CN114787570A - 多级储液式冷凝蒸发器及具有它的空气分离装置 - Google Patents
多级储液式冷凝蒸发器及具有它的空气分离装置 Download PDFInfo
- Publication number
- CN114787570A CN114787570A CN202080086002.0A CN202080086002A CN114787570A CN 114787570 A CN114787570 A CN 114787570A CN 202080086002 A CN202080086002 A CN 202080086002A CN 114787570 A CN114787570 A CN 114787570A
- Authority
- CN
- China
- Prior art keywords
- liquid
- condensation
- passage
- heat exchange
- liquid storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 182
- 238000009833 condensation Methods 0.000 title claims abstract description 99
- 230000005494 condensation Effects 0.000 title claims abstract description 99
- 238000000926 separation method Methods 0.000 title claims abstract description 14
- 238000001704 evaporation Methods 0.000 claims abstract description 75
- 230000008020 evaporation Effects 0.000 claims abstract description 73
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 25
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 238000003475 lamination Methods 0.000 claims 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 25
- 229910001873 dinitrogen Inorganic materials 0.000 description 16
- 238000009835 boiling Methods 0.000 description 5
- 238000010992 reflux Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04878—Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
- F25J5/005—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0037—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/10—Boiler-condenser with superposed stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0033—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本发明的目的是提供多级储液式冷凝蒸发器及具有它的空气分离装置,其能抑制冷凝效率降低且能小型化。本发明的多级储液式冷凝蒸发器包括:具有换热部的换热芯,该换热部由被分隔为多级的蒸发通道及冷凝通道层叠形成;用于存储被供给到该蒸发通道和从该蒸发通道流出的液体的储液部;以及用于供该储液部中的液体从上侧储液部流到下侧储液部的液体连通通道,所述储液部以与被分隔为多级的所述蒸发通道中的每一个相应的方式形成在换热芯的宽度方向的至少单侧的侧面上,所述换热芯的宽度方向与所述冷凝通道和所述蒸发通道的层叠方向正交,其特征在于,所述冷凝通道被分隔为至少两级,所述多级储液式冷凝蒸发器还具有分别设置于该冷凝通道的各级的上部且用于将气体供给到各级冷凝通道的集气管;用于使得供给到所述集气管的气体导入到冷凝通道的冷凝导入流道;分别设置于所述冷凝通道的各级的下部且用于收集由所述气体冷凝而生成的液体的集液管;以及用于使得通过冷凝所生成的液体流出到所述集液管的冷凝流出流道。
Description
技术领域
本发明涉及一种多级储液式冷凝蒸发器及具有该多级储液式冷凝蒸发器的空气分离装置,该多级储液式冷凝蒸发器通过将设置在至少两个蒸发区的储液部中的液体导入到蒸发通道,通过与流经冷凝通道的气体之间的热交换,利用热虹吸效应使液体蒸发并使所述气体冷凝。
背景技术
冷凝蒸发器使来自具有复式精馏塔的空气分离装置的低压蒸馏塔(以下称为“低压塔”)塔底的液态氧和来自高压蒸馏塔(以下称为“高压塔”)塔顶的氮气进行间接热交换。由此,用于使得一部分液态氧蒸发汽化而生成低压塔的上升气体,并且使得氮气冷凝液化而生成高压塔和低压塔的回流液。
作为这样的冷凝蒸发器,使用具有冷凝通道和蒸发通道的板翅式换热器。在专利文献1中公开有下述的多级储液式冷凝蒸发器,其具备从上端连通到下端为止的冷凝通道、以及在上下方向上具有分隔为多个的蒸发区的蒸发通道。
在这样的多级储液式冷凝蒸发器中,由于在分隔为多个的蒸发区中分别设置有存储液态氧的储液部,所以从各储液部流入到蒸发通道的液态氧的液头小。由此,能够抑制沸点上升,使得液态氧高效地蒸发。
由此,具有下述的优点,即:能够减小与氮气之间的温差,降低高压塔的压力,减少运转成本。
图3示出了以往的多级储液式冷凝蒸发器的换热块110的概略。换热块110具有换热芯7和五级储液部6,所述换热芯7具有包括在上下方向上连通的冷凝通道10以及被分隔为六个蒸发区E1、E2、E3、E4、E5和E6的蒸发通道2的换热部3、以及设置在换热部3的层叠方向(冷凝通道10与蒸发通道的层叠方向)上的两个侧面的液体连通部5,所述五级储液部6形成于与上述层叠方向正交的换热芯7的宽度方向上的两侧。
作为冷凝对象的氮气,经由顶部的集气管80流入到冷凝通道10,并且通过与流入邻接的蒸发通道2的液态氧之间的热交换而冷凝,经由底部的集液管90排出。
另一方面,与氮气进行热交换的液态氧被供给到换热块110的最上级的储液部6,通过与流经冷凝通道10的氮气之间的热交换,从位于蒸发区E1的下部的蒸发导入口21流入到蒸发通道2,一边蒸发一边上升,以气液两相的形态从位于蒸发区上部的蒸发导出口22流出到储液部。
流出到储液部6的氧气被从储液部6的上部排出,未蒸发的液态氧再次回到储液部6。如果储液部6的液面高于液体连通部5的连通导入口51,则液态氧自该连通导入口51经由连通通道,从蒸发区E2的连通导出口52被供给到储液部6。在蒸发区E2~E5中也进行同样的蒸发,但是从蒸发区E5的储液部6被导入到液体连通部5中的液态氧从通道底部被供给到收纳换热块110的容器(未图示)的底部,在蒸发区E6中其一部分蒸发。在各蒸发区中生成的氧气被收集在容器中,其一部分被采取作为产品GO2。
专利文献1:日本专利第6087326号公报
发明内容
在多级储液式冷凝蒸发器中,在为了减小氧气与氮气之间的温差而使传热面积增加的情况下,一般增加蒸发区的数量(级数)。
但是,如果增加蒸发区的数量,则会存在换热效率变差的问题。以将蒸发区数量设为4、5、6的多级储液式冷凝蒸发器A、B、C为例来说明这一点。
在冷凝通道中由于从顶部流入的氮气在底部全部液化,因此将所液化的液流量设为100时,在各多级储液式冷凝蒸发器A、B、C中的冷凝通道的各蒸发区中的液流量分布如表1所示。
应予说明,在表1中,将多级储液式冷凝蒸发器简述为冷凝蒸发器。
[表1]
()内为平均值
如表1所示,在蒸发区数量为4的多级储液式冷凝蒸发器A的情况下,由于在最下级的蒸发区4(在表中简述为“区4”)的出口处液流量为100,所以如果假设在与各蒸发区对应的冷凝通道中冷凝量相等,那么各蒸发区中的冷凝量为25。即,蒸发区1的液流量在入口处为0,在出口处为25;在蒸发区2中,在入口处为25,在出口处为50;在蒸发区3中,在入口处为50,在出口处为75;在蒸发区4中,在入口处为75,在出口处为100。应予说明,在表中,将各区的入口与出口的液流量平均而得的液流量记载于括号内。
如表1所示,无论在哪个多级储液式冷凝蒸发器中,蒸发区越位于下方其液流量越大。并且,可知随着蒸发区的增加,最下方的蒸发区中的液流量变多。
从表1可知,对冷凝通道而言,增加蒸发区数量使得液流量较多且传热面积增加。结果,由于在液流量多的蒸发区的通道内液膜厚度增大,所以冷凝的效率降低。由此,即使通过增加蒸发区的数量来增加传热面积,也会产生氧气与氮气之间的温差未相应地减小且多级储液式冷凝蒸发器的尺寸无效率地变大的问题。进一步地,存在用于收纳包括多级储液式冷凝蒸发器的低温机器的冷箱也变大而增加设备成本的问题。
本发明是为了解决上述问题而完成的,目的在于提供多级储液式冷凝蒸发器以及具有该多级储液式冷凝蒸发器的空气分离装置,其能够抑制冷凝效率降低且能够小型化。
为了解决上述问题,本发明提供以下的多级储液式冷凝蒸发器以及空气分离装置。
(1)一种多级储液式冷凝蒸发器,包括:具有换热部的换热芯,所述换热部由蒸发通道和冷凝通道层叠形成,所述蒸发通道供蒸发的液体流通且被分隔为多级,且由板和翅构成,所述冷凝通道供与所述液体进行热交换而冷凝的气体流通,且由板和翅构成;用于存储被供给到该蒸发通道和从该蒸发通道流出的液体的储液部;以及供该储液部中的液体从上侧的储液部流到下侧的储液部的液体连通通道,所述储液部以与被分隔为多级的所述蒸发通道中的每一个相应的方式形成在换热芯的宽度方向的至少单侧的侧面上,所述换热芯的宽度方向与所述冷凝通道和所述蒸发通道的层叠方向正交,所述多级储液式冷凝蒸发器的特征在于,
所述冷凝通道被分隔为至少两级,
所述多级储液式冷凝蒸发器还包括:
分别设置于该冷凝通道的各级的上部且用于将气体供给到各级冷凝通道的集气管;
用于使得供给到所述集气管的气体导入到冷凝通道的冷凝导入流道;
分别设置于所述冷凝通道的各级的下部且用于收集由所述气体冷凝而生成的液体的集液管;以及
用于使得通过冷凝所生成的液体流出到所述集液管的冷凝流出流道。
(2)在上述(1)中所记载的多级储液式冷凝蒸发器中,所述换热芯具有液体连通部和所述换热部,所述液体连通部在与该换热部的层叠方向的至少单侧的侧面上形成所述液体连通通道。
(3)一种空气分离装置,用于从空气中得到氧和氮,所述空气分离装置的特征在于,具有在上述(1)或(2)中所记载的多级储液式冷凝蒸发器。
在本发明的多级储液式冷凝蒸发器中,冷凝通道被分隔为至少两级,并且该多级储液式冷凝蒸发器具有:分别设置于该冷凝通道的各级的上部且用于将气体供给到各级冷凝通道的集气管;用于使得供给到集气管的气体导入到冷凝通道的冷凝导入流道;分别设置于所述冷凝通道的各级的下部且用于收集由所述气体冷凝而生成的液体的集液管;以及用于使得通过冷凝所生成的液体流出到所述集液管的冷凝流出流道,由此,能够抑制多级储液式冷凝蒸发器的冷凝效率降低,并且能够小型化。
附图说明
图1是本发明的实施方式的多级储液式冷凝蒸发器的换热块的说明图。
图2是具有包括图1示出的换热块的多级储液式冷凝蒸发器的空气分离装置的说明图。
图3是以往的多级储液式冷凝蒸发器的换热块的说明图。
具体实施方式
基于示出作为主要结构部分的换热块11的图1来说明本实施方式的多级储液式冷凝蒸发器。应予说明,在图1中,对与示出以往例子的图3相同的部分以及相对应的部分标注相同的附图标记。
如图1所示,本发明的一实施方式的多级储液式冷凝蒸发器的换热块11具有:供蒸发的液态氧流通的被分隔为六级(E1~E6)的蒸发通道2;用于存储被供给到蒸发通道2和从蒸发通道2流出的液体的储液部6;形成用于供储液部6的液体从上侧的储液部6流到下侧的储液部6的液体连通通道的液体连通部5;以及供与液态氧热交换而冷凝的氮气流通的冷凝通道1。
在本实施方式中,多级储液式冷凝蒸发器的换热块11具有换热芯7,该换热芯7具有由包括板和翅的蒸发通道2和冷凝通道1层叠而形成的换热部3、以及液体连通部5。
并且,储液部6夹着换热芯7,在换热芯7的两侧被设置于蒸发通道2的各级。
另外,冷凝通道1被分隔为上级冷凝区C1和下级冷凝区C2这两级。在上级冷凝区C1的上部和下级冷凝区C2的上部,分别设置有经由冷凝导入流道111供给氮气到上级冷凝区C1和下级冷凝区C2的每一个的集气管8。
另外,在上级冷凝区C1的下部和下级冷凝区C2的下部,分别设置有经由冷凝流出流道112收集在上级冷凝区C1和下级冷凝区C2中所液化的液态氮的集液管9。
由液体连通部5所形成的液体连通通道被设置为使得流体从换热芯7的上端连续地流到下端。即,在本实施方式中,虽然冷凝通道1被分隔为上级冷凝区C1和下级冷凝区C2这两级,但是液体连通通道并未与图3中示出的以往例子同样地在半途被分隔而排出和供给流体,而是从换热芯的上端连续到下端。
应予说明,本实施方式的液体连通通道由液体连通部5所构成,该液体连通部5在换热芯7的层叠方向上的两侧由板和翅所形成。但是,液体连通通道并非必须要设置为与换热芯7一体化,液体连通通道也可以与换热芯7独立地由例如连结各储液部6的管道等来形成。
另外,在本实施方式中,虽然示出液体连通部5设置在换热芯7的层叠方向的两侧,但是液体连通部5也可以设置在单侧。
关于上述那样地构成的本实施方式的多级储液式冷凝蒸发器的作用进行说明。
液态氧被供给到最上级的储液部6,通过与流过冷凝通道1的氮气之间的热交换,从位于蒸发区E1的下部的蒸发导入口21流入到蒸发通道2,一边蒸发一边上升,并且以气液两相的形态从位于蒸发区E1的上部的蒸发导出口22流出到储液部6。
流出到储液部6的氧气被从储液部6的上部排出,并且未蒸发的液态氧再返回到储液部6。如果储液部6的液面高于液体连通部5的连通导入口51,则液态氧自该连通导入口51经由液体连通部5而从蒸发区E2的连通导出口52供给到下级的储液部6。
在蒸发区E2中也同样地进行蒸发和通过连通通道所进行的向第三级的液体供给。在接着的蒸发区E3、E4、E5、E6中也同样地重复操作。但是,在蒸发区E6中,被导入到蒸发区E5的液体连通部5的液态氧被从通道底部供给到收纳换热块11的容器(未图示)的底部,并且其一部分蒸发。
另一方面,氮气从设置于换热块11的顶部和中部的集气管8流入。从顶部流入的氮气和从中部流入的氮气分别在上级冷凝区C1和下级冷凝区C2中通过与流过蒸发通道2的液态氧之间的热交换而冷凝,并且分别作为液态氮从设置于中部和底部的集液管9排出。
表2将图1中示出的多级储液式冷凝蒸发器中的冷凝通道1中的液流量分布与具有相同的传热面积的以往的多级储液式冷凝蒸发器(图3)中的冷凝通道中的储液量分布进行了比较。
应予说明,关于液流量而言,将以往的多级储液式冷凝蒸发器的底部中的液流量设为100。
[表2]
()内为平均值
本实施方式中的多级储液式冷凝蒸发器的冷凝通道中的液流量,在上级冷凝区C1中与以往例子相同。但是,在上级冷凝区C1中生成的液体全部从设置于中部的集液管9排出。另外,由于零液化率的气体从中部的集气管8流入到下级冷凝区C2,所以在下级冷凝区C2中的液流量比以往的少。
具体地,本实施方式的多级储液式冷凝蒸发器与以往例子的多级储液式冷凝蒸发器的总冷凝量均为100。但是,在区E4、E5和E6中,相对于以往的多级储液式冷凝蒸发器中的平均液流量为58、75和92的情况,在本实施方式的多级储液式冷凝蒸发器中的平均液流量少为8、25和42。由此可知,抑制下级冷凝区C2中的传热性能降低。
能够确认的是,具有上述结构的本实施方式的多级储液式冷凝蒸发器相比于以往的多级储液式冷凝蒸发器被小型化约15%。
图2表示在使用具有图1示出的换热块11的多级储液式冷凝蒸发器的情况下的空气分离装置的一例。在图2中,对与图1相同的部分标注相同的附图标记。
空气分离装置13具有被收纳于冷箱800内的高压塔14和低压塔15、以及在容器16中收纳有换热块11的多级储液式冷凝蒸发器17。
原料空气在空气压缩机18中被压缩,在空气预冷器19中被预冷,在空气提纯器20中被提纯,并被供给到高压塔14的底部。在所供给的空气通过与在塔内流下的回流液之间的气液接触而上升的同时,作为低沸点成分的氮气冷凝,从而在塔顶生成氮气。
另外,随着在塔内流下的回流液的下降,所供给的空气中的作为高沸点成分的氧被富集,从而在塔底生成富氧液态空气。富氧液态空气被供给到低压塔15,在通过与塔内的上升气体之间的气液接触而流下的同时,作为高沸点成分的氧被浓缩,从而在塔底生成液态氧。另外,在上升气体上升的同时,作为低沸点成分的氮被浓缩,从而在塔顶生成氮气。
在高压塔14的塔顶生成的氮气经由管道140分别被供给到换热块11的顶部和中部的集气管8,通过与经由液态氧供给管141所供给的液态氧之间的热交换而冷凝,作为液态氮从中部和底部的集液管9排出,通过管道142返回高压塔14并成为低压塔15的回流液。
另一方面,经由液态氧供给管141所供给的液态氧蒸发,其一部分被提取作为产品GO2,并且被导入到低压塔15的底部而成为上升气体。
在本实施方式的空气分离装置13中,通过使用上述实施方式的多级储液式冷凝蒸发器17,抑制传热性能降低。另外,由于多级储液式冷凝蒸发器17的小型化,所以也能够缩小冷箱800,从而降低设备成本。
另外,由于在实现小型化的同时抑制传热性能的降低,所以能够抑制流入到冷凝通道1的氮气的压力,即能够抑制高压塔14的压力上升,并且抑制运转成本的增加。
附图标记说明
1、10 冷凝通道
111 冷凝导入流道
112 冷凝流出流道
2 蒸发通道
21 蒸发导入口
22 蒸发导出口
3 换热部
5 液体连通部
51 连通导入口
52 连通导出口
6 储液部
7 换热芯
8、80 集气管
9、90 集液管
11、110 换热块
13 空气分离装置
14 高压塔
140、142 管道
141 液态氧供给管
15 低压塔
16 容器
17 多级储液式冷凝蒸发器
18 空气压缩机
19 空气预冷器
20 空气提纯器
800 冷箱
C1 上级冷凝区
C2 下级冷凝区
E1~E6 蒸发区
Claims (3)
1.一种多级储液式冷凝蒸发器,包括:具有换热部的换热芯,所述换热部由蒸发通道和冷凝通道层叠形成,所述蒸发通道供蒸发的液体流通且被分隔为多级,且由板和翅构成,所述冷凝通道供与所述液体进行热交换而冷凝的气体流通,且由板和翅构成;用于存储被供给到该蒸发通道和从该蒸发通道流出的液体的储液部;以及供该储液部中的液体从上侧的储液部流到下侧的储液部的液体连通通道,所述储液部以与被分隔为多级的所述蒸发通道中的每一个相应的方式形成在换热芯的宽度方向的至少单侧的侧面上,所述换热芯的宽度方向与所述冷凝通道和所述蒸发通道的层叠方向正交,其特征在于,
所述冷凝通道被分隔为至少两级,
所述多级储液式冷凝蒸发器还包括:
分别设置于该冷凝通道的各级的上部且用于将气体供给到各级冷凝通道的集气管;
用于使得供给到所述集气管的气体导入到冷凝通道的冷凝导入流道;
分别设置于所述冷凝通道的各级的下部且用于收集由所述气体冷凝而生成的液体的集液管;以及
用于使得通过冷凝所生成的液体流出到所述集液管的冷凝流出流道。
2.根据权利要求1所述的多级储液式冷凝蒸发器,其中,
所述换热芯具有液体连通部和所述换热部,所述液体连通部在与所述换热部的层叠方向的至少单侧的侧面上形成所述液体连通通道。
3.一种空气分离装置,用于从空气中得到氧和氮,其特征在于,具有权利要求1或2所述的多级储液式冷凝蒸发器。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019227196A JP7356334B2 (ja) | 2019-12-17 | 2019-12-17 | 多段液溜式凝縮蒸発器、該多段液溜式凝縮蒸発器を備えた空気分離装置 |
JP2019-227196 | 2019-12-17 | ||
PCT/JP2020/046954 WO2021125224A1 (ja) | 2019-12-17 | 2020-12-16 | 多段液溜式凝縮蒸発器、および該多段液溜式凝縮蒸発器を備えた空気分離装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114787570A true CN114787570A (zh) | 2022-07-22 |
CN114787570B CN114787570B (zh) | 2024-05-24 |
Family
ID=76431007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080086002.0A Active CN114787570B (zh) | 2019-12-17 | 2020-12-16 | 多级储液式冷凝蒸发器及具有它的空气分离装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230079087A1 (zh) |
EP (1) | EP4080145A4 (zh) |
JP (1) | JP7356334B2 (zh) |
CN (1) | CN114787570B (zh) |
WO (1) | WO2021125224A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63267877A (ja) * | 1986-12-26 | 1988-11-04 | 日本酸素株式会社 | 蒸発器 |
CN1432122A (zh) * | 2000-05-31 | 2003-07-23 | 林德股份公司 | 多层浴用冷凝器 |
CN106662395A (zh) * | 2014-08-22 | 2017-05-10 | 大阳日酸株式会社 | 多段贮液式冷凝蒸发器 |
JP2019174070A (ja) * | 2018-03-29 | 2019-10-10 | 大陽日酸株式会社 | 空気液化分離によるアルゴンの製造装置及び方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2796137B1 (fr) * | 1999-07-07 | 2001-09-14 | Air Liquide | Vaporiseur-condenseur a bain a plaques brasees et son application a un appareil de distillation d'air |
CN100585310C (zh) * | 2006-08-15 | 2010-01-27 | 杭州杭氧股份有限公司 | 分凝式冷凝蒸发器 |
-
2019
- 2019-12-17 JP JP2019227196A patent/JP7356334B2/ja active Active
-
2020
- 2020-12-16 WO PCT/JP2020/046954 patent/WO2021125224A1/ja unknown
- 2020-12-16 CN CN202080086002.0A patent/CN114787570B/zh active Active
- 2020-12-16 US US17/785,792 patent/US20230079087A1/en active Pending
- 2020-12-16 EP EP20902035.3A patent/EP4080145A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63267877A (ja) * | 1986-12-26 | 1988-11-04 | 日本酸素株式会社 | 蒸発器 |
CN1432122A (zh) * | 2000-05-31 | 2003-07-23 | 林德股份公司 | 多层浴用冷凝器 |
CN106662395A (zh) * | 2014-08-22 | 2017-05-10 | 大阳日酸株式会社 | 多段贮液式冷凝蒸发器 |
JP2019174070A (ja) * | 2018-03-29 | 2019-10-10 | 大陽日酸株式会社 | 空気液化分離によるアルゴンの製造装置及び方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2021125224A1 (ja) | 2021-06-24 |
EP4080145A1 (en) | 2022-10-26 |
US20230079087A1 (en) | 2023-03-16 |
CN114787570B (zh) | 2024-05-24 |
JP2021096028A (ja) | 2021-06-24 |
EP4080145A4 (en) | 2024-01-10 |
JP7356334B2 (ja) | 2023-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5122174A (en) | Boiling process and a heat exchanger for use in the process | |
KR960003272B1 (ko) | 이중 공급공기 사이드 콘덴서를 갖는 저온공기분리 시스템 | |
JP6087326B2 (ja) | 多段液溜式凝縮蒸発器 | |
US7779899B2 (en) | Plate-fin heat exchanger having application to air separation | |
JPS62162876A (ja) | 気−液接触法および装置 | |
JP2009030966A (ja) | 空気低温分離によるアルゴンの製造方法及び装置 | |
JP7382352B2 (ja) | 多段液溜式凝縮蒸発器、および多段液溜式凝縮蒸発器を用いた窒素製造装置 | |
JP7103816B2 (ja) | 空気液化分離によるアルゴンの製造装置及び方法 | |
JP2017090035A (ja) | プレート熱交換器・凝縮気化器及び空気の低温分離方法 | |
CN114787570B (zh) | 多级储液式冷凝蒸发器及具有它的空气分离装置 | |
TW202108222A (zh) | 空氣的低溫分離方法與設備 | |
US20010030042A1 (en) | Reboiler/condenser heat exchanger of the bath type | |
US12130081B2 (en) | Multistage liquid storage-type condenser-evaporator and nitrogen production device using the same | |
US9476641B2 (en) | Down-flow condenser reboiler system for use in an air separation plant | |
KR100782153B1 (ko) | 공기의 저온 분류 방법 및 장치 | |
JP3929799B2 (ja) | 超高純度酸素の製造方法及び製造装置 | |
CN1232166A (zh) | 连续液体空气进料的低温精馏系统 | |
JP2787594B2 (ja) | 蒸発器 | |
JPH037879A (ja) | 蒸発器 | |
CN115900229A (zh) | 用于氖氦气制取的精馏下塔结构 | |
CN117980677A (zh) | 用于空气低温分离的方法和空气分离设备 | |
JP2007526432A (ja) | 空気分離のための低温蒸留方法およびそれを実施するために使用される設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |