CN114787403B - 粉末铝材料 - Google Patents

粉末铝材料 Download PDF

Info

Publication number
CN114787403B
CN114787403B CN201980102702.1A CN201980102702A CN114787403B CN 114787403 B CN114787403 B CN 114787403B CN 201980102702 A CN201980102702 A CN 201980102702A CN 114787403 B CN114787403 B CN 114787403B
Authority
CN
China
Prior art keywords
alloy
aluminum
strength
powder
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980102702.1A
Other languages
English (en)
Other versions
CN114787403A (zh
Inventor
V·K·曼
A·Y·克罗欣
R·O·瓦赫罗莫夫
D·K·里亚博夫
V·A·科罗列夫
D·K·道巴拉杰特
A·N·索洛宁
A·Y·丘留莫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Light Materials And Technology Research Institute Co ltd
Original Assignee
Light Materials And Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Light Materials And Technology Research Institute Co ltd filed Critical Light Materials And Technology Research Institute Co ltd
Publication of CN114787403A publication Critical patent/CN114787403A/zh
Application granted granted Critical
Publication of CN114787403B publication Critical patent/CN114787403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及冶金领域,即涉及一种基于铝的耐热合金组合物以及由其制成的用于通过增材技术方法制造零件的粉末。本发明创造了一种基于铝的新型材料,该材料用于制造粉末并将其用于各种产品的增材制造,并且在激光熔化时具有高度可加工性,在热处理状态下具有高强度特性:屈服强度超过400MPa,极限强度超过470MPa,以及断裂伸长率至少为4%。该铝粉材料包含铜、镁、锰、铈、硅、锆和/或钛,其中该材料包含尺寸小于1μm的热稳定分散体Al8Cu4Ce,以至少103K/s的结晶速率形成,并且有助于在室温和高温下的操作条件下增强材料。

Description

粉末铝材料
本发明涉及冶金领域,即涉及一种铝基耐热合金组合物及其粉末,其用于使用增材技术生产零件。
增材制造技术是汽车和航空航天工业发展的关键领域,因为可以根据给定的计算机模型在一个工艺周期内用金属粉末生产成品。这种生产方式的材料利用率可以达到95~99%。
对于金属材料,最关键的技术之一是选择性激光熔化(SLM)。与用于生产产品或坯料的标准铸造技术相比,选择性激光熔化的特点是结晶速率高(大约104到106K/s),这导致需要使用具有良好铸造特性的材料,并且打印过程中不易产生热裂纹。在实际工作中发现,由于共晶相的体积分数较大,Al-Si、Al-Si-Mg系合金在SLM过程中具有较高的可加工性,可最大限度地减少缺陷(气孔、裂纹)的形成;然而,这些材料的一个显著缺点是强度低。热处理后,采用SLM法制成的Al-Si合金制品的极限强度不超过350MPa。
在传统铝合金中,基于Al-Cu系的材料以及含过渡金属的铝合金具有最高的耐热特性。在老化时,含铜合金经过热硬化并在其结构中形成θ'和S'类型的亚稳相。然而,它们的铸造特性处于平均水平,这使得它们几乎不适合用于增材制造。
当前重要的是开发如下特点的新的铝基合金组合物:在室温和高温下具有高水平的机械性能,并在用于选择性激光熔化时具有高可加工性。
现有技术中已知一种用于通过选择性激光熔化方法生产产品的合金,其含量占比如下(wt.%):4.27-4.47的铜、1.95-1.97的镁、以及0.55-0.56的锰(H.Zhang,H.Zhu,T.Qi,Z.Hu,X.Zeng//Materials Science and Engineering:A,2016,V.656,P.47-54)。
合金熔化后形成致密结构(99.8%),屈服强度为276.2MPa,极限强度为402.4MPa,断裂伸长率为6%。这种已知合金的缺点是结构不均匀,并且易于形成结晶裂纹。裂纹的形成与合金结晶的宽有效范围有关。
一种已知的铝基合金包括一种或多种元素:锌、镁、铜、锆、钇、铒、镱、钪、银,以及随机元素和杂质(申请WO 2017/041006 Al,2017年3月9日公布)。
该合金被开发用于增材制造,特别是用于生产航空航天产品。在本发明的一些实施例中,合金可以包含以下成分(wt.%):锌3-9、镁2-6、铜0.5-2、锆至多0.1;其余是铝和不可避免的杂质。在本发明的某些实施例中,合金可以另外包含以下成分(wt.%):钇至多2、铒至多2、镱至多2、钪至多2、锰至多2、或者银至多2。在本发明的一些实施例中,合金可以包含(wt.%):锌4-9、镁0.5-3、铜至多0.5、锆大约1;其余是铝和杂质。该发明的缺点是由于在组合物中存在大量稀土和稀土元素,其成本高。此外,在打印零件的过程中,当暴露在激光辐射下时,锌会蒸发,从而导致成品中化学成分不均匀性。
一种已知的用于生产含压铸件的铝基合金含有(wt.%):硅2.8-4.4、铁1.2-2.2、锰0.2-1.2、铜0.5-3.5、镁0.05-0.8、锌0.2-3.0、铈0.01-0.3;其余是铝和杂质。
该合金具有良好的铸态塑性和高压压铸时的可加工性。该合金的缺点是热处理后强度低(在310MPa水平)。
一种已知的A201(SAE AMS-A-21180)级高强度铝合金含有(wt.%):铜4.0-5.0、镁0.15-0.35、钛0.15-0.35、锰0.2-0.4、银0.4-1.0;其余是铝和不可避免的杂质。
该合金的特点是具有高抗应力腐蚀性和良好的高温性能。其缺点是热处理后强度低(极限强度为414MPa;屈服强度为345MPa)。
一种已知的铝基合金2219,含有(wt.%):Cu 5.8-6.3、Mn 0.2-0.4、Ti0.02-0.10、V 0.05-0.15、以及Zr 0.1-0.25,用于生产可变形半成品(Hatch JE(ed.)Aluminium:Properties and Physical Metallurgy,ASM,Metals.Park,1984和KaufmanG.J.Properties of Aluminum Alloys:Fatigue Data and Effects of Temperature,Product Form,and Process Variables,Materials Park,ASM International,2008,574p.),在室温下具有令人满意的机械性能水平。由于结构中存在体积含量不超过1.5vol.%的Al20Cu2Mn3分散体,因此在200-300℃的温度范围内具有良好的耐热性。这种材料的缺点是其在人工老化状态下的屈服强度低,并且在250℃以上的温度下由于Al2Cu相的粗化而软化。
与所请求保护的合金最接近的是一种铝基合金,该合金用于使用增材技术生产产品,并包含以下元素(wt.%):铝78.80-92.00、铜5.00-6.00、镁2.50-3.50、锰0.50-1.25、钛0-5.00、硼0-3.00、钒0-0.15、锆0-0.15、硅0-0.25、铁0-0.25、铬0-0.50、镍0-1.0,以及0-0.15的其他元素和杂质(申请US 2017/0016096 A1,2017年1月19日公布)。与AlSi10Mg合金相比,该合金的特点是具有较高的机械特性,与AA7075型高强度铝合金相比,该合金的特点是结晶裂纹的形成倾向低。这种合金的缺点是它与钛、硼和镍过度合金化,这是SLM过程中合成材料中产生热应力的原因,并导致使用增材技术生产的产品开裂和变形。
本发明的技术目标是创造一种新的用于生产粉末铝基材料,并将其应用于各种产品的增材制造中。该铝基材料在激光熔化过程中具有高加工性,并且在热处理状态下具有高强度的特性:屈服强度超过400MPa,极限强度超过470MPa,断裂伸长率至少为4%。
技术效果是解决了设定的问题并实现了列出的优势。
为解决所述问题并达到所述技术效果,提供了一种基于铝合金的粉末铝材料,其成分含量(wt.%)如下。
其中,材料包含尺寸小于1μm的热稳定Al8Cu4Ce型分散体,其以至少103K/s的结晶速率形成,这有助于材料在室温和高温操作条件下硬化。
由于在人工老化过程中形成过饱和固溶体并随后分解,并且还有助于形成不溶性强化颗粒,添加一定量的铜确保强度特性的提高。
引入铈以形成Al8Cu4Ce型相,其特点是热稳定性高,以及加热时生长趋势低;此外,由于结晶速率高,它以亚微米尺寸形成,这在室温下提供了额外的硬化效果。
钛和锆以不超过在铝基体中最大溶解度的量加入合金中,进而,铝基体在打印过程中快速结晶,形成过饱和固溶体,随后分解形成纳米级Al3X型颗粒。此外,这些元素充当改性剂,在结晶过程中促进晶粒细化,并减少裂纹形成的趋势。
硅被引入以在材料中形成共晶,这转而有助于提高可打印性。这种共晶相在最后时刻结晶,填充了枝晶间区域,增加了材料对热裂纹的抵抗力。
由于Al20Cu2Mn3型分散体的沉淀,在Al-Cu系统中添加锰有助于在加热淬火时硬化。当Al2Cu相开始活性粗化时,Al20Cu2Mn3型分散体具有一定的热稳定性,并且在200℃以上的温度下仍保持其硬化效果。
附图显示:
图1:通过光学显微镜获得的来自实施例1的1-8号合金的样品结构图像,显示材料的孔隙率水平不超过0.5vol.%,并且没有裂纹。
图2:选择性激光熔化(SLM)工艺和来自请求保护的AlCuCe合金的样品,用于测试实施例1中的材料。
图3:来自实施例1(A)的扫描电子显微镜中的建议的AlCuCe合金材料微观结构的典型图像和来自实施例1的合金元素分布图(B)。
图4:来自实施例1的AlCuCe材料的X射线相分析结果,显示了热处理后合金的相成分。
图5:来自实施例1的透射电子显微镜中建议的AlCuCe合金材料的微观结构的典型图像,显示了强化热稳定Al8Cu4Ce相的存在和合金元素分布图(B)。
图6:扫描电子显微镜中建议的AlCuCe合金的微观结构的典型图像(A)和合金元素分布图(B),显示热处理后硅颗粒的尺寸不超过10μm(实施例2)。
图7:根据GOST 9651-84的拉伸试验的温度与极限强度(A)、屈服强度(B)、断裂伸长率(C)的关系图,显示在室温至350℃的温度范围内进行测试时,该建议的合金与原型相比机械性能水平有所提高(实施例3)。
图8:热处理后AlCuCe材料的断裂强度曲线,显示了在200℃温度下的循环载荷条件下,材料沿相互垂直方向的良好机械性能水平(实施例3)。
实施例1
在氮气环境中,通过气体雾化制备出符合表1的各种成分的铝合金粉末,并控制其氧气含量。
表1
熔体是在气体加热炉中制备的。制备时,使用至少符合GOST 11069-2001的A7级铝,符合GOST 859-2001的M1级铜,符合GOST 804-93的TsEO级电解铈,符合GOST 804-93的MG90级镁,符合GOST 2169-69的4001级硅,以及其余元素的二元母合金(binary masteralloys)。在制备熔体并测试其化学成分后,将合金过热至87-920℃的温度,然后在氧含量为0.1%-0.8%的氮气中雾化,以控制粉末中的氧含量并防止其在分散过程中着火。
在雾化过程中,不允许温度低于(Tliquidus+100℃)的值,因为已发现低于此温度,由于熔体在与喷嘴和金属排放流槽的元件接触时局部冷却,在粉末中会形成金属互化物,这是导致工艺中断的原因(喷嘴堵塞、化学成分均匀性和粉末结构的破坏等)。
对所得粉末筛选以分离D50=45±5μm的部分。
在氮气氛中的SLM 280HL选择性激光熔化系统上进行所获得粉末的选择性激光熔化(SLM)工艺。通过改变能量-速度打印参数(激光功率、扫描速度、轨道到轨道距离)以形成没有热裂纹和受控孔隙率水平的结构。使用Carl Zeiss Neophot光学显微镜通过金相法在立方体形样品上测定合成材料的孔隙率,并使用标准技术制备微观切片,无需对样品进行任何额外蚀刻。
使用Tescan Mira 3扫描电子显微镜和JEOL 2100透射电子显微镜研究材料的微观结构。使用Brucker Advance D8 X射线衍射仪研究相成分。
光学显微镜对材料结构的研究结果如图1所示。根据获得的数据,最佳模式的材料孔隙率不超过0.5vol.%。
基于确保最低孔隙率的参数,根据GOST 1497-84和GOST 9651-84(图2)的规定,将产品制成用于拉伸试验样品的坯料形式。然后对坯料进行热处理:加热至低于熔点5℃的温度,保温至少2小时,然后在冷水中淬火,并在170℃人工老化。
相成分和材料结构的研究结果如附图3、4和5中所示。
根据所得结果,材料结构为具有均匀分布的分散相的铝基体,根据XRD结果,为硅(Si)和Al2Cu和Al8Cu4Ce分散相。该材料的一个显著特征是Al8Cu4Ce纳米分散相的尺寸不超过1μm,这是由于在SLM过程中材料的快速结晶(以至少103K/s的速率)造成的(图4)。该相的特点是热处理前后的尺寸稳定性,这表明所提供的AlCuCe材料具有高水平的性能特征。
样品在室温和高温(250℃)下的拉伸试验结果见表2。
表2:机械性能测试结果
表2表明,与原型相比,要求保护范围内的建议材料的特点是极限抗拉强度和屈服强度的增加。由于材料结构中存在纳米尺寸的热稳定硬化分散体,因此确保了额外的强化。并且,不超过10μm的硅相尺寸使得合金保持高塑性特性。
因此,所达到的机械性能水平,使其有望在工艺和操作加热条件下使用所提出的材料来生产操作的负载元件零件,作为铸造和可变形材料的类似物。
实施例2
通过类似于实施例1的技术获得实验组合物的粉末。获得的粉末的化学成分如表3所示。合金的成分主要根据硅含量而变化。
表3:实验合金的化学成分
使用SLM Solutions 280HL选择性激光熔化设备实施打印过程。以多种模式进行打印,以选择合成参数的最佳组合,以确保最低水平的孔隙率和无热裂纹。使用类似于实施例1的光学显微镜研究打印样品的结构。使用带有能量色散分析附件的Tescan Vega 3LMHSEM扫描电子显微镜分析材料微观结构。
孔隙率测量结果如表4所示。
表4:AlCuCe材料结构研究结果
编号 孔隙率,vol.% 存在宏观缺陷
A 0.55 裂纹
B 0.49 裂纹
C 0.25
D 0.30
E 0.27
F 0.4
G 0.4
从结果可以看出,合金A和B上发现了裂纹,这是由于硅含量低导致材料铸造性能差造成的。在最佳模式下获得的从C到G合金的孔隙率不超过0.5vol.%。热裂纹是由硅量不足引起的,硅含量不足是共晶量少的结果。因此,为了确保打印适性,优选将硅含量保持在至少2.8wt.%。
在室温下使用开发的最佳参数生产用于拉伸试验样品的圆柱形坯料。准备好的圆柱体在低于熔点5℃的温度下进行热处理和淬火,并进行人工老化以获得最大强度。然后,根据GOST 1497-84对坯料进行机加工,以用作拉伸试验样品。测试是在MTS Criterion测试系统上进行的。测试结果见表5。
表5:根据GOST 1497-84的拉伸试验样品在淬火和人工老化后的XY状态下的机械性能(平均值)
合金 极限抗拉强度,MPa 屈服强度,MPa 断裂伸长率,%
C 470 400 5.1
D 482 405 5.2
E 465 400 7.0
F 440 391 7.0
G 445 375 9.4
从结果可以看出,F和G合金中硅含量的增加导致AlCuCe材料的强度下降,这是由于硅相成分中部分掺入了铜,从而导致固溶体中的铜含量降低。反过来,在合金C、D和E中,硅颗粒的尺寸不超过10μm,并且经过淬火和人工老化以获得最大强度的材料具有高极限强度(至少450MPa)和室温下的塑性的组合特征,可推荐用于替代已知的Al-Cu系统铸造和锻造合金。
实施例3
通过在氮气气氛中添加0.3%的氧气,在超过合金液相点150℃的温度下雾化(以防止熔体中初级金属间化合物的沉淀)获得表6所示的铝合金粉末,其中化学元素的含量在其熔体中雾化期间得到控制:
表6:雾化前熔体的化学成分
编号 Al Cu Mg Zr Ti Ni Mn Ce Si
3 基础 6.20 0.2 0.60 0.18 - 0.37 0.60 2.9
所得粉末通过标准筛选程序获得+15/-63μm的分数,D50=45±2μm。
所得粉末的化学分析通过原子发射光谱测定;使用G8 Galileo系统中的气体分析仪测定气体含量。根据分析结果,所得粉末的成分与熔体成分一致,而氧含量为0.038wt.%,氮含量小于0.0001wt.%。
在SLM Solutions 280HL选择性激光熔化系统上,氮气气氛中,在以下能量-速度打印参数下,对所得的粉末实施选择性激光熔化(SLM)过程:扫描速度为200-400mm/s,激光功率为250-350W,最大层厚为50μm时,轨道间距离为0.15-0.20mm。在不超过160℃的温度下,通过对平台进行额外加热来合成该材料。
基于上述参数,分别根据GOST 1497-84和GOST 9651-84生产圆柱形坯料作为产品,用作室温和高温拉伸试验的样品。
打印过程完成后,对产品进行热处理:加热至熔点以下5℃,并保温至少2小时,然后在冷水中淬火,在170℃的温度下人工老化,并进行加工以获取测试样品。
测试结果见表7。
表7:材料的机械性能
测试温度,℃ 极限抗拉强度σB,MPa 屈服强度σ0,2,MPa 断裂伸长率δ5,%
20 485 424 7.0
150 371 357 16.5
200 317 315 15.0
250 225 219 16.3
300 133 131 34.8
350 59 58 34.0
如表7所示,所提出的AlCuCe材料能够在高温下保持足够高的强度特性。
图7显示了AlCuCe合金与原型相比(美国专利2017/0016096 A1,给出的特性为材料的化学成分与实施例1中相似)在拉伸应变(抗拉强度、屈服强度和伸长率)下的机械性能水平变化图。与原型相比,在20-350℃的温度范围内所提出的AlCuCe材料的强度特性有所提高。
此外,具有特定的特征,根据GOST 10145-81的规定,产品以直径为18毫米、长度为113毫米的圆柱体形式生产,用于进行断裂测试。测试是在200℃的温度下的ATS蠕变测试仪上进行的。
根据获得的结果,为所提供的材料建立了蠕变断裂曲线(图8)。从测试结果可以看出,该材料在100小时(100MPa)下具有良好的极限蠕变断裂强度值,有望在循环负载和高温综合影响下的工作条件下使用。

Claims (7)

1.一种基于铝合金的粉末铝材料,其特征在于,包括铜、镁、锰、铈、硅,以及锆和/或钛,其成分比例以wt.%计如下:
其中,所述材料包含尺寸小于1μm的热稳定Al8Cu4Ce分散体,其以至少103K/s的结晶速率形成,有助于材料硬化。
2.一种铝基粉末合金,其特征在于,其成分包括根据权利要求1所述的元素,所述元素是通过惰性气流将过热至高于液相点至少150℃的温度的熔体雾化而获得的,氧含量为0.01-0.8wt.%。
3.根据权利要求2所述的粉末合金,其特征在于,根据所用惰性气体的纯度和影响熔体的环境因素,存在元素H、N和O中的至少一种的量为至多1wt.%。
4.根据权利要求3所述的粉末合金,其特征在于,H、N和O的含量为0-0.5wt.%。
5.根据权利要求2、3或4所述的粉末合金,其特征在于,使用氮气或氩气作为惰性气体。
6.旨在用于增材技术的根据权利要求1所述的粉末铝材料或根据权利要求2至5中任一项所述的铝基粉末合金,其特征在于,D50在5至150μm的范围内。
7.根据权利要求6所述的粉末铝材料或铝基粉末合金生产的产品,其在室温下淬火和人工老化以达到最大强度后的极限强度至少为450MPa。
CN201980102702.1A 2019-12-13 2019-12-13 粉末铝材料 Active CN114787403B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2019/000939 WO2021118393A1 (ru) 2019-12-13 2019-12-13 Порошковый алюминиевый материал

Publications (2)

Publication Number Publication Date
CN114787403A CN114787403A (zh) 2022-07-22
CN114787403B true CN114787403B (zh) 2023-08-04

Family

ID=74213320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980102702.1A Active CN114787403B (zh) 2019-12-13 2019-12-13 粉末铝材料

Country Status (7)

Country Link
US (1) US20220372599A1 (zh)
EP (1) EP4074852A4 (zh)
JP (1) JP7467633B2 (zh)
CN (1) CN114787403B (zh)
CA (1) CA3162766C (zh)
RU (1) RU2741022C1 (zh)
WO (1) WO2021118393A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754258C1 (ru) * 2021-03-16 2021-08-31 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ получения порошка на основе алюминия для 3D печати
WO2024128937A1 (ru) * 2022-12-12 2024-06-20 Общество с ограниченной ответственностью "Институт легких материалов и технологий" Алюминиевый материал для аддитивных технологий и изделие, полученное из этого материала
WO2024157424A1 (ja) * 2023-01-26 2024-08-02 日産自動車株式会社 アルミニウム焼結部材
CN117965968B (zh) * 2024-01-15 2024-09-20 重庆赛力斯新能源汽车设计院有限公司 一种压铸铝合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176838A (ja) * 1989-12-29 1992-06-24 Showa Denko Kk A1合金混合粉末および焼結a1合金の製造方法
RU2210614C1 (ru) * 2001-12-21 2003-08-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ его изготовления
WO2010042498A1 (en) * 2008-10-10 2010-04-15 Gkn Sinter Metals, Llc Aluminum alloy powder metal bulk chemistry formulation
CA2817590A1 (en) * 2010-12-15 2012-06-21 Gkn Sinter Metals, Llc Improved aluminum alloy power metal with transition elements
CN103140313A (zh) * 2010-10-04 2013-06-05 Gkn烧结金属有限公司 铝粉末金属合金化方法
CN104889402A (zh) * 2015-06-05 2015-09-09 东睦新材料集团股份有限公司 一种铝基粉末冶金零件的制备方法
CN107801404A (zh) * 2016-07-01 2018-03-13 俄铝工程技术中心有限责任公司 耐热性铝合金
CN110573276A (zh) * 2017-04-14 2019-12-13 肯联铝业技术中心 制造铝合金零件的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823928B2 (en) 2002-09-27 2004-11-30 University Of Queensland Infiltrated aluminum preforms
TWI487668B (zh) 2009-02-19 2015-06-11 Sakai Chemical Industry Co 金紅石型氧化鈦粒子之分散體,其製造方法,及其用途
RU2558806C1 (ru) * 2014-05-19 2015-08-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный сплав на основе алюминия
US20170016096A1 (en) 2015-07-16 2017-01-19 Hamilton Sundstrand Corporation Method of manufacturing aluminum alloy articles
US10941473B2 (en) 2015-09-03 2021-03-09 Questek Innovations Llc Aluminum alloys
EP3371338A2 (en) * 2015-11-06 2018-09-12 Innomaq 21, S.L. Method for the economic manufacturing of metallic parts
JP6834990B2 (ja) 2016-01-29 2021-02-24 宇部興産株式会社 被覆アルカリ土類金属化合物微粒子、有機溶媒分散液、樹脂組成物及び画像表示装置
EP3558570A1 (en) * 2016-12-21 2019-10-30 Arconic Inc. Aluminum alloy products having fine eutectic-type structures, and methods for making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176838A (ja) * 1989-12-29 1992-06-24 Showa Denko Kk A1合金混合粉末および焼結a1合金の製造方法
RU2210614C1 (ru) * 2001-12-21 2003-08-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ его изготовления
WO2010042498A1 (en) * 2008-10-10 2010-04-15 Gkn Sinter Metals, Llc Aluminum alloy powder metal bulk chemistry formulation
CN103140313A (zh) * 2010-10-04 2013-06-05 Gkn烧结金属有限公司 铝粉末金属合金化方法
CA2817590A1 (en) * 2010-12-15 2012-06-21 Gkn Sinter Metals, Llc Improved aluminum alloy power metal with transition elements
CN104889402A (zh) * 2015-06-05 2015-09-09 东睦新材料集团股份有限公司 一种铝基粉末冶金零件的制备方法
CN107801404A (zh) * 2016-07-01 2018-03-13 俄铝工程技术中心有限责任公司 耐热性铝合金
CN110573276A (zh) * 2017-04-14 2019-12-13 肯联铝业技术中心 制造铝合金零件的方法

Also Published As

Publication number Publication date
WO2021118393A1 (ru) 2021-06-17
CA3162766A1 (en) 2021-06-17
CN114787403A (zh) 2022-07-22
CA3162766C (en) 2024-04-23
EP4074852A4 (en) 2023-08-16
RU2741022C1 (ru) 2021-01-22
JP2023505779A (ja) 2023-02-13
EP4074852A1 (en) 2022-10-19
JP7467633B2 (ja) 2024-04-15
US20220372599A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
CN114787403B (zh) 粉末铝材料
Liu et al. Thermomechanical characterization of β-stabilized Ti–45Al–7Nb–0.4 W–0.15 B alloy
JP6569531B2 (ja) マグネシウム合金及びその製造方法
JP6432344B2 (ja) マグネシウム合金及びその製造方法
RU2724751C1 (ru) Заготовка для высокопрочных крепежных изделий, выполненная из деформируемого титанового сплава, и способ ее изготовления
WO2019055623A1 (en) ALUMINUM ALLOY PRODUCTS AND METHODS OF MAKING THE SAME
KR20200002965A (ko) 석출 경화성의 코발트-니켈 베이스 초합금 및 이로부터 제조된 물품
Dynin et al. Structure and mechanical properties of an advanced aluminium alloy AlSi10MgCu (Ce, Zr) produced by selective laser melting
Bayoumy et al. The latest development of Sc-strengthened aluminum alloys by laser powder bed fusion
JP6126235B2 (ja) 耐熱性アルミニウムベース合金を変形させてなる半製品およびその製造方法
Wang et al. Developing high-strength ultrafine-grained pure Al via large-pass ECAP and post cryo-rolling
Xiao et al. Achieving uniform plasticity in a high strength Al-Mn-Sc based alloy through laser-directed energy deposition
JP2016505713A5 (zh)
Manjunath et al. Microstructure and mechanical properties of cast Al-5Zn-2Mg alloy subjected to equal-channel angular pressing
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
Mandal et al. Chemical modification of morphology of Mg2Si phase in hypereutectic aluminium–silicon–magnesium alloys
WO2019165136A1 (en) Aluminum alloy products and methods of making the same
JP2019060026A (ja) マグネシウム基合金伸展材及びその製造方法
Xue et al. Microstructure evolution and mechanical properties of a large-sized ingot of Mg− 9Gd− 3Y− 1.5 Zn− 0.5 Zr (wt%) alloy after a lower-temperature homogenization treatment
US20210332462A1 (en) Aluminum alloy and manufacturing method thereof
CN105671376A (zh) 高强高塑重力铸造与室温冷轧亚共晶铝硅合金材料及其制造方法
Camarillo-Cisneros et al. Thermomechanical behavior of Al-Cu-Si commercial alloy modified with rare earths
JP4704720B2 (ja) 高温疲労特性に優れた耐熱性Al基合金
US20240309494A1 (en) Aluminum alloys and related methods and articles
He et al. Effect of Mn and Mo on microstructure and mechanical properties of Al-Si-Cu-Mg-0.6 Fe alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant