CN114775171B - 一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法 - Google Patents
一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法 Download PDFInfo
- Publication number
- CN114775171B CN114775171B CN202210260880.0A CN202210260880A CN114775171B CN 114775171 B CN114775171 B CN 114775171B CN 202210260880 A CN202210260880 A CN 202210260880A CN 114775171 B CN114775171 B CN 114775171B
- Authority
- CN
- China
- Prior art keywords
- trfe
- vdf
- pda
- zno nrs
- fiber membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 46
- 239000000835 fiber Substances 0.000 title claims abstract description 36
- 239000012528 membrane Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 142
- 239000011787 zinc oxide Substances 0.000 claims abstract description 69
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000010041 electrostatic spinning Methods 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 16
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000002073 nanorod Substances 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 15
- 238000009987 spinning Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- CTENFNNZBMHDDG-UHFFFAOYSA-N Dopamine hydrochloride Chemical compound Cl.NCCC1=CC=C(O)C(O)=C1 CTENFNNZBMHDDG-UHFFFAOYSA-N 0.000 claims description 5
- 229960001149 dopamine hydrochloride Drugs 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 3
- 239000007983 Tris buffer Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 238000009210 therapy by ultrasound Methods 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- 229920001690 polydopamine Polymers 0.000 abstract description 49
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 2
- 239000010935 stainless steel Substances 0.000 abstract description 2
- 239000002657 fibrous material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/48—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4318—Fluorine series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
Abstract
本发明提供一种基于P(VDF‑TrFE)复合压电纤维膜及其制备方法,包括以下步骤:使用聚多巴胺(PDA)对氧化锌纳米棒(ZnO NRs)进行改性,将改性后的氧化锌纳米棒@聚多巴胺(ZnO NRs@PDA)粉末,分散在N,N‑二甲基甲酰胺(DMF)溶液,搅拌均匀后加入至P(VDF‑TrFE)/DMF溶液,而后搅拌均匀,将上述得到的复合溶液放入带有不锈钢针头的塑料注射器中,进行静电纺丝,从而得到静电纺丝复合纤维膜,室温放置一夜,得到ZnO NRs@PDA/P(VDF‑TrFE)柔性复合压电薄膜,制备的复合压电纤维膜具有良好的柔韧性以及较高的压电性能,在传感、可再生能源以及可穿戴设备等领域有广阔应用。
Description
技术领域
本发明涉及功能材料技术领域,具体是一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法。
背景技术
迄今为止,由于PVDF及其共聚物P(VDF-TrFE)等压电聚合物具有优良的柔韧性和特殊的机电转换特性,基于其的复合材料已经被广泛应用于能量收集和传感器领域中,而复合材料的压电性对其传感器件的灵敏度和响应范围有着直接的影响,因此获得高压电性复合材料成为研究者们的首要工作。
通过将无机压电材料与有机聚合物复合能够提升其压电性,然而目前对复合压电材料的研究表明,简单的把无机压电材料与有机聚合物混合制备而成的复合压电材料的面临着混合材料内部缺陷和无机材料分散不佳的瓶颈,这阻碍了复合材料的压电性能。
为了满足更高的机电转换效率和更高程度地提升器件的灵敏度,许多研究者们通过对无机压电材料进行改性来获得更高压电性的无机/有机复合材料。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法,相比现有技术,改性的无极材料对复合压电材料的压电性更进一步提升,使得使用改性复合压电材料后的器件具有更高的输出电压和功率密度。
本发明的目的是通过以下技术方案来实现的:一种基于P(VDF-TrFE)复合压电纤维膜的制备方法,包括如下步骤:
S1.制备改性的无机压电材料
将ZnNO3·6H2O、N,N-二甲基甲酰胺(DMF)、去离子水混合搅拌,离心洗涤后获得白色沉淀氧化锌纳米棒(ZnO NRs);然后取氧化锌纳米棒(ZnO NRs)沉淀,用去离子水稀释,再加入三羟甲基氨基甲烷(Tris),使分散液pH调至8.5,最后加入盐酸多巴胺,搅拌反应后,离心得到聚多巴胺(PDA)改性的氧化锌纳米棒;本发明所用的无机压电材料是ZnO NRs,平均直径和平均长度分别为91nm和793nm,使用PDA对ZnO NRs进行改性,一方面可以改善ZnONRs在DMF中的分散性,另一方面,ZnO NRs@PDA纳米颗粒表面含有大量的羟基和氨基,可与P(VDF-TrFE)中的极性F原子通过形成氢键的方式结合,进而PDA成为了ZnO NRs和P(VDF-TrFE)之间的桥梁,提高二者的结合能力,为复合材料中各组分的均匀分散提供保障。
S2.制备改性的复合溶液
取P(VDF-TrFE)加入N,N-二甲基甲酰胺中,室温搅拌,配成P(VDF-TrFE)透明溶液,然后取聚多巴胺改性的氧化锌纳米棒粉末,将其分散在N,N-二甲基甲酰胺中并配制成溶液,将其加入P(VDF-TrFE)/DMF溶液中,室温下搅拌,最终制成混合纺丝溶液;
S3.静电纺丝制备复合纤维膜
采用静电纺丝技术,一步法制备具有极性压电性能的纤维膜。
进一步来说,在所述S1中,DMF与水的体积比为10:1-5:1,反应温度为100-150℃,反应时间为2-3h。
进一步来说,在所述S1中,氧化锌纳米棒粉末与盐酸多巴胺的质量比为2:1-1:2,反应时间为12-36h。
进一步来说,在所述S1中,PDA改性的ZnO NRs粉末,其内径为160-440纳米,长度为800-2800纳米。
优选的,所述ZnO NRs@PDA/P(VDF-TrFE)中ZnO NRs@PDA含量不超过15wt%。
优选的,所述混合溶液中ZnO NRs@PDA/P(VDF-TrFE)含量不超过15wt%。
进一步来说,在所述S3中,将S2中制得的复合纺丝溶液放入带有不锈钢针头的塑料注射器中,静电纺丝;静电纺丝结束以后,在室温下放置一夜,从而得到干燥的复合纤维膜。静电纺丝条件为纺丝电压:15-20kV,溶液挤出速度为1-3mL/h,接收距离10-30cm,纺丝针头大小8#,滚筒转速1000-3000rpm,纺丝时间为1-3h。
采用上述方法制备得到基于P(VDF-TrFE)复合压电纤维膜。
本发明的有益效果是:
1、本发明将P(VDF-TrFE)与ZnO NRs@PDA通过静电纺丝相复合,制备出兼有优良柔韧性、优良的极化效果和压电性能的一维ZnO NRs@PDA/P(VDF-TrFE)柔性复合纤维膜;通过PDA对ZnO NRs进行改性,改性后的ZnO NRs@PDA表面含有大量的羟基和氨基集团,可与P(VDF-TrFE)中的极性F原子通过氢键结合,即PDA构筑了ZnO NRs和P(VDF-TrFE)之间的桥梁,提高二者的结合能力,既可使复合材料各组分分散均匀,又可诱导P(VDF-TrFE)的β晶体形成,从而使ZnO NRs@PDA/P(VDF-TrFE)复合压电材料具有更高的压电性能,在传感以及可穿戴设备等领域有广阔应用。
2、本发明制备的ZnO NRs@PDA/P(VDF-TrFE)复合薄膜呈一维纳米纤维结构,由于纳米纤维结构表面积大,从而明显地提高了ZnO NRs@PDA/P(VDF-TrFE)柔性压电纤维膜的压电输出性能。其中,当ZnO NRs@PDA含量为10wt%时,复合纤维膜的开路电压和短路电流分别达到74V和2.4μA,具有良好的压电性能,同时静电纺丝制备的纤维膜也展现出了优良的柔性和力学性能。
3、本发明采用静电纺丝技术制备一维的压电复合材料,具有设备简单、成本低廉、操作简单等优点;由于静电纺丝工序需要高电压,所以在纺丝工艺中,将同时对所制备的压电材料进行极化处理,有利于一步法制备具有优良极化效果的压电材料。
附图说明
图1是本发明一实施例的ZnO NRs@PDA颗粒的制备流程示意图及扫描电镜图;
图2是ZnO NRs@PDA/P(VDF-TrFE)复合纤维膜的扫描电镜图;
图3是ZnO NRs@PDA/P(VDF-TrFE)复合纤维膜的XRD衍射曲线;
图4是在保持测试条件相同而且ZnO NRs@PDA和P(VDF-TrFE)总质量占溶液总质量的质量分数不变,但是ZnO NRs@PDA占ZnO NRs@PDA和P(VDF-TrFE)总质量的质量分数不同的情况下,所制备的柔性压电纤维膜的开路电压响应测试结果;
图5是在保持测试条件相同而且ZnO NRs@PDA和P(VDF-TrFE)总质量占溶液总质量的质量分数不变,但是ZnO NRs@PDA占ZnO NRs@PDA和P(VDF-TrFE)总质量的质量分数不同的情况下,所制备的柔性压电纤维膜的短路电流响应测试结果。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
实施例1
一种基于P(VDF-TrFE)复合压电纤维膜的制备方法,包括如下步骤:
S1.制备改性的无机压电材料
称取ZnNO3·6H2O粉末溶于DMF/水溶液中,搅拌均匀,在120℃下反应2.5h,冷却,离心洗涤,然后将其加入到水中,而后加入适量的Tris,使溶液pH为8.5,分散均匀,加入等质量比的盐酸多巴胺,室温反应24h,离心,洗涤,得到改性的ZnO NRs@PDA粉末;ZnO NRs改性流程示意图参见图1。
S2.制备改性的复合溶液
室温下,在保持P(VDF-TrFE)和ZnO NRs@PDA总质量占溶液总质量的质量分数为8wt%不变的情况下,称取适量ZnO NRs@PDA粉末和P(VDF-TrFE)粉末分别溶于N,N-二甲基甲酰胺(DMF)溶液中,室温混合搅拌12h,使ZnO NRs@PDA占ZnO NRs@PDA/P(VDF-TrFE)总质量的质量分数分别为0wt%、1wt%、5wt%、10wt%和15wt%,超声30min,得到5种不同配比浓度下的混合均匀的ZnO NRs@PDA/P(VDF-TrFE)静电纺丝溶液;
S3.静电纺丝制备复合纤维膜
采用静电纺丝装置,将S2步骤制备的ZnO NRs@PDA/P(VDF-TrFE)纺丝溶液制备得到ZnO NRs@PDA/P(VDF-TrFE)纤维膜。其静电纺丝工艺参数为:静电纺丝电压为15-18kV,挤出速度为2mL/h,接收距离20cm,纺丝针头大小8#,滚筒转速2000rpm,纺丝时间为2h。纺丝完成后,将制备的不同含量的ZnO NRs@PDA/P(VDF-TrFE)在室温下放置一夜,待有机溶剂完全挥发后,制备得到ZnO NRs@PDA/P(VDF-TrFE)压电纤维膜;
图2为本实施案例中所制备的ZnO NRs@PDA/P(VDF-TrFE)纤维的扫描电镜图。可以看出:该ZnO NRs@PDA/P(VDF-TrFE)复合纤维呈一维纳米或微米结构,而且材料的直径均匀、表面粗糙,有利于纤维之间的接触。
图3为实施例所制备的ZnO NRs@PDA/P(VDF-TrFE)纤维的X射线衍射图谱。其中,ZnO NRs@PDA/P(VDF-TrFE)复合纤维膜在20.5°处的衍射峰表示β(110/200)的布拉格衍射,其对应于准六边形结构。在2θ=31.9°,34.5°,36.4°,47.6°,56.7°,63.0°,66.5°,68.0°和69.2°处出现明显的尖峰,对应于ZnO的(100),(002),(101),(102),(110),(103),(200),(112)和(201)晶面衍射。X射线衍射图谱说明,实施例所制备的一维的纤维材料同时含有ZnO NRs@PDA和P(VDF-TrFE)成分,说明是ZnO NRs@PDA/P(VDF-TrFE)复合纤维材料。
图4和图5为保持测试条件不变,按照实施例所制作的5种不同配比浓度的基于ZnONRs@PDA/P(VDF-TrFE)复合纤维材料的柔性压电发电机的开路电压和短路电流测试结果。在相同的测试条件下,当ZnO NRs@PDA含量为10wt%时,ZnO NRs@PDA/P(VDF-TrFE)复合纤维膜的开路电压和短路电流高达74V和2.4μA。这说明,按照实施例所制备的基于ZnO NRs@PDA/P(VDF-TrFE)复合纤维材料具有优良的压电性能。这种优良的压电性能使得该纤维膜在压电纳米发电机以及可穿戴设备等领域有广阔的应用前景。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
Claims (2)
1.一种基于P(VDF-TrFE)复合压电纤维膜的制备方法,其特征在于:包括如下步骤:
S1.制备改性的无机压电材料
称取ZnNO3•6H2O粉末溶于DMF/水溶液中,搅拌均匀,在120℃下反应2.5 h,冷却,离心洗涤,然后将其加入到水中,而后加入适量的Tris,使溶液pH为8.5,分散均匀,加入等质量比的盐酸多巴胺,室温反应24 h,离心,洗涤,得到改性的ZnO NRs@PDA粉末;
S2.制备改性的复合溶液
室温下,在保持P(VDF-TrFE)和ZnO NRs@PDA总质量占溶液总质量的质量分数为8wt%不变的情况下,称取适量ZnO NRs@PDA粉末和P(VDF-TrFE)粉末分别溶于N,N-二甲基甲酰胺(DMF)溶液中,室温混合搅拌12 h,使ZnO NRs@PDA占ZnO NRs@PDA/P(VDF-TrFE)总质量的质量分数10wt%,超声30 min,得到混合均匀的ZnO NRs@PDA/P(VDF-TrFE)静电纺丝溶液;
S3.静电纺丝制备复合纤维膜
采用静电纺丝装置,将S2步骤制备的ZnO NRs@PDA/P(VDF-TrFE)纺丝溶液制备得到ZnONRs@PDA/P(VDF-TrFE)纤维膜,其静电纺丝工艺参数为:静电纺丝电压为15-18 kV,挤出速度为2 mL/h,接收距离20 cm,纺丝针头大小8#,滚筒转速2000 rpm,纺丝时间为2 h,纺丝完成后,将制备的不同含量的ZnO NRs@PDA/P(VDF-TrFE)在室温下放置一夜,待有机溶剂完全挥发后,制备得到ZnO NRs@PDA/P(VDF-TrFE)压电纤维膜;
在所述S1中,氧化锌纳米棒粉末与盐酸多巴胺的质量比为2:1-1:2,反应时间为12-36h;
在所述S1中,PDA改性的ZnONRs粉末,其直径为160-440纳米,长度为800-2800纳米。
2.一种基于P(VDF-TrFE)复合压电纤维膜,其特征在于:采用权利要求1所述的基于P(VDF-TrFE)复合压电纤维膜的制备方法制备得到的基于P(VDF-TrFE)复合压电纤维膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210260880.0A CN114775171B (zh) | 2022-03-15 | 2022-03-15 | 一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210260880.0A CN114775171B (zh) | 2022-03-15 | 2022-03-15 | 一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114775171A CN114775171A (zh) | 2022-07-22 |
CN114775171B true CN114775171B (zh) | 2024-01-12 |
Family
ID=82424876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210260880.0A Active CN114775171B (zh) | 2022-03-15 | 2022-03-15 | 一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114775171B (zh) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102504449A (zh) * | 2011-11-01 | 2012-06-20 | 清华大学 | 一种高储能密度的聚合物基复合膜及其制备方法 |
CN106930007A (zh) * | 2017-02-21 | 2017-07-07 | 东华大学 | 具有水分单向传导能力的微纳米纤维复合膜及其制备方法 |
WO2018233338A1 (zh) * | 2017-06-22 | 2018-12-27 | 南京工业大学 | 一种力-电-光转化增强型发光复合薄膜的制备方法 |
CN109577005A (zh) * | 2018-11-28 | 2019-04-05 | 吉林大学 | 一种聚多巴胺修饰的zif-8功能化纳米纤维膜的制备方法及其应用 |
CN109576900A (zh) * | 2018-11-22 | 2019-04-05 | 四川大学 | 一种提升复合材料压电性能的方法 |
CN109827954A (zh) * | 2019-01-28 | 2019-05-31 | 黄河科技学院 | 一种纳米金修饰聚多巴胺纳米管、其制备方法及应用 |
CN110721600A (zh) * | 2019-09-23 | 2020-01-24 | 江苏大学 | 一种PVDF@PDA@ZnO复合膜的制备方法及其用途 |
CN111312433A (zh) * | 2019-12-12 | 2020-06-19 | 四川大学 | 具有界面互锁结构的纤维复合材料导电薄膜及其制备方法 |
CN111869951A (zh) * | 2020-06-23 | 2020-11-03 | 西安理工大学 | 一种口罩过滤层的制备方法 |
CN112195647A (zh) * | 2020-10-10 | 2021-01-08 | 青岛大学 | 一种高强度海藻酸盐/纳米氧化锌复合纤维及其制备方法 |
CN112468018A (zh) * | 2020-11-06 | 2021-03-09 | 西安工程大学 | 一种协同掺杂改性聚偏氟乙烯压电纳米发电机的制备方法 |
CN112724560A (zh) * | 2021-01-27 | 2021-04-30 | 成都新柯力化工科技有限公司 | 一种用于道路表面发电的压电薄膜及制备方法 |
CN112726201A (zh) * | 2021-01-13 | 2021-04-30 | 无锡东恒新能源科技有限公司 | 一种碳纳米线及其在锂电池中的应用 |
CN113293479A (zh) * | 2021-05-13 | 2021-08-24 | 晋江市霖园塑胶雨具有限公司 | 一种防撕裂面料及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019180586A1 (en) * | 2018-03-20 | 2019-09-26 | Sabic Global Technologies B.V. | Flexible and low cost piezoelectric composites with high d33 values |
CN108498868B (zh) * | 2018-04-03 | 2020-09-15 | 北京大学口腔医学院 | 具有细胞外基质电学拓扑特征的带电复合膜及其制备方法 |
-
2022
- 2022-03-15 CN CN202210260880.0A patent/CN114775171B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102504449A (zh) * | 2011-11-01 | 2012-06-20 | 清华大学 | 一种高储能密度的聚合物基复合膜及其制备方法 |
CN106930007A (zh) * | 2017-02-21 | 2017-07-07 | 东华大学 | 具有水分单向传导能力的微纳米纤维复合膜及其制备方法 |
WO2018233338A1 (zh) * | 2017-06-22 | 2018-12-27 | 南京工业大学 | 一种力-电-光转化增强型发光复合薄膜的制备方法 |
CN109576900A (zh) * | 2018-11-22 | 2019-04-05 | 四川大学 | 一种提升复合材料压电性能的方法 |
CN109577005A (zh) * | 2018-11-28 | 2019-04-05 | 吉林大学 | 一种聚多巴胺修饰的zif-8功能化纳米纤维膜的制备方法及其应用 |
CN109827954A (zh) * | 2019-01-28 | 2019-05-31 | 黄河科技学院 | 一种纳米金修饰聚多巴胺纳米管、其制备方法及应用 |
CN110721600A (zh) * | 2019-09-23 | 2020-01-24 | 江苏大学 | 一种PVDF@PDA@ZnO复合膜的制备方法及其用途 |
CN111312433A (zh) * | 2019-12-12 | 2020-06-19 | 四川大学 | 具有界面互锁结构的纤维复合材料导电薄膜及其制备方法 |
CN111869951A (zh) * | 2020-06-23 | 2020-11-03 | 西安理工大学 | 一种口罩过滤层的制备方法 |
CN112195647A (zh) * | 2020-10-10 | 2021-01-08 | 青岛大学 | 一种高强度海藻酸盐/纳米氧化锌复合纤维及其制备方法 |
CN112468018A (zh) * | 2020-11-06 | 2021-03-09 | 西安工程大学 | 一种协同掺杂改性聚偏氟乙烯压电纳米发电机的制备方法 |
CN112726201A (zh) * | 2021-01-13 | 2021-04-30 | 无锡东恒新能源科技有限公司 | 一种碳纳米线及其在锂电池中的应用 |
CN112724560A (zh) * | 2021-01-27 | 2021-04-30 | 成都新柯力化工科技有限公司 | 一种用于道路表面发电的压电薄膜及制备方法 |
CN113293479A (zh) * | 2021-05-13 | 2021-08-24 | 晋江市霖园塑胶雨具有限公司 | 一种防撕裂面料及其制备方法 |
Non-Patent Citations (5)
Title |
---|
Enhanced β-crystallinephaseinpoly(vinylidene fluoride) films bypolydopamine-coatedBaTiO3 nanoparticles;Nan Jia等;Materials Letters;第139卷;第212-215页 * |
张海兵 ; .柔性压电复合材料的研究进展.浙江化工.(第05期),全文. * |
李毅萍 ; 戴小寒 ; 唐瞻贵 ; 张学慧 ; .BaTO_3/P(VDF-TrFE)纳米复合膜对干细胞铺展与增殖的影响.口腔医学研究.(第01期),全文. * |
李玉宝等.《纳米材料技术研发与应用》.电子科技大学出版社,2012,(第1版),第170页. * |
李静静等.高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜.纺织学报.2018,第39卷(第2期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN114775171A (zh) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bairagi et al. | A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs | |
CN108442038B (zh) | 一种具有高输出的柔性压电纤维薄膜及其制备方法 | |
Parangusan et al. | Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators | |
Sorayani Bafqi et al. | Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency | |
Ma et al. | Highly oriented electrospun P (VDF‐TrFE) fibers via mechanical stretching for wearable motion sensing | |
Kim et al. | Effects of biomimetic cross-sectional morphology on the piezoelectric properties of BaTiO3 nanorods-contained PVDF fibers | |
Xu et al. | Achieving high-performance energy harvesting and self-powered sensing in a flexible cellulose nanofibril/MoS 2/BaTiO 3 composite piezoelectric nanogenerator | |
Trevino et al. | Piezoelectric properties of PVDF‐conjugated polymer nanofibers | |
Wu et al. | Flexible piezoelectric energy harvesters with graphene oxide nanosheets and PZT-incorporated P (VDF-TrFE) matrix for mechanical energy harvesting | |
Hu et al. | Highly sensitive omnidirectional signal manipulation from a flexible anisotropic strain sensor based on aligned carbon hybrid nanofibers | |
Tao et al. | A review: Polyacrylonitrile as high-performance piezoelectric materials | |
US20140272397A1 (en) | Zinc oxide-cellulose nanocomposite and preparation method thereof | |
Pan et al. | Self-poled PVDF/recycled cellulose composite fibers utilizing cellulose nanocrystals to induce PVDF β-phase formation through wet-spinning as a flexible fabric piezoelectric sensor | |
CN111063794A (zh) | 一种复合压电膜及其制备方法和应用 | |
Zhu et al. | A high performance nanocellulose-PVDF based piezoelectric nanogenerator based on the highly active CNF@ ZnO via electrospinning technology | |
CN112216787B (zh) | 一种基于pvdf/dast复合纤维材料的柔性压电发电机及其制备方法 | |
CN114775171B (zh) | 一种基于P(VDF-TrFE)复合压电纤维膜及其制备方法 | |
Shi et al. | Advances in wearable flexible piezoelectric energy harvesters: materials, structures, and fabrication | |
Song et al. | High performance and flexible piezoelectric composite incorporating zinc oxide grown on the oxidized nanocellulose by two-step hydrothermal process | |
Yang et al. | Efficient energy harvesting enabled by large-area piezoelectric PVDF-based composite film enhanced by carbon nanotubes | |
CN113659069A (zh) | 一种基于MXene与微型注塑的高性能PVDF基柔性压电器件及其制备方法 | |
Shafiei et al. | Morphology of electrospun poly (ethylene oxide) ultra-fine fibres with incorporated MoO3 nanoparticles | |
CN115045044A (zh) | 一种基于静电纺丝工艺制备复合压电材料的方法 | |
CN115637588B (zh) | 光热驱动自传感型多层级微纳米纤维、制备方法及应用 | |
Koç et al. | The piezoelectric properties of three-phase electrospun PVDF/PZT/Multiwalled Carbone Nanotube composites for energy harvesting applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |