鼓风机2001,该鼓风机携走室内空气以输送至患者。在一些实施例中,鼓风机2001是离心式鼓风机。
室内空气进入室内空气入口2002,该室内空气入口通过入口端口 2003进入鼓风机2001。入口端口2003可以包括阀2004,加压气体可以通过该阀进入鼓风机2001。阀2004可以控制氧气流入鼓风机2001。阀2004 可以是任何类型的阀,包括比例阀或双阀。在一些实施例中,入口端口不包括阀。
在一些实施例中,鼓风机2001可以以大于1,000RPM且小于30,000 RPM、大于2,000RPM且小于21,000RPM、或介于任何前述值之间的马达速度运行。鼓风机2001的操作将通过入口端口2003进入鼓风机2001的气体混合。使用鼓风机2001作为混合器可以降低在具有独立混合器的系统(例如包括挡板的静态混合器)中因为混合需要能量而发生的压降。
混合空气穿过导管2005离开鼓风机2001并进入感测腔室2007中的流动路径2006。具有传感器2008的感测电路板定位在感测腔室2007中,使得感测电路板至少部分地浸入气流中。感测电路板上的传感器2008定位在气流内以测量气流内的气体性质。在穿过感测腔室2007中的流动路径 2006之后,气体离开2009至加湿腔室300。
组合式鼓风机和混合器2001下游的定位传感器2008可以提高测量的准确性,例如在将传感器定位在鼓风机和/或混合器上游的系统上的气体分数浓度(包括氧气浓度)的测量。这样的定位可以提供可重复的流量曲线。此外,将传感器定位在组合式鼓风机和混合器的下游避免了否则会发生的压降,因为在鼓风机之前发生感测的情况下,在入口和感测系统之间需要单独的混合器,例如具有挡板的静态混合器。混合器在该混合器上引入压降。将感测定位在鼓风机之后允许鼓风机作为混合器,而静态混合器将降低压力,相反,鼓风机增加压力。此外,将至少部分的感测电路板和传感器2008浸入流动路径增加测量的准确性,因为传感器浸入流量意味着它们更可能受到与气体流量相同的条件(例如温度和压力),并因此提供气体特性更好的表示。
感测腔室
本文中描述的流量治疗设备是模块化系统。包括一些或所有传感器的马达/感测模块可根据需要单独拆卸和更换。为了改善模块性,可以将一些或全部传感器定位在感测腔室内的一个感测电路板上,该感测腔室可以至少部分地放置在流动路径内,并且控制电路板上的控制电子器件可以背离流动路径密封。感测算法(包括转换、存储器和控制、存储器和校准控制)的代码,可以位于感测电路板上。为了本申请的目的,感测电路板被定义为定位在感测腔室或传感器模块内的电路板内。
在流量治疗设备的使用过程中,水可以接触感测电路板。例如,可以将设备倾斜、来自加湿器腔室的水可以向上游移动或进入端口、或者用户可以在完成干燥模式之前关闭设备。水的接触会损坏传感电路板上的电子部件,并导致传感器腐蚀和气流可能受到污染。为了减轻接触感测电路板的水的影响,可以将湿度传感器放置在感测电路板上,以向用户发出警告要求检查设备是否有可能进水,或进行纠正措施。如果湿度传感器检测到传感模块中的湿度高于预期,则纠正措施可以包括鼓风机启动流量序列以从感测电路板中去除水。这可以包括用于干燥感测电路板的脉冲或其他鼓风机模式。该纠正措施还可以包括开启湿度传感器中的内置加热器或外部加热器。此外,该感测电路板可以涂覆有保形涂层以防止水进入感测电路板或减轻水进入感测电路板的影响,以及还为了减轻氧气进入的影响。这可以与电子器件周围的密封特征结合使用,对此将在下面进行描述。另外,可以使用闭合式框架换能器(在下面描述),因为它们不易受到水进入而造成的损害。还可以在腔室和感测模块之间引入隔水器。一个非限制性实例是腔室和感测模块之间的单向阀。
图21展示了模块化感测腔室2007的实施例。感测腔室2007可以被定位在马达和/或传感器模块内的鼓风机2001的下游。感测腔室2007包括流动路径2006,并且被设计成将感测电路板2200(图22)保持在壳体2101 中。
气流在穿过流量治疗设备过程中可能会经历压降,这会消耗功率,进而影响系统达到特定流率的能力。压力损失可能是由于流动路径的直线部分的摩擦力、或者因从直线路径的偏离(例如路径中的弯部、阀、收缩、或膨胀)而造成。
流动路径2006具有弯曲的形状。气体流量在入口2103处进入,沿着弯曲的流动路径2104流动,并在流动路径2105的相反侧离开。在一些实施例中,入口和出口可以定位在垂直相反的方向上,并且气流可以沿竖直向上的方向进入路径,然后弯曲到水平方向,接着再次弯曲到竖直向上的方向。在一些实施例中,流动路径不具有急转弯部分。在一些实施例中,流动路径具有弯曲的端部,该弯曲的端部具有较直的中间部分。在一些实施例中,流动路径在流动路径的整个长度上保持恒定的截面形状。在一些实施例中,流动路径从流动路径的第一端部略微向内渐缩,并且再次变宽至流动路径的第二端部,这可以加速流动以获得更好的测量准确性。在一些实施例中,流动路径的表面衬有表面改性剂/润滑剂以减少流动路径内的摩擦。可以使用多种不同的流动路径构型。弯曲的流动路径形状可以通过使测量区域与流动路径部分重合来减小气流的压降,而不降低流量测量的灵敏度。
感测电路板2200定位在感测腔室中的壳体2101中,使得感测电路板的至少一部分与流动路径2006中的气流重叠。开口2102可以被定位成沿流动路径2006保持超声换能器2204(图22A至图22B)以测量流量内的气体性质。
流动路径2006具有换能器之间的总距离。在一些实施例中,流动路径的总距离介于约10mm与约1000mm之间、介于约40mm与约200mm 之间、介于约50mm与约150mm之间、介于约70mm与约120mm之间、介于80mm和100mm之间、或介于任何上述值之间,或者为约95 mm。
流动路径2006具有表示流动路径的、与声学路径一致的部分的总流动距离。在一些实施例中,流动路径具有介于约1mm与约500mm之间、介于约10mm与约200mm之间、介于约50mm与约150mm之间、介于约70mm与约100mm之间,或介于约70mm和约88mm之间、或介于任何前述值或其等同物之间、或为约75mm的总流动距离。换能器之间的总距离减去总流动距离等于无效空间,该无效空间可位于超声路径的、没有气流的任一端部处或两个端部处。
流动路径2006的直径可以大于约2mm且小于约100mm、介于约5 mm与约50mm之间、介于约10mm与约30mm之间、介于约12mm与约25mm之间、或介于约15mm至20mm之间,或介于任何上述值之间、或为约16mm。减小流动路径的直径可以增加超出有用速度的处于高流量时的气体速度、可以增加传感器测量中的非线性效应、可以导致压降、并且可以夹紧/限制传感器安排和设计。增加流动路径直径会占用系统更多的空间,并且可能导致流量灵敏度下降。因此,根据上述范围可以获得最佳平衡。等效范围可以用于具有不同流量配置的装置。
流动路径2006具有归一化的流动距离,该归一化的流动距离指的是传感器2204的灵敏度等于横截面尺寸处的总流动距离。流量灵敏度受总流动距离和气体速度的影响,该气体速度受截面尺寸的影响。假设圆形截面导管,流量灵敏度成比例于
Figure RE-GDA0003690258340000201
其中D表示总流动距离,以及r表示截面半径。
在一些实施例中,流动路径2006具有归一化的流动距离,该归一化的流动距离被归一化为8mm的半径,该半径为流动路径的截面,该半径介于约1mm与约500mm之间、介于约10mm与约200mm之间、介于约50mm与约150mm之间、介于约70mm与约100mm之间、或介于约70mm与约88mm之间,或介于任何前述值或其等同物之间、或为约75 mm。在一些实施例中,流动路径2006具有归一化的流动距离,该归一化流动距离被归一化为6mm的半径,该半径介于约1mm与约500mm之间、介于约10mm与约200mm之间、介于约20mm与约60mm之间、介于约30mm与约50mm之间、或介于任何前述值或其等同物之间、或为约40mm。在一些实施例中,流动路径2006具有归一化的流动距离,该归一化的流动距离被归一化为10mm的半径,该半径介于约10mm至约500mm之间、介于约50mm至约200mm之间、介于约100mm至约 150mm之间、介于约110mm与约130mm之间、或介于任何前述值或其等同物之间、或为约120mm。在一些实施例中,流动路径2006具有归一化的流动距离,该归一化的流动距离被归一化为介于6mm半径与10mm 半径之间,并且该归一化的流动距离介于约40mm与120mm之间、或介于任何上述值或其等同物之间。
图22A至图22C展示了被配置为定位在感测腔室内的感测电路板 2200的实施例。在一些实施例中,感测电路板2200是印刷感测电路板 (PCB)。在一些实施例中,该电路用连接电子部件的电线而不是通过印刷在电路板上来构建。在一些实施例中,感测电路板的至少一部分安装在流动路径的外部。
感测电路板2200可以包括超声换能器2204以及以下各项中的一者或多者:单独的气体温度传感器2205、加热式温度感测元件2206、包括将与单独的温度传感器一起使用的仅湿度传感器的湿度传感器、以及组合式湿度及温度传感器2208、用于测量气压的传感器、用于测量压差的传感器、和/或用于测量表压的传感器。加热式温度感测元件可以包括加热式温度感测元件、热线风速计,例如铂丝或加热的热敏电阻、和/或负温度系数 (NTC)热敏电阻。加热式温度感测元件的其他非限制性实例包括玻璃或环氧树脂封装或未封装的热敏电阻。加热式温度感测元件被配置为测量气体的流率。感测电路板2200包括第一部分2201和第二部分2202。第一部分2201被定位在气体的流动路径2006内,而第二部分2202被定位在气体的流动路径2006的外部。图22A至图22C中通过箭头2203指示气流的方向。气流的方向在图22A中被指示为直线,并且在图22B和图22C中被指示为弯曲。空气的大致方向背离一个上游换能器2204并且朝向另一个下游换能器2204。
感测电路板2200的第一部分2201可以包括超声换能器、收发器或在感测电路板的每个端部处以测量沿着流量的气体性质的传感器。将传感器定位在流动路径或模块中而不是在流动路径或模块外部允许一对换能器在相对于彼此的较小温度范围内操作,或者两者基本上处于同一温度(即,气流的温度)。由于换能器对温度敏感,使它们处于基本上相同的温度将提高准确性。此外,沿着流动路径定位传感器允许进行考虑到气体速度影响的测量和计算,使得能够从传感器测量中去除气体速度的影响。
感测电路板2200的相对端部上的超声换能器2204之间的距离可能影响测量分辨率。每个超声换能器2204之间增加的距离可以减小比例误差或分数误差,因为通常所测量的长度将具有一定量的误差,因此如果长度增加,则在测量过程中产生的误差比例将小于在测量较短的长度时产生的误差比例。因此,测量的整体不确定性下降。增加的距离还可以增加测量分辨率和准确性,因为它允许超声换能器2204之间的声信号具有更长的时间周期。然而,增加的距离可能导致较弱的信号。
超声换能器2204可以被定位成使得超声换能器2204之间的空间至少部分地与流动路径2006重合。在一些实施例中,超声换能器被定位在感测电路板的相对端部上。因为流动路径的整个表面暴露于声学路径,因此声波传播经过流动路径2006中的所有气体。对波形的平均可以发生在整个流动路径上,而不是在流动路径的一部分上。在较长距离上进行平均可以减少误差并降低空气-氧气混合的依赖性。
感测电路板2200的第一部分2201可以包括温度传感器,例如流动路径2006内的热敏电阻2205。将温度传感器浸入气体流动路径内增加了气体与传感器之间的热传导,并且可以允许较准确地感测气体的温度,并且允许温度传感器的较快响应。此外,将温度传感器定位在流动路径中可以将寄生热源和热沉(例如来自模块壁的热传导)最小化。在一些实施例中,热敏电阻2205是负温度系数(NTC)热敏电阻。在一些实施例中,热敏电阻2205是数字传感器。
在一些实施例中,感测腔室内的感测电路板包括轨迹(例如铜轨迹),该轨迹被安排成减少腔室壁与感测电路板之间的热传导。图27A展示了具有轨迹2701的感测电路板2200的实施例,并且图27B展示了图 27A的具有轨迹2701的感测电路板2200的放大部分。在一些实施例中,轨迹2701位于感测电路板的外层上以实现向空气的热传递。通常,由于铜或其他类似导电材料的高导热性,感测电路板迹线可以提供整个感测电路板的大部分热传导。由于铜平面密度较高,弯曲的较长轨道可以减少热传导,但还可以增加感测电路板的体积传导率。在一些实施例中,轨道薄且长,并不非常密集地安排。此类构型可以减少由轨道引起的热传导,而基本上不增加体积传导率。
感测电路板2200的第一部分2201可以包括加热式温度感测元件 2206。加热的温度传感元件的温度是可以是可选择的。如本文所述,加热式温度感测元件2206是被配置为感测气体流量的可变温度传感器。图22C 示出了加热式温度感测元件2206周围的切口2012。类似地,但与上述走线相比,切口2012可以降低对加热式温度感测元件2206的温度影响。
在一些实施例中,感测腔室包括将感测电路板2200的第一部分2201 与感测电路板2200的第二部分2202分开的密封件。该密封件可以在感测电路板的中间部分的任一侧上包括O形环和凹槽,以便为刚性部分提供软表面以进行密封。在一些实施例中,密封件可以包括共模制,其中,软层被模制到设备的刚性部分上以提供密封部件。密封件可以封闭流动路径的高压区域,其中,在电路的第一部分上的传感器测量气流的特性。该密封件可以防止气体从流动路径的高压区域逸出并朝向流量治疗设备的电子器件移动,并且可以防止水接触感测电路板的第二部分。
感测电路板2200的第二部分2202可以包括驱动器、微控制器、和/或其他电路系统2207。在一些实施例中,第二部分2202包括用于每个超声换能器2204的电路以控制超声换能器的脉冲。将超声换能器2204的电路定位成接近超声换能器2204降低噪声并增加对电路进行温度效应补偿的能力。这样降低噪声,因为由于极接近而仅需要短的模拟部分来将信号从超声换能器2204传输至感测电路板处理电路系统2207,并且对来自周围元件部分的噪声将会敏感的该模拟部分被夹在感测电路板2200中的两个地平面(例如由铜制成的平面)之间。一旦信号已经到达感测电路板处理电路系统2207,则任何进一步的传输都是经由对噪声稳健的数字信号进行。超声换能器2204与电路系统2207接近意味着电路系统2207更可能与气体处于相似的温度,由此补偿由于电路系统2207和气体之间的温度差而导致的超声换能器2204读数的不准确性。在一些实施例中,用于两个超声换能器的电路位于感测电路板2200的第二部分2202的相对端部上。将电路定位在相对端部可以避免发射信号和接收信号之间的电干扰。
接下来将结合图22C描述感测电路板2200的更多细节。下面描述的特征可以结合在图22A和图22B所示的实施例中。如图22C所示,感测电路板2200包括第一部分2201和第二部分2202。围绕第一部分2201的气动密封件被配置为防止气体泄漏到第一部分2201之外。气动密封件可以被配置为密封感测电路板2200的每个表面(上部和下部)。感测电路板2200的每个表面上的气动密封件可以是O形环密封件。可以使用另外的密封特征。非限制性实例是添加到螺钉凸起上的附加插头,该插头将被插入孔2216中以将感测电路板2200安装在腔室2101中。插头可以降低气体(包括氧气)经由螺钉离开感测模块或感测腔室或感测电路板2200的可能性。用于密封流动路径和电路系统2207的塞子和O形环密封件都可以通过共模制的垫圈来更换,这允许使用少量的零件,减少了组装时间并减少了操作者错误的可能性。
感测电路板2200的第一部分2201包括感测电路板2200的相对端部上的超声换能器2204。超声换能器2204可以测量气体特性,例如氧浓度和流率。如下所述,超声换能器2204可以是开放式框架或闭合式框架。如图22C所示,超声换能器2204被直接安装在感测电路板2200上。这种安排可以抑制声学耦合,在超声换能器首先与壳体联接然后被组装到感测电路板2200上时会发生这种声学耦合。直接安装的另一个优点是安装超声换能器所需的步骤较少。此外,换能器2204之间的距离是固定的,这减少了随着时间的推移而物理漂移的可能性。图22C还示出了加热式温度感测元件2206,该加热式温度感测元件被配置为测量流量,并且在流动路径 2203中约位于温度传感器2205和湿度及温度传感器2208的中间。使超声换能器和加热式温度感测元件两者测量流量可以有利于在大的流率范围内提供快速准确的流量测量,对此将在下文进行详细描述。
图22C的感测电路板2200进一步包括温度传感器2205和温度及湿度传感器2208。温度及湿度传感器2208可以监测露点。如图22C所示,温度传感器2205处于温度及湿度传感器2208的上游。温度传感器2205较靠近流动路径2203的入口,并且温度及湿度传感器2208较靠近流动路径 2203的出口。温度传感器2205和温度及湿度传感器2208各自极接近超声换能器2204中的一者。例如,温度传感器2205和温度及湿度传感器2208 各自处于距超声换能器2204中的一者约10mm至50mm之间。在一些实施例中,温度传感器2205和温度及湿度传感器2208各自距超声换能器 2204中的一者约20mm至45mm之间。在一些实施例中,温度传感器 2205和温度及湿度传感器2208各自距超声换能器2204中的一者约30mm 至40mm之间。与图22A和图22B中所示的用于保持传感器的伸直的手指不同,图22C的感测电路板2200的第一部分2201包括弯曲的手指 2010,以将温度传感器2205和湿度及温度传感器2208定位成靠近流动路径2203的中心以提高读数的准确性。温度传感器2205和温度及湿度传感器2208允许系统测量流动路径2203内的两个位置处的温度。第一位置较靠近流动路径的入口,并且温度由温度传感器2205测量。第二位置较靠近流动路径2203的出口,并且温度由温度及湿度传感器2208测量。两个温度读数提供沿流动路径2203的温度梯度的近似。如果流动路径内没有大的温度梯度,这种方法的效果很好。例如,如本领域的技术人员通过本文中的披露内容所理解的,可以使用数学公式(例如加权和或其他公式) 根据两个读数来确定散装气体温度计算。另外,由于温度传感器2205和温度及湿度传感器2208接近超声换能器2204,两个温度提供由超声换能器2204发射和接收的超声波信号的温度的良好近似。这允许旨在减小对换能器本身的依赖性的边缘检测方法(下文在“超声波感测”部分中进行描述),使得只有沿流动路径2206的气体温度与氧气浓度和流量计算相关。
替代性地,在流动路径内具有大的梯度的情况下,可以使用以下技术。可以在气压传感器2209上的温度传感器(下面将在双绝对压力传感器的部分中更详细地描述)和温度及湿度传感器2208之间取温度梯度,并且该梯度可以与温度传感器2205和温度及湿度传感器2208之间的梯度一起使用,以近似较靠近温度及湿度传感器2208的超声换能器2004的温度。可以使用相同的技术来估计较靠近温度传感器2205的超声换能器 2004的温度。可以在气压传感器2209上的温度传感器和温度传感器2205 之间获得温度梯度,并且该梯度可以与温度传感器2205和温度及湿度传感器2208之间的梯度一起使用,以近似较靠近温度传感器2205的超声换能器2004的温度。
由于设备内部的露点与设备外部的露点基本上相同,因此如果湿度传感器2208提供露点测量,则该湿度传感器可以被放置在设备内部或外部的任何位置。然而,将湿度传感器放置在使得该湿度传感器在气体已经由鼓风机混合之后测量湿度的位置是有益的。这种构型的一个优点是湿度测量对湿度变化的反应较快。另一个优点是,如果该设备与氧气浓缩器一起使用,则超声波测量将不依赖于浓缩器的功效,而在混合之前测量环境空气的湿度将导致基于浓缩器功效的小误差。
电路板2200的第二部分2202可以包括驱动器、微控制器、非易失性存储器,例如EEPROM、和/或其他电路系统2207。微控制器的使用允许加热式温度感测元件和超声换能器之间的传感器融合,同时系统运行以校正由具有更准确的加热式温度感测元件的超声换能器快速确定的流率。在一些实施例中,微控制器并入非易失性存储器。使用该非易失性存储器具有以下功能和优点。可以存储校准参数和这些参数的极限,从而允许如上所述的系统的模块化。更多细节在下面的“校准”一节中提供。还可以存储每个模块的唯一ID,这可以例如用于在制造过程中和/或在现场对模块进行追踪。非易失性存储器还允许在操作过程中记录错误,这可以帮助诊断故障。
超声波感测
下面描述了利用声速(以c表示)和气体速度(以v表示)的感测系统的模型,并在图25A中展示。两个换能器2204面向彼此隔开距离D,并且各自产生行进这两个换能器之间的距离(“声学路径”2501)并被另一换能器2204接收的脉冲。如果传感器被安排成具有平行于声学路径 2501的气流的一些部件,则第一方向上的信号随流量以c+v的速度行进,并且在第二方向上信号逆该流量以速度c-v行进。传感器测量这两个信号的飞行时间。使用此飞行时间,可以计算c和v,并且可以确定气体流量。
所测量的第一方向上的飞行时间为
Figure RE-GDA0003690258340000261
第二方向上的飞行时间为
Figure RE-GDA0003690258340000262
可以通过声速和气体速度来求解:
Figure RE-GDA0003690258340000263
Figure RE-GDA0003690258340000264
在实施过程中,在超声路径没有气流的任一端部处通常存在“无效空间”。图25B展示了结合无效空间2502的模型。一般来讲,这些无效空间2502未明确限定,并且与超声路径2501一致的流动路径2503的分量可能沿着感测区域的长度而变化。然而,本披露的平滑弯曲流动路径减小了流动曲线的变化、这继而减小了无效空间。由于无效空间很小,因此图25B所示的近似非常好,并且可以将无效空间视为明确限定的区域。对于在超声路径2501的两个端部之间分开的无效空间2502的平均距离D0和存在气流2503的距离D,测得的飞行时间变成
Figure RE-GDA0003690258340000271
Figure RE-GDA0003690258340000272
对于C的确切解,可以得到:
Figure RE-GDA0003690258340000273
气体速度由下式给出:
Figure RE-GDA0003690258340000274
表达式可以基于声速将显著高于气体速度的假设而被简化,所以通过近似c2>>v2,表达式简化为:
Figure RE-GDA0003690258340000275
Figure RE-GDA0003690258340000276
体积流量可以通过将气体速度v乘以有效截面积A获得:Q=vA。如果流量与声学路径形成角度,那么体积流量可以表示为
Figure RE-GDA0003690258340000277
有效截面积可被认为是充分表示截面积的已知和未知参数组合的集总参数。
在一些实施例中,上面给出的等式被简化为其他形式。
图23a展示了根据本发明的实施例的在换能器感测期间实现换能器信号传输的电路表示。发射器驱动器2301驱动发射器2302发出信号,该信号通过空气传播2303到接收器2304。放大器2305放大波形,检测2306 边缘或时延,微控制器2307提供驱动信号并捕获边缘。图23b展示了通过叠加两个方向的图23a的路径而沿两个方向传输信号的电路表示。可以实现多种拓扑结构。
发射器驱动器2302可以包括用作反相器的四个晶体管,前两个晶体管用于电平移位,后两个晶体管形成驱动换能器的半桥。当换能器2303 在沿相反方向传输声信号期间用作接收器2304时,将发射器驱动器2302 与发射器/换能器2303分开允许换能器2303与驱动器2302隔离。在一些实施例中,发射器驱动器是集成驱动器芯片。在一些实施例中,发射器驱动器晶体管是MOSFET,其可以呈现较小的延迟并且在整个温度范围内具有良好的稳定性。在一些实施例中,发射器驱动器晶体管是双极结型晶体管。
在一些实施例中,发射器2303可以包括以25kHz、40kHz或任何其他频率操作的“开放式框架”压电换能器。在一些实施例中,发射器2303 可以包括在低电压(例如低于约20V)下操作的“闭式框架”压电换能器。为了氧气安全,低电压是理想的。在一方面,开放式框架换能器提供更多幅值,更好的灵敏度和信噪比,并且在更低的电压下工作,因此更适合与本文所述的流量治疗设备一起使用。然而,开放式框架换能器可能不太可靠,因为它们未被密封,从而更容易由于进水而受到损坏并且更容易受到机械损坏,例如当锥体分离时。在另一方面,由于闭式框架换能器不具有锥体,因此闭式框架换能器不易进水或受到机械损坏。然而,闭式框架换能器通常需要高于流量治疗设备的通用操作电压的高电压。
接收器2304可以包括以25kHz、40kHz或任何其他频率操作的“开放式框架”压电换能器。在一些实施例中,接收器2304可以包括在低电压(例如低于约20V)下操作的“闭式框架”压电换能器。在一些实施例中,发射器2303和接收器2304是相同类型的换能器。
图24a示意性地展示了沿相反方向发送和接收的信号,图24b展示了发射和接收时的传播信号2303。脉冲串被施加到换能器/发射器2302,并且可以是脉冲或脉冲群2401或方波。由于压电换能器可能高度谐振,因此由换能器/发射器2303产生的信号可以不是方波,但可以是包络正弦波。类似地,由换能器/接收器2304接收到的波形2402可能并不确切地是发射的声波,而是基于发射波与换能器/接收器的谐振的组合效应。在恢复阶段2403之后,另一个脉冲串2401被施加到换能器/接收器2304并由换能器/发射器2303接收。
脉冲串之间的时间段可以变化,然而,减少该时间段(例如,通过在时间上将脉冲串移动得更近)会由于换能器振铃而导致后续脉冲串之间的干扰。例如,如果脉冲串之间的时间减少,则新的脉冲串可能在来自先前脉冲串的信号已经稳定之前开始。因此,从脉冲串中的特定点确定的测量结果可能与先前脉冲串的信号的末端(在该信号稳定时)重叠。超声发射器可以具有旨在减少振铃的特征。如图24C所示,超声发射器可以延长脉冲2405,使得其变得接近驱动信号或与其相位分开180°,以快速减少脉冲的振铃。仅需要发射几个附加的异相脉冲来帮助减少振铃,因为太多的异相脉冲将导致振铃重新开始。在一些实施例中,可以改变脉冲使得其相位不同小于或大于180度。在其他实施例中,可以省略一个或多个脉冲以减少振铃。
每个脉冲串中可以发射任意数量的脉冲。然而,增加脉冲数量会增加回波,这会使传感器的行为不可预测。减少脉冲数量可能导致幅值不足以获得准确的测量结果。在一些实施例中,脉冲串的总发射时间小于飞行时间。更大的发射时间可能导致测量误差,例如来自彼此干扰的信号,来自气体中回波的干扰,来自脉冲的电噪声或穿过外壳的声音。在一些实施例中,发射脉冲的数量介于1至50之间、介于1至10之间、5个脉冲或者任何其他数量的脉冲。脉冲的频率可以变化。脉冲的频率可以与发射器 2303的频率相同,或者低于发射器2303的频率,或者高于发射器2303的频率。
放大器2305可以包括不具有去耦电容器的共发射极双极结型发射 (BJT)放大器。此类放大器可以实现低相位延迟和良好的频率响应。在其他实施例中,放大器2305可以包括运算放大器或其他集成放大器。
边缘/时延2306可以通过测量接收到的波形的过零点来测量,即,通过检测‘RX’曲线2402上超过零的点,如图24B所示。在实施过程中,在接收器刚开始“起振铃”的情况下,由于信噪比非常小,因此难以检测波形的前几个边缘。典型地,测量的起点将是实际开始之后的一个或多个边缘,并且真正的飞行时间必须由此计算。在简单的线性回归系统中,至少测量两个边缘并计算波形的周期,使得可以将测量的点向回外推适当的周期数量以找到波形的起点。如果测量了许多边缘,则可使用线性回归来计算零边缘处的时间偏移。通过取相邻边缘的算术平均值,可首先计算波形的峰值(然后用于相同类型的计算)。算术平均值计算减轻了边缘检测零点偏移的影响,否则可能会使结果略带偏差。
在实施过程中,这些线性回归方法具有基本限制。发射器和接收器都具有非零相位响应,并且如上所述,大多数压电换能器高度谐振。此外,每个换能器的准确相位响应和谐振频率可以在部件之间变化、随温度变化以及随时间推移而变化。那么接收到的实际波形就是与发射器脉冲响应卷积并且与接收器脉冲响应卷积的驱动波形。因此,接收到的波形并不是真正的包络正弦曲线,而在其起点处具有复数相位延迟并且具有随着波形“响起”而变化的频率,可能导致部分或完整差拍,这取决于驱动波形的谐振频率之间的差值以及TX和RX换能器,或者更一般地讲脉冲响应。由于基础谐振频率在不同的温度和其他波形偏移条件下偏移,接收到的波形的形状也会偏移。边缘上任何简单的线性回归都会受到偏移的负面影响,因为简单的线性回归假定波形周期从测量的边缘到外推边缘不会改变。这使得需要将温度和其他经验校准添加到线性回归或类似的计算中来说明这些附加的温度和类似的波形偏移效应。随着时间推移或在不同的换能器中,这些校准反过来也可能不准确。
一种减轻温度漂移或使波形偏移的其他类似效应的方法是调整驱动频率。如上所述,许多换能器在整个温度范围内具有谐振频率的一定程度地一致偏移,因此驱动频率可根据这一点变化。在替代性的实施例中,换能器的谐振频率可根据感测的波形进行估计,并相应地调整驱动频率,以允许系统动态地将驱动频率与谐振频率匹配,并最小化虚假的相位延迟。
在一些实施例中,为了更好地说明这些差异,尤其是发射器与接收机之间不能直接调整的不匹配,可以使用加权每个边缘的更一般的表达式。例如,可以使用加权矢量,例如t=δ+∑iwiEi飞行时间的t位置wi是ith边缘的权重并且Ei是ith边缘的时间。通过选择一组适当的权重,即使对于TX和 RX谐振频率的合理变化,也可以产生非常接近卷积过程反演的表达式。这样,在飞行时间计算中仅需要很小或不需要经验温度校准。
在一些实施例中,可以通过测量放大的波形来测量边缘/时延。放大的波形实际上是图24B所示捕获并存储的RX波。测量放大的波形可以允许改进的故障检测,因为观察到实际的波形,并且还可以用于更详细的时延估计。例如,可以在接收到的波形与参考(无论是较早记录的或是先前定义的)之间执行互相关以产生飞行时间测量。该参考可以是单独的或先前的波形。由于互相关是在复杂的形状上执行的,因此该方法并不依赖边缘检测中完成的“窗口化”,这需要知道边缘必须落在预定义窗口中的哪个位置才能知道正确的边缘被检测到。无需“窗口化”继而允许更宽范围的声速感测。即使声速范围会导致边缘落在窗口之外,互相关仍可以正确测量飞行时间,该飞行时间随后可用于定义新的边缘窗口用于基于边缘的测量。这样,由于其高声速范围而可能不能用于特定系统的气体可以变得可用,例如,产生的声速变化比氧气大若干倍的氦氧混合气体或二氧化碳。将波形与参考进行比较还可以突出操作期间的异常情况,例如低信号幅值、干扰、换能器频率中不可接受的偏移等。每个方向上的波形也可以彼此互相关以产生差分飞行时间,从中可以计算流量。
微控制器2307提供驱动信号并捕获边缘。微控制器可以在任何频率下操作,但较高的频率可以提高分辨率。微控制器2307可以在24MHz、 48MHz、72MHz、120MHz的频率或任何其他频率下操作。
校准
在一些实施例中,传感器可以组合使用以提供冗余并校准流量治疗设备。为了本说明书的目的,校准是指如果测量的变量与预期或参考变量之间存在差异,则检查变量并且/或者调整系统、测量和/或显示。与超声相比,加热式温度感测元件具有在低流量下产生增加的灵敏度的对数响应。加热式温度感测元件可以提供改善的低流量测量精度,但是超声换能器可以提供快速测量。控制系统可以关闭鼓风机和氧气流量以形成具有已知值的情况,并比较来自不同类型传感器的读数以确定感测值是否可以接受。然后,控制系统可以改变鼓风机速度和氧气流量,并使用或比较来自不同类型传感器的读数并进行相应的校准。
校准可以是调整用于计算气体特性的数学模型中的参数,该气体特性包括气体速度、流量、气体温度、湿度、压力和/或氧气浓度。具体地讲,在基于数学模型计算气体特性的情况下,关系中的模型参数可以呈现出未知的变化。通过使用传感器在已知条件下期间进行测量,这些测量结果可用于模型中求解一个或多个未知参数。
未知参数的校准调整可以说明系统中的更多变化,而不仅仅归因于该参数的直接物理解释(即,调整可以说明多个参数中的未知变化)。这可以在至少两种情况下发生。首先,两个参数可能是不可分割的,在这种情况下,可以将校准调整视为结合两个参数的效果。例如,在先前描述的用于气体速度的超声波感测模型中,该项的参数被分组而没有变量来区分它们,
Figure RE-GDA0003690258340000321
因此为了校准的目的,可以调整它们的组合值。其次,系统可能没有足够的校准点来解决所有参数,在这种情况下,校准调整可以接近多个参数的变化。例如,在先前描述的用于声速的超声模型中,参数D+D0、t1和t2可以呈现明显的可变性,其可以通过使用多个校准点来清楚地说明。然而,在使用一个校准点的更简单的情况下,可以解决上述参数中的单一参数以说明所有上述参数的总可变性。在第二种情况下,可以采取附加的测量来验证系统并且/或者检查是否需要附加的校准点。
例如,在先前描述的声速模型中,
Figure RE-GDA0003690258340000322
使用已知的声速以及超声飞行时间t1和t2的校准点测量,待校准的参数可以是D+D0
Figure RE-GDA0003690258340000323
来自上面的模型。可以在任何流量下采取此类校准点,因为气体速度不会出现在模型中,但在零流量下采取该校准点可以减小气体速度与声速之间的残余交叉影响。
然而,在先前描述的用于流量的模型中,
Figure RE-GDA0003690258340000324
在零流量下不能进行类似的校准,因为该项
Figure RE-GDA0003690258340000331
可能等于0。然而,通常可以预期两个方向之间的略微不对称,这主要是由于换能器延迟。不对称可以被建模为:
Figure RE-GDA0003690258340000332
使用该不对称模型时,可以将气体速度模型调整为:
Figure RE-GDA0003690258340000333
模型中的其余值基于流动路径的几何形状,并且不易受变化影响。因此,经调整的气体速度模型可用于零流量处的校准。
在一些实施例中,校准方法不依赖于零流量并且可以应用于任何流量。校准方法可以允许单独的延迟,δ1并且δ2在飞行方向的每个时间内,使得声速计算变为:
Figure RE-GDA0003690258340000334
并且对于v也一样,其中c和v的值是已知的,延迟计算如下:
Figure RE-GDA0003690258340000335
Figure RE-GDA0003690258340000336
在这种情况下,D+D0的值可以固定用于所有传感器或在制造期间单独确定。如果期望单独校准c或v,则可以替换剩余变量的当前计算值。例如,为了在不影响声速读数的情况下校准流量,使用c的当前感测值,产生影响v而非c的δ1和δ2的值。这样,可以以任何已知的流量来校准流量,并反过来校准声速。
可以对其他传感器采用类似的校准。例如,加热式温度感测元件可以通过King定律或其衍生物进行建模,并且可以基于校准点处的测量结果来调整未知参数。在一些实施例中,由超声换能器提供的冗余(在低流量情况下快速但不总是精确)以及由加热式温度感测元件提供的冗余(在低流量情况下速度慢但具有良好精度)可以在操作期间组合以提供在低流量下既快速又精确的连续读数。例如,低流量包括小于约25L/min,或小于约20L/min,或小于约15L/min的流量。例如,每次从加热式温度感测元件获得流量读数时,其可被用于计算或调整超声换能器的校准参数,如前面段落中所述,由此连续地校准超声换能器读数中的任何误差或漂移。可以直接执行调整或者使用滤波器来仅以一定的量或一定的速率调整参数,并且/或者调整水平可以根据流量或其他感测参数进行加权,或者使用已知的系统响应特性来估计最优权重,类似于卡尔曼滤波器。也可以直接对超声换能器的流量读数进行调整,而不是以类似的方式对校准参数进行调整。
在一些实施例中,因此可以在以下步骤中采用对系统的校准,如图 26A的流程图所展示。首先2601,控制系统可以关闭阀并将鼓风机调整至固定的鼓风机速度。可以检查多个不同传感器(例如,超声、温度、湿度、压力)的测量结果处在可接受的范围内,以确保系统正确操作2602。例如,可以检查来自超声换能器的近似流量以确保流动路径未阻塞,和/或可以通过压力传感器测量压力并确认其在可接受的值内。
接下来,控制系统可以关闭鼓风机和阀以产生零流量2603。如上所述,来自超声换能器的测量结果可用于校准总传感器距离(D+D0)和零流量偏移2605。超声换能器的读数可以用作校准加热式温度感测元件的参考。然而,加热式温度感测元件通常需要两个校准点,因为加热式温度感测元件在系统中具有更多的未知数(例如,温度敏感度、温度和/或功率梯度)。在校准了超声换能器之后,它们可以用作参考以产生至少一个新条件来执行附加的校准,例如在零流量或一个或多个非零流量条件下。
在校准超声换能器2612之后,系统可以使用校准的超声换能器来校准其他传感器2613。可以打开2606鼓风机,使得流量穿过系统。阀关闭时,已知氧气浓度接近20.9%(空气中的氧气浓度)。可以进行测量以检查氧气读数是否在可接受的值内2607。同样,如果设备附接到已知的氧气源,则阀可以完全打开,并且鼓风机设定为低流量,并且可以进行测量以检查氧气读数接近100%或在可接受的值范围内,例如氧气浓缩器仅输送约100%的氧气。此外,在100%的氧气下,可以采取由相对湿度传感器进行的测量,以检查相对湿度读数接近0%或在可接受的值范围内。
通过利用超声换能器和加热式温度感测元件两者进行测量并且比较那些测量结果2608,控制系统可以相应地校准加热式温度感测元件参数 2609。可以调整鼓风机以形成附加的流量组,其可以针对附加的校准点而被测量。
然后,控制系统可以关闭鼓风机2610,并且可以在已知的零流量处验证超声换能器和加热式温度感测元件的校准2611。
图26B展示了系统的校准步骤的另一个实施例。在步骤2620中,系统为给定的操作参数生成期望值。期望值可以来自查找表、用户输入、计算值等。在步骤2622中,系统以来自步骤2620的给定的和已知的操作参数运行。在步骤2624中,系统使用传感器之一来测量第一值。在步骤 2626中,系统将第一值与来自步骤2620的预期值进行比较。在步骤2628 中,系统可以基于第一值与期望值之间的差值来校准测量结果。可以校准的测量结果包括声速、鼓风机关闭时(零流量)或特定流量下的流量。可选地,在步骤2630,系统可以通过以不同的操作参数运行来重复步骤 2620至2628一次或若干次作为检查。在一些实施例中,在步骤2632,系统可以可选地将第一值与工厂设置进行比较。该比较可以在比较步骤2626 或在比较步骤2626之后但在任何校准发生之前完成。如果第一值超出限制,则系统可以停止校准过程并输出警报。该限制可以是例如工厂容差或设想设备以其运行的预定校准限制。
在一些实施例中,校准系统检查其参数并根据需要调整其参数以符合可接受的限制。在一些实施例中,校准系统检查其参数以确定感测值是否可以接受,而无需调整参数。系统的校准可以在制造期间执行以确定可接受的值,该值将作为系统后期校准的参考。校准可以在工厂中执行、由用户执行或由系统自动执行。例如,系统可以提示用户需要进行校准,或自动校准单元使得在需要时对系统进行校准或者仅在适当的时间进行校准。在其他实例中,用户可以启动校准系统。
双绝对压力传感器安排
流量治疗设备可以包括双绝对压力传感器,其中之一是图22C的气压传感器2209。计量传感器通常安装在感测模块上以测量气流压力与环境压力之间的差值。气流压力与环境压力之间的差值是用于监测当气体输送到用户时流量治疗设备的用户感觉如何的值。计量传感器在小范围内进行测量,因此与绝对压力传感器相比具有高分辨率、低噪声和更精确的优点。然而,计量传感器具有若干缺点。计量传感器需要安装两个管道。因为若干原因,管道可能存在问题。例如,管道可能脱落从而导致氧气泄漏。氧气泄漏是安全隐患。由于传感器的端口不能面向流量或处于具有停滞压力的区域,因此计量传感器对定位也很敏感。而且,由于管道需要穿过容纳传感器的外壳壳体中的孔,因此壳体的结构不太稳固。
由于本文所述的流量治疗设备控制流量而不是控制患者处输送的压力,因此系统受读数中的噪声影响较小。例如,这对于与患者的呼吸进行同步很有帮助。通常可以滤除噪声。因此,治疗设备中的绝对压力传感器可以通过消除对密封件后方的任何管道的需要,而不会为了控制流量而损害读数的精度来提供比计量传感器更简单的机械设计。
如上所述,一个气压传感器位于流动路径中并且位于图22C的感测电路板2200上。另一个气压传感器可以定位在印刷电路板上,该印刷电路板不与气体流动路径或设备的加压区域定位,但暴露于环境温度。因此,如图28的流程图所示,在步骤2802,流动路径内的感测电路板上的气压传感器将气流的绝对压力PF提供给系统的控制器,例如图1的控制器13或图19的控制器600。在步骤2804,另一个气压传感器将环境压力PA的读数提供给控制器。在步骤2806,控制器计算这两个值之间的差值PF- PA,并在步骤2808将压力差输出为系统中的计量压力PG。系统可以使用计量压力PG来调整马达速度曲线,并校准氧气或气体流量的控制。例如,计量压力PG对于与患者的呼吸进行同步很有帮助。
除了基于两个气压传感器的读数计算系统中的计量压力PG,并且通过消除氧气泄漏提高了用户安全性,双绝对压力传感器安排还具有以下应用和/或优点。
流动路径中的绝对压力传感器(例如图22C的气压传感器2209)允许对氧气计算进行较小的校准。定位在流动路径中的绝对压力传感器(例如图22C的气压传感器2209)使得能够在超声流量传感器(体积流量)和加热式温度感测元件(质量流量)之间进行比较。由于马达产生恒定的体积流量,因此在设备中不期望体积流量感测发生巨大变化。然而,对于恒定的马达,质量流量将随着高度、温度或氧气分数而变化。绝对压力传感器有助于计算将体积流量转换为质量流量所需的气体密度或反之亦然,以便比较超声流量传感器与加热式温度感测元件之间的读数。这可以确定传感器的精度并进行适当的校准。例如,质量流量可以计算为:
质量流量=密度×体积流量。
如果将加热式温度感测元件从系统中移除,通过使用以上等式,质量流量仍可以从体积流量进行转换。基于两个气压传感器的读数计算系统中的计量压力PG的另一个应用是安排通过将压力测量结果分解为算法,允许更多定义的泄漏和堵塞算法范围或更窄的泄漏和堵塞警报。质量流量和体积流量之间的转换对基于加热式温度感测元件校准超声流量读数也是有用的。此外,加入环境压力传感器允许质量流量和体积流量之间的转换发生,使得系统可以重新定义不同高度的限制。因此,这些限制特定于环境条件,并且可以以更高的精度捕获更多数量的泄漏/堵塞事件。
具体地讲,如果鼓风机只能通过以高于预期的鼓风机速度工作来保持流量,则会发生堵塞警报。因此,如果高度增加,质量流量将减小,这意味着鼓风机速度必须增加以输送所需的质量流量。因此,系统可以检测到堵塞,因为利用压力传感器,可以调整堵塞限制使得在更高的高度上,系统知道对于给定的质量流量,需要更高的马达速度,同样在较低的高度,系统知道对于给定的质量流量需要较低的马达速度。
类似地,如果鼓风机不必以如此高的速度工作以保持期望的流量,例如,如果室从系统移除(并且因此限制较少),则可能发生泄漏警报。如果没有压力传感器,在高度较高且质量流量减少的情况下,对于相同的马达速度在较低的高度下可以看到较低的流量,这可能会混淆系统并且需要为系统定义更大的限制。因此,能够重新定义不同高度的限制意味着可以为更高的高度定义下限,从而可以获得更多的泄漏/堵塞条件。
更具体地讲,流动路径中的绝对压力传感器允许响应于气体中水蒸气的分压而进行校准。在任何湿度算法中,知晓进入气体的含水量是很有用的,该含水量取决于压力。具体来讲,对于基于功率的湿度控制算法,在气体被加湿之前在入口处测量气体的特性,并且基于输入加热器板以加热水的功率以及这些气体特性来估计生成的湿度。在这种情况下,压力对湿度估算的精度影响很大,因为达到给定露点温度所需的水量很大程度上取决于环境压力。计量压力也可以影响湿度计算,尽管影响程度较小,基于到患者出口端口21,344或到患者的压降,例如经由患者接口8,其产生对应的露点温度下降。
虽然仅测量原始环境压力值并将其输入设备,但可以使用多种不同算法手动或自动计算高度,并将其用作系统检查。例如,设备可以基于压力读数来计算高度并且向用户显示计算的高度以确定这是否是来自设备的真实读数。在另一实例中,设备可以提示用户确认显示的高度是正确的,或者设备可以请求用户输入高度水平。
在一些实施例中,系统可以使用定位在流动路径或加压区域外部并且暴露于环境温度,或者其他适于利用控制板和感测模块或者感测室之间的计量传感器读取环境压力的位置处的绝对压力传感器。系统可以通过由计量传感器添加差压和绝对压力传感器的环境压力读数来确定输送给患者的总压力。
除非上下文另有明确规定,否则在整个说明书和权利要求书中,字词“包括”、“包括”等应被解释为包含性意义,而非排他性或穷举性意义,也就是说,“包括但不限于”的意义。
术语“约”在此用于表示在标准测量精度内。
对本说明书中的任何现有技术的参考不是且不应被视为承认或以任何形式建议该现有技术形成世界上任何国家致力的领域中的公知常识的一部分。
所披露的设备和系统在广义上也可以说单独地或共同地存在于本申请的说明书中提及或指出的部件、元件和特征以及两个或更多个所述部件、元件或特征的任何或所有组合中。
其中,在前面的描述中,已经参考了具有其已知等同物的整体或部件,这些整体如同单独列出那样并入本文。
根据实施例,本文所述的某些动作、事件、或任何算法的函数、方法或过程可以以不同的顺序执行,并且可以添加、合并或完全省略(例如,并非所有描述的动作或事件对于算法的实践都是必需的)。此外,在某些实施例中,可以例如通过多线程处理、中断处理或多个处理器或处理器核心或者在其他并行架构上同时而非顺序执行动作或事件。
应该指出的是,对本文所述的当前优选的实施例的多种不同改变和修改对于本领域技术人员而言将是显而易见的。可以在不脱离所披露的设备和系统的精神和范围并且不减少其附属优点情况下做出此类改变和修改。例如,可以根据需要重新定位多个不同部件。因此,旨在将此类改变和修改包括在所披露的设备和系统的范围内。此外,并非所有特征、方面和优点都是实践所披露的设备和系统所必需的。因此,所披露的设备和系统的范围旨在仅由下面的权利要求书限定。

Claims (6)

1.一种流量治疗设备中的感测腔室,包括:
一个或多个传感器,所述一个或多个传感器被配置为测量气体性质,所述一个或多个传感器包括在流动路径的下游部分处的第一超声换能器和在所述流动路径的上游部分处的第二超声换能器,
其中,所述一个或多个传感器被直接安装到所述感测电路板上。
2.根据权利要求1所述的感测腔室,其中,所述感测腔室进一步包括被定位成接近所述超声波传感器的超声波电路系统。
3.根据权利要求2所述的感测腔室,其中,所述超声波电路系统与所述一个或多个传感器在环境上隔离。
4.根据权利要求2或3所述的感测腔室,进一步包括将所述超声波电路系统与所述一个或多个传感器隔离的密封件。
5.根据权利要求4所述的感测腔室,其中,所述密封件是气动密封件。
6.根据权利要求1至5中任一项所述的感测腔室,其中,所述一个或多个传感器中的至少一个传感器位于感测电路板上。
CN202210269592.1A 2015-12-02 2016-12-02 流量治疗设备的流动路径感测 Pending CN114796784A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562262325P 2015-12-02 2015-12-02
US62/262,325 2015-12-02
CN201680079350.9A CN108472470B (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
PCT/NZ2016/050193 WO2017095241A2 (en) 2015-12-02 2016-12-02 Flow path sensing for flow therapy apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680079350.9A Division CN108472470B (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测

Publications (1)

Publication Number Publication Date
CN114796784A true CN114796784A (zh) 2022-07-29

Family

ID=58797448

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202210269592.1A Pending CN114796784A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN202210268954.5A Pending CN114796782A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN202210269597.4A Pending CN114796785A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN201680079350.9A Active CN108472470B (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN202210268997.3A Pending CN114796778A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN202210269045.3A Pending CN114796783A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测

Family Applications After (5)

Application Number Title Priority Date Filing Date
CN202210268954.5A Pending CN114796782A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN202210269597.4A Pending CN114796785A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN201680079350.9A Active CN108472470B (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN202210268997.3A Pending CN114796778A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测
CN202210269045.3A Pending CN114796783A (zh) 2015-12-02 2016-12-02 流量治疗设备的流动路径感测

Country Status (10)

Country Link
US (2) US11666720B2 (zh)
EP (2) EP4023277A1 (zh)
JP (3) JP7266404B2 (zh)
KR (2) KR102523073B1 (zh)
CN (6) CN114796784A (zh)
AU (2) AU2016364628B2 (zh)
CA (1) CA3006639A1 (zh)
GB (3) GB2562911B (zh)
SG (2) SG10202005175TA (zh)
WO (1) WO2017095241A2 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10357629B2 (en) 2012-04-05 2019-07-23 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
SG11201609863WA (en) 2014-05-27 2016-12-29 Fisher & Paykel Healthcare Ltd Gases mixing and measuring for a medical device
GB2598220B (en) * 2015-06-24 2022-08-10 Fisher & Paykel Healthcare Ltd Breathing assistance apparatus
WO2017095241A2 (en) 2015-12-02 2017-06-08 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus
NL2019418B1 (en) * 2017-08-15 2019-02-25 Van Woerkum Holding B V Portable air treatment device and method for supplying filtered air to a person
AU2018372766A1 (en) 2017-11-22 2020-04-30 Fisher & Paykel Healthcare Limited Respiratory rate monitoring for respiratory flow therapy systems
EP3805712B1 (en) * 2018-06-08 2022-10-19 Panasonic Intellectual Property Management Co., Ltd. Gas safety device
CN109107111A (zh) * 2018-09-19 2019-01-01 杨菲灵 一种心内科呼吸训练装置
JP7198029B2 (ja) * 2018-10-02 2022-12-28 株式会社堀場製作所 流量測定装置及び流量測定方法
EP4249029A3 (en) * 2018-10-26 2023-11-15 BMC Medical Co., Ltd. Humidification assembly
CN109612542A (zh) * 2018-12-13 2019-04-12 南通松达智能科技有限公司 一种复合原理法流量测量装置
WO2020150404A1 (en) * 2019-01-17 2020-07-23 Covidien Lp Ventilator-initiated decision support and waveform capture during ventilation
US20220168536A1 (en) 2019-03-21 2022-06-02 Fisher & Paykel Healthcare Limited Respiratory device for providing bubble cpap
JP7203302B2 (ja) * 2019-03-29 2023-01-13 パナソニックIpマネジメント株式会社 超音波流量計
WO2020206002A1 (en) * 2019-04-01 2020-10-08 Inogen, Inc. Compact portable oxygen concentrator
JP2020187081A (ja) * 2019-05-17 2020-11-19 パナソニックIpマネジメント株式会社 ガス保安装置
JP7390544B2 (ja) * 2019-05-17 2023-12-04 パナソニックIpマネジメント株式会社 ガス保安装置
US11073845B2 (en) * 2019-08-26 2021-07-27 Hitachi Metals, Ltd. Parasitic flow correction method and apparatus
CN111426353B (zh) * 2020-04-08 2022-02-11 中国民用航空飞行学院 一种精确流量获取装置及方法
CN111658931B (zh) * 2020-07-14 2021-07-09 北京航空航天大学 一种智能经鼻高流量湿化氧疗系统
US20220105299A1 (en) * 2020-10-05 2022-04-07 Biosense Webster (Israel) Ltd. Ventilation system having multiple ventilation modes controlled by a disposable control unit
US20220291036A1 (en) * 2021-03-11 2022-09-15 Honeywell International Inc. Ultrasound and thermal massflow in one flow channel
AU2022235156A1 (en) * 2021-03-12 2023-09-07 Fisher & Paykel Healthcare Limited A respiratory apparatus and control methods
US11672933B1 (en) 2021-12-21 2023-06-13 Nanotronics Health, LLC. Method and system for bi-level treatment of sleep apnea
US20230338680A1 (en) * 2022-04-22 2023-10-26 Nanotronics Health, LLC. Respiratory Pattern Analysis During Variable Positive Air Pressure Delivery For Spontaneously Breathing Patients
DE102022128606A1 (de) 2022-10-28 2024-05-08 Drägerwerk AG & Co. KGaA Kontrollsystem für eine Befeuchtungseinheit und Verfahren zur Erzeugung einer Kontrollausgabe
US11865259B1 (en) * 2022-12-28 2024-01-09 Telesair, Inc. Device and method for respiratory therapy

Family Cites Families (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191210428A (en) * 1912-05-05 1913-02-20 Alfred Julius Boult Improvements in or relating to Apparatus for use in Administering Gas for Medical or like purposes.
US1269599A (en) 1914-04-30 1918-06-18 Fritz Haber Method and apparatus for testing gases.
US1570781A (en) 1921-12-20 1926-01-26 Ruben Samuel Testing apparatus and method
DE404809C (de) 1923-05-08 1924-10-21 Willi Kunze Dr Verfahren zum Nachweis und zur quantitativen Analyse von Gasen aus der Tonhoehe eines oder mehrerer mit dem zu bestimmenden Medium gefuellter und elektrisch zu Schallschwingungen erregter Resonatoren
US2283750A (en) 1940-01-16 1942-05-19 Gen Electric Apparatus for measuring the density of gases
US2568277A (en) 1942-08-01 1951-09-18 Bendix Aviat Corp Fluid testing apparatus
GB792986A (en) 1954-11-17 1958-04-09 Parsons & Co Sir Howard G Improvements in or relating to sonic gas analysers
US2984097A (en) 1956-09-11 1961-05-16 Merck & Co Inc Gas measuring apparatus
US3120750A (en) 1958-11-28 1964-02-11 Iii Elihu Root Gas analyzer
NL302089A (zh) 1963-01-28
NL150210B (nl) 1964-09-14 1976-07-15 Polva Nederland Bv Buigzame strook voor het schroefvormig wikkelen tot een buis.
US3468157A (en) 1966-03-03 1969-09-23 Phillips Petroleum Co Acoustical apparatus for detecting the composition of a gas
US3762197A (en) 1970-09-14 1973-10-02 Phillips Petroleum Co Acoustical detecting apparatus
US3724484A (en) 1971-07-13 1973-04-03 Us Air Force Particle density control system for colloid core nuclear reactor
BE791154A (fr) 1971-11-10 1973-05-09 Synthelabo Respirateur a turbine
US4033808A (en) 1972-06-21 1977-07-05 Aristovoulos George Petzetakis Apparatus for the production of hollow bodies, especially large-diameter ducts from thermoplastic synthetic resin
DE2308418B2 (de) 1972-06-21 1976-04-08 Petzetakis, Aristovoulos George, Moschaton, Piräus (Griechenland) Verfahren und vorrichtung zum herstellen eines insbesondere grosskalibrigen rohres aus thermoplastischem kunststoff
US3805590A (en) 1973-03-09 1974-04-23 Us Navy Oxygen partial pressure sensor
US3848457A (en) 1973-05-14 1974-11-19 Minnesota Mining & Mfg Gaseous fluid monitoring apparatus
US3981176A (en) 1974-09-16 1976-09-21 The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare Dual frequency acoustic gas composition analyzer
US4127121A (en) * 1976-09-17 1978-11-28 University Of Utah Oxygen and anesthesia delivery and monitoring device
US4155246A (en) 1977-04-13 1979-05-22 Harley E. Schear Rapid gas analyzing system
US4215409A (en) 1978-03-13 1980-07-29 Mckesson Company Flow control system for anesthesia apparatus
JPS554528A (en) 1978-06-27 1980-01-14 Sumitomo Bakelite Co Ltd Method and apparatus for measuring gas concentration
NO791305L (no) 1978-08-04 1980-02-05 Sub Sea Oil Services Ssos Gassanalysator
US4255964A (en) 1978-11-30 1981-03-17 The Garrett Corporation Fluid monitor
JPS55166163A (en) 1979-06-13 1980-12-25 Citizen Watch Co Ltd Controller for anesthetic gas
DE2926747C2 (de) 1979-07-03 1982-05-19 Drägerwerk AG, 2400 Lübeck Beatmungsanlage mit von Patientenwerten gesteuertem Beatmungsgerät
DE2945575A1 (de) 1979-11-10 1981-05-27 Drägerwerk AG, 2400 Lübeck Frischgaseinrichtung mit mischer fuer medizinische und atmungsgeraete
US4340044A (en) 1980-03-20 1982-07-20 Berkshire Research Partners Volume ventilator
US4331025A (en) 1980-10-14 1982-05-25 Mapco, Inc. Methods of measuring fluid viscosity and flow rate
GB2087559A (en) 1980-11-15 1982-05-26 Nat Maritime Inst Determining gas compositions acoustically
US4380167A (en) 1981-03-18 1983-04-19 Energy Controls, Inc. Apparatus and method for detecting a fraction of a gas
US4435856A (en) 1982-04-14 1984-03-13 Esperance Francis A L Bifocal intraocular lens structure and spectacle actuation frame
US4452090A (en) 1982-05-17 1984-06-05 Airco, Inc. Ultrasonic flowmeter
DE3246247A1 (de) 1982-12-14 1984-06-14 Siemens AG, 1000 Berlin und 8000 München Doppelwandiger, flexibler schlauch
US4520654A (en) 1983-03-14 1985-06-04 General Electric Company Method and apparatus for detecting hydrogen, oxygen and water vapor concentrations in a host gas
US4555932A (en) 1984-02-03 1985-12-03 Rca Corporation Method and apparatus for assaying the purity of a gas
US4662212A (en) 1984-09-10 1987-05-05 Sumitomo Bakelite Company Limited Measuring instrument for concentration of gas
US4989595A (en) 1985-09-23 1991-02-05 Battelle Development Corporation Aspirator/nebulizer
US4773448A (en) 1987-02-26 1988-09-27 Francis Norman L Freeze-resistant plastic pipe and method for its manufacture
DE3717418C1 (de) 1987-05-23 1988-10-06 Baston Artur Vobau Zylindrischer Hohlkoerper aus schraubenlinienfoermig aufgewickeltem Kunststoffprofil
US4889116A (en) 1987-11-17 1989-12-26 Phospho Energetics, Inc. Adaptive control of neonatal fractional inspired oxygen
US4938066A (en) 1988-01-29 1990-07-03 Xecutek Corporation Ultrasonic apparatus for measuring the speed of sound in a gaseous medium
JPH01321508A (ja) 1988-06-23 1989-12-27 Kojima Seisakusho:Kk 酸素濃度制御装置
FI82133C (sv) 1988-08-17 1991-01-10 Kwh Pipe Ab Oy Spirallindat rör
JPH02124510U (zh) * 1989-03-24 1990-10-15
US5060507A (en) 1989-06-21 1991-10-29 John Urmson Method and apparatus for fluid mixture monitoring, constituent analysis, and composition control
GB8918068D0 (en) 1989-08-08 1989-09-20 Front Engineering Ltd An apparatus for determining the time taken for sound to cross a body of fluid in an enclosure
US5060506A (en) 1989-10-23 1991-10-29 Douglas David W Method and apparatus for monitoring the content of binary gas mixtures
US5060514A (en) 1989-11-30 1991-10-29 Puritan-Bennett Corporate Ultrasonic gas measuring device
ATE109280T1 (de) 1989-12-08 1994-08-15 Oehler Oscar Selektive gasdetektion durch feldseparation und schallgeschwindigkeitsmessung: sauerstoff- detektion.
US5237987A (en) 1990-06-07 1993-08-24 Infrasonics, Inc. Human lung ventilator system
US5179862A (en) 1990-06-29 1993-01-19 Panametrics, Inc. Snap-on flow measurement system
US5365922A (en) 1991-03-19 1994-11-22 Brigham And Women's Hospital, Inc. Closed-loop non-invasive oxygen saturation control system
FI95219C (sv) 1992-04-30 1996-01-10 Kwh Pipe Ab Oy Svetsningsförfarande vid framställning av spirallindat rör och svetshuvud för utförande av förfarandet
US5343760A (en) 1992-07-09 1994-09-06 General Motors Corporation Gas concentration and flow rate sensor
US5247826B1 (en) 1992-11-12 1995-07-18 Devilbiss Health Care Inc Gas concentration and/or flow sensor
GB9224797D0 (en) 1992-11-26 1993-01-13 Normalair Garrett Ltd Air-oxygen mixture controllers for breathing demand regulators
EP0646346A3 (de) 1993-09-30 1998-06-17 NDD Medizintechnik GmbH Vorrichtung zur Messung von Atemgasparametern
US5351522A (en) 1993-11-02 1994-10-04 Aequitron Medical, Inc. Gas sensor
US6675797B1 (en) 1993-11-05 2004-01-13 Resmed Limited Determination of patency of the airway
US5392635A (en) 1993-12-30 1995-02-28 At&T Corp. Acoustic analysis of gas mixtures
US5463906A (en) 1994-01-24 1995-11-07 Triton Technology, Inc. Interchangeable disposable acoustic for use with an ultrasonic flowmeter, particularly during extracorporeal measurement of blood flow
AU1486195A (en) 1994-03-15 1995-09-21 Fisher & Paykel Limited A humidifier conduit
DE59505211D1 (de) 1994-04-19 1999-04-08 Jakob Boesherz Beatmungsgerät, insbesondere zur behandlung von ateminsuffizienzen, sowie verfahren zu dessen betrieb
US5490763A (en) 1994-09-15 1996-02-13 Abrams; Andrew L. Pump for shear sensitive fluids
US5551419A (en) 1994-12-15 1996-09-03 Devilbiss Health Care, Inc. Control for CPAP apparatus
WO1996024402A1 (en) * 1995-02-08 1996-08-15 Puritan-Bennett Corporation Gas mixing apparatus for a ventilator
US5581014A (en) 1995-04-05 1996-12-03 Douglas; David W. Method and apparatus for acoustic analysis of binary gas mixtures with continuous self-calibration
US5809997A (en) * 1995-05-18 1998-09-22 Medtrac Technologies, Inc. Electronic medication chronolog device
US5627323A (en) 1995-05-25 1997-05-06 Stern; Michael Ultrasonic binary gas measuring device
US6041777A (en) 1995-12-01 2000-03-28 Alliance Pharmaceutical Corp. Methods and apparatus for closed-circuit ventilation therapy
US5625140A (en) 1995-12-12 1997-04-29 Lucent Technologies Inc. Acoustic analysis of gas mixtures
EP0788805A3 (en) 1996-02-06 1998-05-13 DeVilbiss Health Care, Inc. Control for CPAP apparatus
GB9608265D0 (en) 1996-04-22 1996-06-26 British Gas Plc Apparatus for measuring a gas value
US5792665A (en) 1996-05-29 1998-08-11 Morrow, Iii; Donald W. Oxygen sensing method and hand held analyzer therefore
DE69737221T2 (de) 1996-06-13 2007-10-25 Leybold Inficon, Inc. Akustischer Sensor mit Resonatorzelle zur kontinuierlichen Überwachung von Gasen
US5917135A (en) 1996-06-14 1999-06-29 Invacare Corporation Gas concentration sensor and control for oxygen concentrator utilizing gas concentration sensor
US5823186A (en) 1996-06-20 1998-10-20 Dragerwerk Ag Respirator
US5848591A (en) * 1996-07-05 1998-12-15 Dragerwerk Ag Respirator with oxygen enrichment
US20070225612A1 (en) * 1996-07-15 2007-09-27 Mace Leslie E Metabolic measurements system including a multiple function airway adapter
US5701883A (en) 1996-09-03 1997-12-30 Respironics, Inc. Oxygen mixing in a blower-based ventilator
CA2619893C (en) 1997-06-17 2011-11-15 Fisher & Paykel Healthcare Limited Respiratory humidification system
AUPO742297A0 (en) 1997-06-18 1997-07-10 Resmed Limited An apparatus for supplying breathable gas
US6543449B1 (en) 1997-09-19 2003-04-08 Respironics, Inc. Medical ventilator
US6138674A (en) 1997-10-16 2000-10-31 Datex-Ohmeda, Inc. Active temperature and humidity compensator for anesthesia monitoring systems
US6306235B1 (en) 1997-10-16 2001-10-23 Nomaco, Inc. Spiral formed products and method of manufacture
US6142149A (en) 1997-10-23 2000-11-07 Steen; Scot Kenneth Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation
US6039696A (en) 1997-10-31 2000-03-21 Medcare Medical Group, Inc. Method and apparatus for sensing humidity in a patient with an artificial airway
US6572561B2 (en) * 1998-01-16 2003-06-03 Healthetech, Inc. Respiratory calorimeter
US20050121033A1 (en) 1998-02-25 2005-06-09 Ric Investments, Llc. Respiratory monitoring during gas delivery
US6116080A (en) 1998-04-17 2000-09-12 Lorex Industries, Inc. Apparatus and methods for performing acoustical measurements
ATE294005T1 (de) 1998-09-04 2005-05-15 Caradyne R & D Ltd Kontrollsystem zur erzeugung eines kontinuierlichen positiven atemwegdrucks
US6105649A (en) 1998-09-30 2000-08-22 Jerry C. Levingston Pipe extrusion apparatus including winding a hollow profile
US7687039B2 (en) 1998-10-28 2010-03-30 Covaris, Inc. Methods and systems for modulating acoustic energy delivery
WO2000045883A1 (en) 1999-02-04 2000-08-10 Versamed Medical Systems Ltd. Computer-controlled portable ventilator
US6178827B1 (en) 1999-04-22 2001-01-30 Murray F. Feller Ultrasonic flow sensor
US6899684B2 (en) 1999-08-02 2005-05-31 Healthetech, Inc. Method of respiratory gas analysis using a metabolic calorimeter
SE9903192D0 (sv) 1999-09-09 1999-09-09 Siemens Elema Ab Förfarande för bestämning av gashalt
US6487916B1 (en) 2000-02-02 2002-12-03 Bechtel Bxwt Idaho, Llc Ultrasonic flow metering system
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
US7111624B2 (en) 2000-03-21 2006-09-26 Fisher & Paykel Healthcare Limited Apparatus for delivering humidified gases
US6918389B2 (en) 2000-03-21 2005-07-19 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
CN1139787C (zh) 2000-07-28 2004-02-25 山东科技大学资源与环境工程学院 组合式管道气、液流体多参数一体化传感器组件
US6895803B2 (en) 2000-10-20 2005-05-24 Fisher & Paykel Healthcare Limited Humidity sensor
US6581595B1 (en) 2000-11-14 2003-06-24 Sensormedics Corporation Positive airway pressure device with indirect calorimetry system
US20020062681A1 (en) * 2000-11-30 2002-05-30 Livingston Richard A. Oxygen sensor and flow meter device
CA2403862C (en) 2001-01-22 2010-06-29 Teijin Limited Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
JP4169483B2 (ja) 2001-01-22 2008-10-22 帝人株式会社 超音波式ガス濃度流量測定方法及び装置
JP4612218B2 (ja) 2001-04-16 2011-01-12 帝人株式会社 酸素濃縮装置
US7066175B2 (en) 2001-05-07 2006-06-27 Emergent Respiratory Products, Inc. Portable gas powered positive pressure breathing apparatus and method
EP1317942A1 (en) * 2001-12-07 2003-06-11 Fisher & Paykel Healthcare Limited Gases mixing apparatus
AU2003223693A1 (en) 2002-04-24 2003-11-10 Airsep Corporation Reduced noise oxygen concentrator
US7306205B2 (en) 2002-08-30 2007-12-11 Fisher & Paykel Healthcare Limited Humidification system
JP2006504469A (ja) 2002-11-01 2006-02-09 フィッシャー アンド ペイケル ヘルスケア リミテッド 患者へのガス送出を検出するシステム
WO2004069922A1 (ja) 2003-02-07 2004-08-19 The Nippon Synthetic Chemical Industry Co., Ltd. 樹脂組成物およびその用途
EP1601281A2 (en) * 2003-02-19 2005-12-07 Fisher, Joseph Method of measuring cardiac related parameters non-invasively via the lung during spontaneous and controlled ventilation
US7501630B2 (en) 2003-02-21 2009-03-10 Koninklijke Philips Electronics N.V. Gas measurement system
US6954702B2 (en) 2003-02-21 2005-10-11 Ric Investments, Inc. Gas monitoring system and sidestream gas measurement system adapted to communicate with a mainstream gas measurement system
US7183552B2 (en) 2003-03-07 2007-02-27 Ric Investments, Llc Optical system for a gas measurement system
US7432508B2 (en) 2003-02-21 2008-10-07 Ric Investments, Llc Gas measurement system
US6910481B2 (en) 2003-03-28 2005-06-28 Ric Investments, Inc. Pressure support compliance monitoring system
SE0301226D0 (sv) 2003-04-28 2003-04-28 Siemens Elema Ab Acoustic Determination of Moisture Content of a Gas Mixture
AU2003903139A0 (en) 2003-06-20 2003-07-03 Resmed Limited Breathable gas apparatus with humidifier
DE202004021795U1 (de) 2003-06-20 2011-02-10 ResMed Ltd., Bella Vista Atemgasvorrichtung mit Befeuchter
EP1661596B1 (en) * 2003-08-26 2016-05-25 Teijin Pharma Limited Oxygen-concentrating device
US7237440B2 (en) 2003-10-10 2007-07-03 Cidra Corporation Flow measurement apparatus having strain-based sensors and ultrasonic sensors
US8109266B2 (en) 2004-02-20 2012-02-07 Pneumoflex Systems, Llc Nebulizer having flow meter function
DE102004017403B4 (de) 2004-04-08 2010-03-25 Dräger Medical AG & Co. KG Messvorrichtung zur Messung des Volumenstromes eines Gases, dessen Strömungsrichtung sich umkehren kann
US6945123B1 (en) * 2004-06-28 2005-09-20 The General Electric Company Gas flow sensor having redundant flow sensing capability
US20060081257A1 (en) 2004-08-31 2006-04-20 Ross Krogh Single use drug delivery components
SE529989C2 (sv) 2004-09-03 2008-01-29 Ric Investments Llc Gasregulator
DE102004060065B4 (de) 2004-12-14 2016-10-20 Robert Bosch Gmbh Ultraschall Durchflussmesser mit Leitelementen
US7370651B2 (en) 2005-04-01 2008-05-13 Ric Investments, Llc Gas conserving device
US8893715B2 (en) 2005-05-26 2014-11-25 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US8561611B2 (en) * 2005-06-21 2013-10-22 Ric Investments, Llc Respiratory device measurement system
AU2006266564B2 (en) 2005-07-01 2012-03-22 Fisher & Paykel Healthcare Limited A breathing assistance apparatus with a manifold to add auxiliary gases to ambient gases
US20070044799A1 (en) 2005-07-08 2007-03-01 Hete Bernie F Modular oxygen regulator system and respiratory treatment system
DE102005038599A1 (de) 2005-08-16 2007-02-22 Robert Bosch Gmbh Ultraschallmesseinheit mit integrierter Feuchteermittlung
US7448376B2 (en) 2005-08-27 2008-11-11 Pamela Lepel Medication delivery device and method
US8006692B2 (en) 2005-12-02 2011-08-30 Carefusion 2200, Inc. Gas blender with auxiliary mixed gas outlet
DE102005059062B4 (de) * 2005-12-08 2009-08-27 Continental Automotive Gmbh Vorrichtung zur Bestimmung eines Massenstroms
AU2006325613B2 (en) 2005-12-15 2012-01-19 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US7509957B2 (en) 2006-02-21 2009-03-31 Viasys Manufacturing, Inc. Hardware configuration for pressure driver
WO2007103855A2 (en) 2006-03-06 2007-09-13 Ric Investments, Llc Gas measurement system
CN100522278C (zh) 2006-03-10 2009-08-05 江苏凯泰医疗设备有限公司 无压缩空气智能化呼吸机空氧混合系统
US7810497B2 (en) 2006-03-20 2010-10-12 Ric Investments, Llc Ventilatory control system
US7574894B2 (en) 2006-04-25 2009-08-18 Parker-Hannifin Corporation ASM output ultrasonic oxygen sensor
US20070283958A1 (en) 2006-05-23 2007-12-13 Ray Naghavi Positive airway pressure device
US7766857B2 (en) 2006-08-21 2010-08-03 General Electric Company Non-invasive determination of cardiac output, gas exchange and arterial blood gas concentration
US20080060647A1 (en) 2006-09-12 2008-03-13 Invacare Corporation System and method for delivering a breathing gas
DE102006045739B3 (de) 2006-09-27 2007-08-30 Dräger Medical AG & Co. KG Vorrichtung mit einem Beatmungsgerät und einem Anfeuchter
EP3884985B1 (en) * 2006-11-06 2023-06-07 Fisher & Paykel Healthcare Limited Assisted breathing unit
US20080156328A1 (en) 2006-11-13 2008-07-03 John Taube Solenoid air/oxygen system for use with an adaptive oxygen controller and therapeutic methods of use
FR2910079B1 (fr) * 2006-12-18 2013-06-07 Airfan Appareil de delivrance de gaz,notamment d'assistance respiratoire,a chambre intermediaire de collecte de fuite d'oxygene.
EP1961439B1 (en) 2007-02-23 2009-12-16 General Electric Company Inhalation anaesthesia delivery system and a method for leak detection in the inhalation anaesthesia delivery system
US7789194B2 (en) * 2007-04-20 2010-09-07 Cardinal Health 212, Inc. Acoustic attenuation chamber
CN101680859B (zh) 2007-05-31 2013-01-02 帝人制药株式会社 超声波式气体浓度测定方法及使用该方法的装置
WO2009002394A1 (en) 2007-06-21 2008-12-31 Avistar, Inc. Method and apparatus for controlling relative coal flow in pipes from a pulverizer
US8356593B2 (en) 2007-07-18 2013-01-22 Vapotherm, Inc. Delivery tube for breathing gas heating and humidification system
EP2017586A1 (en) 2007-07-20 2009-01-21 Map-Medizintechnologie GmbH Monitor for CPAP/Ventilator apparatus
WO2009022004A2 (en) 2007-08-14 2009-02-19 Plastiflex Belgium A respiratory system
US20090065007A1 (en) 2007-09-06 2009-03-12 Wilkinson William R Oxygen concentrator apparatus and method
EP2200687B1 (en) 2007-10-05 2015-06-17 Vapotherm, Inc. Hyperthermic humidification system
US20090107501A1 (en) 2007-10-24 2009-04-30 Ana Krieger System and method of monitoring respiratory airflow and oxygen concentration
CN101888870B (zh) 2007-10-26 2013-11-27 优特埃合伙有限公司 换气稳定系统
WO2009058083A1 (en) 2007-10-29 2009-05-07 Poseidon Diving Systems Auto calibration / validation of oxygen sensor in breathing apparatus
WO2009063938A1 (ja) 2007-11-15 2009-05-22 Teijin Pharma Limited 酸素濃縮装置
US9205215B2 (en) * 2007-11-16 2015-12-08 Fisher & Paykel Health Limited Nasal pillows with high volume bypass flow and method of using same
US20090145428A1 (en) 2007-12-05 2009-06-11 Sequal Technologies, Inc. System and Method for Controlling Supply of Oxygen Based on Breathing Rate
CN201126390Y (zh) * 2007-12-06 2008-10-01 联创汽车电子有限公司 汽车发动机进气歧管绝对压力传感器
US20090204019A1 (en) * 2008-02-13 2009-08-13 Alec Ginggen Combined Pressure and Flow Sensor Integrated in a Shunt System
US20090241953A1 (en) 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Ventilator with piston-cylinder and buffer volume
DK2300088T3 (en) 2008-05-27 2016-05-23 Fisher & Paykel Healthcare Ltd CONTROL OF THE TEMPERATURE IN A HUMIDIFICATION chamber for accurate humidity control
US8485185B2 (en) 2008-06-06 2013-07-16 Covidien Lp Systems and methods for ventilation in proportion to patient effort
US20100006098A1 (en) 2008-07-10 2010-01-14 Mcginnis William J Cpap-oximeter hybrid device and method of using
DE102008055164A1 (de) 2008-12-29 2010-07-01 Endress + Hauser Flowtec Ag Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch das Messrohr mittels Ultraschall
WO2010084183A2 (en) 2009-01-22 2010-07-29 Plastiflex Belgium Heated sleeve for respiratory conduit
WO2010091462A1 (en) 2009-02-11 2010-08-19 Resmed Ltd Acoustic detection for respiratory treatment apparatus
BRPI1005839B8 (pt) 2009-02-13 2021-06-22 Koninklijke Philips Electronics Nv dispositivo de suporte de pressão adaptado para produzir um fluxo de gás respiratório para administrar em um paciente e método para operar o dispositivo de suporte de pressão
US20100224191A1 (en) * 2009-03-06 2010-09-09 Cardinal Health 207, Inc. Automated Oxygen Delivery System
JP5771181B2 (ja) 2009-03-23 2015-08-26 コーニンクレッカ フィリップス エヌ ヴェ 複数の成分を含むガスを分析するために測定空気チャンバ内に設けられたセンサチップ
EP2411078B1 (en) * 2009-03-23 2016-05-18 Koninklijke Philips N.V. Gas mixing control apparatus
CN201379872Y (zh) 2009-04-21 2010-01-13 嘉美科仪(北京)医疗设备有限公司 一种呼吸机
EP2429622B1 (en) 2009-05-13 2014-02-26 Maquet Critical Care AB Anesthetic breathing apparatus having volume reflector unit with controllable penetration
CN101554510B (zh) 2009-05-18 2011-05-11 浙江新丰医疗器械有限公司 一种呼吸器的呼气阀
US20120109536A1 (en) 2009-07-07 2012-05-03 Koninklijke Philips Electronics N.V. Multifunction sensor system and method for supervising room conditions
AU2009350114B2 (en) 2009-07-22 2014-07-10 Koninklijke Philips Electronics N.V. Fall detectors and a method of detecting falls
JP5763658B2 (ja) 2009-11-03 2015-08-12 コーニンクレッカ フィリップス エヌ ヴェ 呼気中特定ガス濃度の測定装置
US9289569B2 (en) 2009-11-16 2016-03-22 Maquet Critical Care Ab Breathing apparatus with monitored delivery device
JP5374345B2 (ja) 2009-12-09 2013-12-25 花王株式会社 生理用ナプキン
EP2512335B1 (en) 2009-12-18 2018-05-02 Maquet Critical Care AB Gas meter for ultrasound measurements in a breathing apparatus
JP2011143107A (ja) 2010-01-15 2011-07-28 Terumo Corp 酸素濃縮装置
JP5477051B2 (ja) 2010-03-01 2014-04-23 株式会社デンソー 超音波流量計
US20120065533A1 (en) 2010-05-28 2012-03-15 Carrillo Jr Oscar Positive Airway Pressure System and Method
CN102009697A (zh) 2010-06-13 2011-04-13 贾秉成 一种车架连接结构
US20130152933A1 (en) 2010-08-10 2013-06-20 The Regents Of The University Of California, A California Corporation Automated fluid delivery system and method
US20120055474A1 (en) * 2010-09-07 2012-03-08 Wilkinson William R Methods and systems for providing oxygen enriched gas
US8544343B2 (en) 2010-11-19 2013-10-01 Cameron International Corporation Chordal gas flowmeter with transducers installed outside the pressure boundary
WO2012085753A1 (en) 2010-12-21 2012-06-28 Koninklijke Philips Electronics N.V. System and method for determining carbon dioxide excreted during non-invasive ventilation
US8752544B2 (en) 2011-03-21 2014-06-17 General Electric Company Medical vaporizer and method of monitoring of a medical vaporizer
EP2688466B1 (en) 2011-03-23 2021-11-17 ResMed Pty Ltd Detection of ventilation sufficiency
CN102261937A (zh) 2011-04-25 2011-11-30 西安交通大学 一种高精度时差式超声波流量计及其流量测量方法
US9302066B2 (en) 2011-09-12 2016-04-05 Resmed Limited Modularized respiratory treatment apparatus
US10583265B2 (en) * 2011-09-13 2020-03-10 Koninklijke Philips N.V. Proportional oxygen conserving device with flow sensing
US9649459B2 (en) * 2011-09-26 2017-05-16 Resmed Paris Sas Ventilator apparatus and method
JP5371066B2 (ja) 2011-11-04 2013-12-18 正道 岩佐 超音波センサ及びこれを用いた超音波流量計
CN202376576U (zh) * 2011-11-13 2012-08-15 彭文君 儿科专用空气氧气混合机
CN104144722B (zh) 2012-02-29 2017-04-19 皇家飞利浦有限公司 对压力支持设备中的空气密度的变化的补偿
GB2541550B (en) * 2012-03-15 2017-06-21 Fisher & Paykel Healthcare Ltd Respiratory gas humidification system
WO2013147623A1 (en) 2012-03-30 2013-10-03 Dexter Chi Lun Cheung Humidification system
US10357629B2 (en) 2012-04-05 2019-07-23 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
US20150136129A1 (en) 2012-05-30 2015-05-21 Koninklijke Philips N.V. Portable handheld blending gas enriched pressure support system and method
WO2014027267A2 (en) 2012-08-13 2014-02-20 Koninklijke Philips N.V. Handheld dyspnea treatement device with drug and gas delivery
US20150209546A1 (en) * 2012-09-10 2015-07-30 Douglas Steven Pernikoff Anesthesia Machine
US9440036B2 (en) * 2012-10-12 2016-09-13 InovaLabs, LLC Method and systems for the delivery of oxygen enriched gas
CN107361960B (zh) * 2012-11-14 2020-11-06 费雪派克医疗保健有限公司 用于呼吸回路的分区加热
PL2928533T3 (pl) * 2012-12-04 2021-05-17 Fisher & Paykel Healthcare Limited Rurki medyczne i sposoby ich wytwarzania
CN103893872B (zh) 2012-12-26 2016-04-20 北京谊安医疗系统股份有限公司 一种麻醉机压力传感器零点标定方法和装置
US9884157B2 (en) * 2013-03-15 2018-02-06 Microdose Therapeutx, Inc. Inhalation device, control method and computer program
FR3005580B1 (fr) 2013-05-16 2016-08-12 Air Liquide Medical Systems Appareil de ventilation artificielle a capteur de pression absolue et capteur de pression differentielle
US10286175B2 (en) 2013-05-17 2019-05-14 Resmed Paris Sas Flow diffuser and sound cone
CN110960772A (zh) * 2013-07-01 2020-04-07 瑞思迈私人有限公司 呼吸设备的电动机驱动系统
EP3721930A1 (en) * 2013-08-05 2020-10-14 Fisher & Paykel Healthcare Limited Control for respiratory device
FR3009966B1 (fr) * 2013-08-27 2017-02-17 Fabien Cotteaux Appareil d'assistance respiratoire pour des personnes souffrant de troubles respiratoires et procede de ventilation mis en œuvre par ledit appareil
WO2015037002A2 (en) * 2013-09-11 2015-03-19 Advanced Inhalation Therapies (Ait) Ltd. System for nitric oxide inhalation
CN108704213B (zh) * 2013-09-13 2021-06-22 费雪派克医疗保健有限公司 用于加湿系统的连接
US10449320B2 (en) * 2013-10-15 2019-10-22 Fisher & Paykel Healthcare Limited Sensing and control arrangements for respiratory device
US10532174B2 (en) * 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
US20150327807A1 (en) * 2014-05-13 2015-11-19 Karl Kuefner GmbH & Co. KG Device and method for monitoring compressions at a cardiac massage
SG11201609863WA (en) 2014-05-27 2016-12-29 Fisher & Paykel Healthcare Ltd Gases mixing and measuring for a medical device
US11571539B2 (en) * 2014-07-21 2023-02-07 Fisher & Paykel Healthcare Limited Fluid mixing structure
US10728450B2 (en) 2014-09-30 2020-07-28 Qualcomm Incorporated Event based computer vision computation
EP3020437B1 (en) * 2014-11-13 2023-06-07 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Controlling a flow through a pneumatic system
WO2016161036A1 (en) * 2015-04-01 2016-10-06 Compliant Games, Inc. Respiratory therapy instrument offering game-based incentives,training, and telemetry collection
US20160287824A1 (en) 2015-04-03 2016-10-06 Invent Medical Corporation Ventilator
GB2598220B (en) * 2015-06-24 2022-08-10 Fisher & Paykel Healthcare Ltd Breathing assistance apparatus
US10751490B2 (en) 2015-08-14 2020-08-25 ResMed Pty Ltd Monitoring respiratory pressure therapy
EP3146897A1 (en) * 2015-09-22 2017-03-29 Srett (Sas) Oxygen therapy monitoring device and method
WO2017095241A2 (en) 2015-12-02 2017-06-08 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus

Also Published As

Publication number Publication date
CN114796778A (zh) 2022-07-29
CN108472470B (zh) 2022-04-08
CN108472470A (zh) 2018-08-31
KR20230054906A (ko) 2023-04-25
WO2017095241A2 (en) 2017-06-08
CA3006639A1 (en) 2017-06-08
GB2598024B (en) 2022-05-04
EP4023277A1 (en) 2022-07-06
US11666720B2 (en) 2023-06-06
GB2598024A (en) 2022-02-16
CN114796783A (zh) 2022-07-29
JP2019502435A (ja) 2019-01-31
AU2016364628A1 (en) 2018-06-14
JP2022071173A (ja) 2022-05-13
KR20180103865A (ko) 2018-09-19
EP3383470A2 (en) 2018-10-10
US20200179629A1 (en) 2020-06-11
CN114796785A (zh) 2022-07-29
JP7266404B2 (ja) 2023-04-28
GB2599020A (en) 2022-03-23
GB202115575D0 (en) 2021-12-15
EP3383470B1 (en) 2022-04-06
AU2022203383A1 (en) 2022-06-09
CN114796782A (zh) 2022-07-29
GB2599020B (en) 2022-06-22
SG11201804508QA (en) 2018-06-28
EP3383470A4 (en) 2019-07-17
AU2016364628B2 (en) 2022-06-23
US20230381436A1 (en) 2023-11-30
JP2023182819A (ja) 2023-12-26
SG10202005175TA (en) 2020-07-29
GB202107228D0 (en) 2021-07-07
GB201809114D0 (en) 2018-07-18
EP3383470B8 (en) 2022-05-25
WO2017095241A3 (en) 2017-07-13
KR102523073B1 (ko) 2023-04-17
GB2562911A (en) 2018-11-28
GB2562911B (en) 2021-07-07

Similar Documents

Publication Publication Date Title
CN108472470B (zh) 流量治疗设备的流动路径感测
US20230026603A1 (en) Gases mixing and measuring for a medical device
EP3446737B1 (en) Respiratory assistance apparatus
US20230166065A1 (en) Flow path sensing for flow therapy apparatus
TW202039019A (zh) 用於提供氣泡持續氣道正壓(cpap)的呼吸裝置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination