CN114774405A - 一种单链抗体扩展库的制备方法及其应用 - Google Patents

一种单链抗体扩展库的制备方法及其应用 Download PDF

Info

Publication number
CN114774405A
CN114774405A CN202210409536.3A CN202210409536A CN114774405A CN 114774405 A CN114774405 A CN 114774405A CN 202210409536 A CN202210409536 A CN 202210409536A CN 114774405 A CN114774405 A CN 114774405A
Authority
CN
China
Prior art keywords
antibody
library
chain
light chain
heavy chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210409536.3A
Other languages
English (en)
Inventor
程梦楠
李浪
尉菲菲
叶小飞
姚宇峰
吴桐雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Saitang Biotechnology Co ltd
Original Assignee
Shanghai Saitang Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Saitang Biotechnology Co ltd filed Critical Shanghai Saitang Biotechnology Co ltd
Priority to CN202210409536.3A priority Critical patent/CN114774405A/zh
Publication of CN114774405A publication Critical patent/CN114774405A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/005Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies constructed by phage libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明属于抗体制备技术领域,尤其涉及一种单链抗体扩展库的制备方法及其应用。本发明以CHO上清HCP蛋白混合物整体作为蛋白抗原进行兔免疫制备抗体文库,在抗体文库中,重链或轻链可变区存在多个引物对,分别将H链,或者κ或λ的各自多组F/R引物对集中到一起进行扩增,得到多于常规库容量的重链或轻链组,拼接成非天然单链抗体,体外表达非天然重组抗体扩展库,相较血清来源抗体对抗原的识别能力高,结合多重PCR技术可以无限量制备稳定的抗体扩展库,减少时间、物料投入,制备方便。

Description

一种单链抗体扩展库的制备方法及其应用
技术领域
本发明属于抗体制备技术领域,尤其涉及一种单链抗体扩展库的制备方法及其应用。
背景技术
CHO表达系统概述:(CHO HCP(Chinese harvest ovary,Host cell protein),又叫做中国仓鼠卵巢细胞,宿主细胞总蛋白。中国仓鼠卵巢细胞被广泛应用于基因工程药物,如乙肝疫苗、人粒细胞集落刺激因子、促红细胞生成素、人组织型纤溶酶原激活剂等表达和生产的真核表达系统。基于CHO表达系统对蛋白翻译后修饰以及蛋白折叠、组装能力,使之广泛应用于重组蛋白和抗体等临床药物制备[Florian M Wurm.Production ofrecombinant protein therapeutics in cultivated mammalian cells[J].NatBiotechnol.2004 Nov;22(11):1393-8]。在抗体药物表达后,随即进行培养上清收集等下游纯化操作。而下游操作的设计主要是宿主细胞总蛋白(Host cell protein,HCP)、核酸(质粒、宿主基因组、RNA)、脂质,和产品相关杂质,可能导致机体产生抗HCP抗体,引起过敏反应,其中残留的有活性蛋白,诸如细胞因子,如转化生长因子β1可由CHO-K1分泌。有可能发生“佐剂效应”,引起机体对抗体药物产生抗体,影响药物治疗效果[Beatson R,Sproviero D,Maher J,Wilkie S,Taylor-Papadimitriou J,Burchell JM:Transforminggrowth factor-b1 is constitutively secreted by Chinese hamster ovary cellsand is functional inhuman cells[J].Biotechnol Bioeng 2011,108:2759-2764]。因此,HCP是生物制品的关键质量属性(CQA),FDA/EMEA/ICH等国际医药组织都对HCP的残留水平作出评价和限定。
Elisa为当下HCP检测的金标准,且2DE/western blot覆盖度结合elisa检测。为了提高检测灵敏度,对检测用的抗体要求较高,目前检测用的抗体主要来源于动物血清抗体,如兔和羊的多抗,而杜洪桥等介绍兔抗体识别HCP条带更多。但是兔抗血清制备过程中存在血量较低,人力、时间成本较高的问题。并且,由于血清含有大量类风湿性因子,过氧化物酶,抗原类似物等,影响Elisa检测效果的因素较多。
由于动物体内B细胞资源有限,而B细胞中抗体能够表达并分泌到血液中的只是小部分,多数可能并未转录或者翻译。这也在客观上造成了抗体识别度缺失。
发明内容
针对现有技术存在的问题,本发明提供了一种单链抗体扩展库的制备方法及其应用,目的在于解决现有技术中的一部分问题或至少缓解现有技术中的一部分问题。
本发明是这样实现的,一种单链抗体扩展库的制备方法,对抗体可变区分析,将不同重链、轻链可变区组合拼接,得到重链-重链、轻链-轻链、重链-轻链的抗体可变区,扩展获得非天然单链抗体扩展库。
进一步地,拼接方式包括:VH-Vκ,VH-Vλ,Vκ-Vκ,Vλ-Vλ,Vκ-Vλ,VH-VH。
进一步地,利用多重PCR技术,使用重链、轻链可变区多种引物组合扩增获得单链抗体扩展库。在抗体文库中,重链或轻链可变区存在多个引物对,分别将H链,或者κ或λ的各自多组F/R引物对集中到一起扩增,可以扩增出多于常规库容量的重链或轻链组。
进一步地,结合噬菌体展示库技术,筛选高亲和性抗体扩展库。
本发明还提供了一种单链抗体扩展库的制备方法在制备单链抗体扩展库中的应用。
进一步地,所述抗体来源于动物血清抗体。
进一步地,所述应用包括CHO HCP检测单链抗体扩展库的制备。
进一步地,将CHO上清HCP蛋白混合物整体作为抗原获取抗体,根据抗体RNA合成cDNA,对抗体可变区分析。
进一步地,将CHO上清HCP蛋白混合物整体作为抗原进行兔免疫获取抗体。
上清HCP抗原广,种类多:第一次质谱鉴定得到2697个蛋白质,形成1281个蛋白质组;第二次质谱鉴定得到2497个蛋白质,形成1202个蛋白质组。经过进一步筛选,最终从两次培养上清样本中鉴定出蛋白质1243个。分子量和等电点的分布趋势见图2和图3:培养上清蛋白质的分子量范围在7.4(Ribosomal protein S28,Q99PF7)~559.5(AHNAK,A0A3L7HVN8)kDa,主要分布在200kDa以内。等电点分布在3.9(ANP32A,A0A3L7HQ41)~11.1(Histone H2A type 1,G3HDT6),集中分布在4~10。
多重PCR:以抗体可变区cDNA文库为模板,使用重轻链多种引物组合扩增方式,也包括重链和不同轻链引物扩增产物的组合作为模板。见图19。
抗体扩展库:通过不同抗体可变区组合拼接方式,创造出常规重链-轻链(H-L)文库之外的,自然界不存在的重链-重链(H-H),轻链-轻链(κ-κ,λ-λ)的抗体可变区。进一步扩展抗体可变区的文库称之为抗体扩展库。见图18。
综上所述,本发明的优点及积极效果为:
一.常规单链抗体文库缺点:CHO上清HCP蛋白混合物整体作为抗原,蛋白种类不低于1243种,成分复杂。分子量大小介于7.4-559.5kDa之间,等电点介于3.9-11.1之间。理化性质多样。受免疫动物B细胞资源有限,制备常规单链抗体或者血清抗体对HCP的识别能力受到很大限制。见图2和图3。
二.单链抗体结构优点:单个抗体分子量约为30kDa,分子量显著小于抗血清中抗体150kDa分子量,在结合抗原的过程中,明显减少空间位阻,并避免抗血清中类风湿性因子,过氧化物酶,抗原类似物等的干扰,有效增加对HCP识别能力。见图14。
三.亲和筛选:常规血清来源抗体,在制备抗原亲和的抗体的过程中,洗脱条件极端,抗体成分失活严重。而单链抗体扩展库结合噬菌体展示技术,能够完全避免极端pH环境,筛选高亲和力抗体扩展库序列。
四.多重PCR:在抗体文库中,重链或轻链可变区存在多个引物对,分别将H链,或者κ或λ的各自多组F/R引物对集中到一起扩增,可以扩增出多于常规库容量的重链或轻链组。见图19。
五.建立非天然存在抗体扩展库:体内存在抗体形式为H-L完整抗体,将重链和重链(H-H),轻链和轻链(κ-κ,λ-λ)拼接成非天然单链抗体,体外表达非天然重组抗体扩展库,相较血清来源抗体对抗原的识别能力高,结合多重PCR技术可以无限量制备稳定的抗体扩展库,减少时间、物料投入,制备方便。见图18。
附图说明
图1:CHO中国仓鼠卵巢贴壁细胞(左图)与驯化后悬浮细胞(右图):左图贴壁细胞为梭形或者多边形,右侧悬浮细胞为球状或者葡萄球状,表示驯化正常。
图2:CHO HCP SDS-PAGE考染胶图:清晰条带为16条,分子量大小130-17kDa,与文献报道一致。
图3:细胞培养上清蛋白质的质谱检测总离子流图;A:第一次质谱检测;B:第二次质谱检测。
图4:上清蛋白质分子量及等电点分布:分子量跨度大,等电点从pH=4到pH=12,范围广。
图5:CHO HCP免疫新西兰大白兔效价:效价接近105
图6:兔外周血淋巴细胞密度梯度离心:可见中间白色单核细胞层,50ml血液,单核细胞得108个。
图7:多重PCR扩增抗体可变区重链(VH)、轻链(Vκ、Vλ)基因电泳图:多重PCR得到清晰重轻链总条带,使用重轻链单独引物扩增,可见重链1-6组,和轻链7-30组,大小为400bp左右。
图8:拼接后单链抗体ScFv电泳图:组装后的大小约900bp,据图可见,条带清晰。
图9:ScFv连接后载体转化平板图:设置阴性对照,转化效果较好。
图10:单克隆质粒Sfi1酶切电泳图:酶切后插入条带大致在1kbp,符合预期。
图11:H-H ScFv测序结果blast分析:重链鉴定(左图),框架区,可变区结构分析(右图)。
图12:L-L ScFv测序结果blast分析:轻链鉴定(左图),框架区,可变区结构分析(右图)。
图13:FR1:测序结果与原始数据匹配,重链轻链均能够在原始数据库中找到(该图片用于证明测序结果能够在原始数据中找到,图片的清晰度和完整度对技术方案的理解没有影响)。
图14:ScFv诱导表达WB验证(HA tag单抗):HA抗体可以识别诱导后的ScFv,分子量大小符合预期。
图15:HCP二维电泳银染(左图),血清抗体对HCP WB结果(右图):识别点有45.5%。
图16:HCP二维电泳银染(左图),重组ScFv对HCP WB结果(右图):识别点有60%,且点清晰。总覆盖度远高于血清抗体覆盖度。
图17:兔抗体可变区获得流程图:流程是:收集抗原,免疫,收取脾细胞,RNA抽提,免疫组库测序(该图中免疫组测序的表格截图主要用于对工艺步骤进行说明,该图片的清晰度和完整度对技术方案的理解没有影响)。
图18:非天然抗体可变区构建示意图:ScFv形式分别有VH-Vκ,VH-Vλ,Vκ-Vκ,Vλ-Vλ,Vκ-Vλ,VH-VH,共6种组合方式。
图19:多重PCR组合方式示意图:单独可变区PCR有6种引物配对方式。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明,各实施例及试验例中所用的设备和试剂如无特殊说明,均可从商业途径得到。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。本发明中,“约”指给定值或范围的10%以内,优选为5%以内。
本发明披露了一种单链抗体扩展库的制备方法及其应用。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。
实施例
CHO Culture medium HCP制备:将CHO
Figure BDA0003603590000000051
CD2无血清培养基培养的悬浮CHO(培养条件:7℃,5%CO2),见图1,收集细胞培养上清,转移到透析袋中,用PEG 6000于4℃吸水处理,当透析袋中的液体浓缩到合适体积后,将溶液转移至3kDa的超滤离心管中进行超滤浓缩,并用1×PBS缓冲液置换,最终将溶液浓缩至1mL。BCA法检测浓度,SDS-PAGE法电泳检测。见图2。
动物免疫:使用大白兔免疫,兔免疫程序为:兔子背部皮下,大腿肌肉注射1-10mg的弗氏佐剂乳化的HCP蛋白抗原,3-7次免疫,每次间隔2周至数天不等,方式和剂量等同于初免,每次免疫后1周兔耳静脉采血100ul,Elisa效价检测。最终免疫完成后,心脏采血,心脏采全血到抗凝管。免疫后抗血清效价为:在相同的稀释倍数下,空白对照OD450nm≤0.1,阴性对照OD450nm≤0.2,阳性对照≥1.0,未免疫血清OD450nm≤0.2。初免后一周效价≤500,7免后一周≥1×105。见图5。
磁珠法分选特异性淋巴B细胞,获得靶抗体RNA:
1.将经过Ficoll密度梯度离心后的单核细胞,见图6,1.0×108个细胞,用含有0.5%BSA的binding缓冲液重悬,冰上静置;
2.将细胞悬液与100ul含有Protein A磁珠悬液混合,室温颠倒孵育15min;
3.放置磁力架上,吸附5min,弃上清;
4.加入binding缓冲液,轻柔混匀后,再次磁力吸附5min,弃上清;
5.将吸附有膜表面IgG表达的淋巴细胞,抽提总RNA,免疫组库测序,获得靶抗体可变区序列;见图17。
提取总RNA的浓度750ng/ul,A260/280=1.95。合成抗体可变区cDNA文库的具体过程为:在PCR管中依次加入总RNA,RNase-free ddH2O,
Figure BDA0003603590000000052
ⅡBuffer,DTT,dNTP Mix,Oligo(dT)18
Figure BDA0003603590000000053
ⅡEnzyme逆转录酶,在25℃/5min,42℃/30min,85℃/5min,室温冷却后,加入RNA酶抑制剂,合成cDNA。
多重PCR制备重轻链抗体可变区组合,扩展抗原识别能力:根据免疫组库抗体可变区分析,获得重链H(2.2579×104种),轻链λ(3.0884×104种)/κ(7.2032×104种)可变区库。设计重链轻链高丰度可变区引物,重链结构是含有Sfi1酶切位点及其保护性碱基的F端引物,含有linker的R端引物,轻链结构是含有linker的F端引物,以及含有Sfi1酶切位点及其保护性碱基的F端引物。分别扩增6组重链和8组轻链产物,引物及扩增条件见下表。并将6条重链前后引物合成一管扩增,8对轻链引物合并一管扩增,见图19,分别胶回收重、轻链,见图7。6组重链和8组轻链,共14组,从14组中任意抽出两组(包括重链-重链,轻链-轻链,重链-轻链)等质量,拼接ScFv,由此可以获得抗体可变区文库的每一种重链,轻链组合,即重链-重链(H-H),轻链-轻链(κ-κ,λ-λ),重链-轻链,如图18。将自然条件下存在的抗体可变区种类2.3×105种,提到高到2.2×109种。形成CHO HCP抗体扩展库,能够大大提高抗体的识别数量和种类。
表1引物设计
Figure BDA0003603590000000061
使用Hieff
Figure BDA0003603590000000062
High-Fidelity DNA Polymerase进行双链扩增:抗体重链/轻链可变区引物,分别扩增抗体重链和轻链可变区。
表2扩增体系及程序
Figure BDA0003603590000000071
将6种重链与8种轻链,两两匹配组装,获得多样的ScFv抗体库,组装程序和体系如下:95℃/10min,58℃/1min,[95℃/30s-58℃/30s-72℃/45s]×35cycle,72℃/5min,4℃/∞。结果见图8。
表3抗体可变区组装程序
组分 体积
<u>VH-linker</u> 10ng
<u>Linker-VL</u> 10ng
VH for 1ul
VL rev 1ul
<u>Genestar</u> Super Mix 25ul
ddH<sub>2</sub>O 补齐至50ul
利用Sii1内切酶对组装后的ScFv,以及pComb3Xss载体,在50℃条件下酶切3h,分别对900bp ScFv和3400bp pComb3XSS大小条带进行胶回收,T4酶或者重组酶,12-16℃条件下,连接过夜。通过2500V,20ms间隔,1脉冲条件下,电转TG1感受态细胞,SOC培养基摇床震荡1h,涂布90ug/ml Amp平板。37℃过夜后,细胞刮刮下所有单克隆,见图9,图10,制备抗体可变区的DNA文库。并分析可变区,见图11,12,13。
表4酶切体系
酶切体系组分 体积
<u>ScFv</u>/pComb3Xss 1ug
10×Digest buffer 2ul
Sfi1限制性内切酶 1ul
ddH<sub>2</sub>O 16ul
ddH<sub>2</sub>O 补齐至20ul
表5连接体系
连接组分 体积
<u>ScFv</u>片段 70ng
线性化pComb3Xss 210ng
10×T4 <u>ligand</u> buffer 5ul
T4连接酶 4ul
总体积 50ul
结合噬菌体展示库技术,筛选高亲和性抗体扩展库:将重组后的单链抗体扩展库,结合辅助噬菌体包装成噬菌体,进行免疫淘洗5个循环,筛选亲和性高的噬菌体展示库抗体序列。
噬菌体库的制备:
使用2×YT培养基(含2%葡萄糖)培养含抗体文库TG1菌株,在37℃、225rpm震荡培养至菌液OD600nm为0.6;然后将菌液转移至含有90ug/ml氨苄抗生素浓度的2×YT液体培养基中,再加入数目为1×1011pfu的辅助噬菌体M13K07,于37℃,225rpm/min,60min震荡培养;4000rpm,30min离心,得到沉淀;更换培养液,37℃,225rpm/min,继续震荡培养12-16h;4000rpm/min,4℃,30min离心收集YT培养基中上清,并加入1/4体积PEG/NaCl溶液,混匀后冰浴1.5h;12000g,4℃离心30min,弃上清,沉淀重悬使用5ml 2×YT液体培养基,0.45um滤膜过滤,收集噬菌体滤过液;
淘洗方法:
使用pH=9.5碳酸盐缓冲液稀释HCP至8ug/ml,取2ml包被免疫管,4℃过夜包被,次轮及第三轮抗原包被浓度分别等倍下降至4ug/ml和2ug/ml;PBST洗涤后,加入5ml 5%脱脂牛奶,37℃封闭1h;加入5ml 5%脱脂牛奶稀释的噬菌体上清,室温孵育30min;向免疫管中再次加入封闭后的噬菌体上清,37℃孵育2h;弃上清液,将5ml含有1/1000吐温20的PBS清洗免疫管(后期数轮分别增加吐温20的比例为2/1000和5/1000),甩干;加入低pH=2.8的甘氨酸洗脱液,室温下225rpm/min震荡洗脱10min,并立即加入pH=9.0Tris-HCl中和缓冲液,将pH中和至7.4左右,混匀后收集洗脱液;向新的免疫管中加入对数生长期的TG1菌,并与含有噬菌体的洗脱液合并于37℃,150rpm/min,震荡培养1h,得到一级抗体库;在混合培养后的一级库中,取10ul,并用2×YT液体培养基分别稀释100倍、1000倍和10000倍,并取100ul分别涂布SOBAG固体平板,于30℃培养箱中过夜培养,并计算单克隆数量,确定噬菌体感染量;向一级抗体库中,加入终浓度为50ug/ml的氨苄抗生素,37℃,225rpm/min震荡培养1h;加入终浓度到2%的葡萄糖溶液,并加入1×1011pfu的辅助噬菌体,混匀后于37℃,150rpm/min震荡培养1h;4000rpm/min,4℃离心30min,取沉淀,并用200ml 2×YT液体培养基重悬,37℃,225rpm/min震荡培养过夜;并进行4轮筛选;
抗体扩展库的表达与验证:在TG1中,1mM IPTG诱导20℃,4h。收集菌体,超声破碎,过Ni柱层析ScFv。使用HA标签抗体,垂直电泳WB验证表达,见图14。并使用ScFv结合HCP 2D电泳分析,比较与血清抗体覆盖度。见图15,16。
图15:HCP二维电泳银染(左图),血清抗体对HCP WB结果(右图):识别点有45.5%。
图16:HCP二维电泳银染(左图),重组ScFv对HCP WB结果(右图):识别点有60%,且点清晰。总覆盖度远高于血清抗体覆盖度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
序列表
<110> 上海赛唐生物技术有限公司
<120> 一种单链抗体扩展库的制备方法及其应用
<160> 21
<170> SIPOSequenceListing 1.0
<210> 1
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggcccaggcg gccatgcagt crgtrgagga gtcc 34
<210> 2
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ggcccaggcg gccatgcagt cgttggagga gtcc 34
<210> 3
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ggcccaggcg gccatgcagt cagtgaagga gtcc 34
<210> 4
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ggcccaggcg gccatgcagt ctgtggagga gtcc 34
<210> 5
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ggcccaggcg gccatgcagg agcagctgaa ggag 34
<210> 6
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ggcccaggcg gccatgcaga tgwrctgggt ccgc 34
<210> 7
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
accagagccg ccgccgccgc taccaccacc accctgagga gacggtgac 49
<210> 8
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
agcggcggcg gcggctctgg tggtggtgga tcccaatttg tgctgactca g 51
<210> 9
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
agcggcggcg gcggctctgg tggtggtgga tcccagcctg tgctgactca g 51
<210> 10
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
agcggcggcg gcggctctgg tggtggtgga tcccagtttg tgctgactca g 51
<210> 11
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cgaattcggc cggcctggcc ctgtgacggt cagcwgg 37
<210> 12
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
cgaattcggc cggcctggcc ctgtgacggt caactgtg 38
<210> 13
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
cgaattcggc cggcctggcc ctgtgacggt cagctgtg 38
<210> 14
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
agcggcggcg gcggctctgg tggtggtgga tccgcccaag tgctgaccca g 51
<210> 15
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
agcggcggcg gcggctctgg tggtggtgga tccgaccctg tgatgaccca g 51
<210> 16
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
agcggcggcg gcggctctgg tggtggtgga tccgccgccg tgctgaccca g 51
<210> 17
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
agcggcggcg gcggctctgg tggtggtgga tccgaccctg tgctgaccca g 51
<210> 18
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
agcggcggcg gcggctctgg tggtggtgga tccgatgttg tgatgaccca g 51
<210> 19
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
cgaattcggc cggcctggcc ctgaggagac cgtgacc 37
<210> 20
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
ttctatgcgg cccaggcggc catgcag 27
<210> 21
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
tactccgaat tcggccggcc tggccc 26

Claims (9)

1.一种单链抗体扩展库的制备方法,其特征在于,对抗体可变区分析,将不同重链、轻链可变区组合拼接,得到重链-重链、轻链-轻链、重链-轻链的抗体可变区,扩展获得非天然单链抗体扩展库。
2.根据权利要求1所述的一种单链抗体扩展库的制备方法,其特征在于:拼接方式包括:VH-Vκ,VH-Vλ,Vκ-Vκ,Vλ-Vλ,Vκ-Vλ,VH-VH。
3.根据权利要求1所述的一种单链抗体扩展库的制备方法,其特征在于:利用多重PCR技术,使用重链、轻链可变区多种引物组合扩增获得单链抗体扩展库。
4.根据权利要求1所述的一种单链抗体扩展库的制备方法,其特征在于:结合噬菌体展示库技术,筛选高亲和性抗体扩展库。
5.如权利要求1所述的一种单链抗体扩展库的制备方法在制备单链抗体扩展库中的应用。
6.根据权利要求5所述的应用,其特征在于:所述抗体来源于动物血清抗体。
7.根据权利要求5所述的应用,其特征在于:所述应用包括CHO HCP检测单链抗体扩展库的制备。
8.根据权利要求7所述的应用,其特征在于:将CHO上清HCP蛋白混合物整体作为抗原获取抗体,根据抗体RNA合成cDNA,对抗体可变区分析。
9.根据权利要求8所述的应用,其特征在于:将CHO上清HCP蛋白混合物整体作为抗原进行兔免疫获取抗体。
CN202210409536.3A 2022-04-19 2022-04-19 一种单链抗体扩展库的制备方法及其应用 Pending CN114774405A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210409536.3A CN114774405A (zh) 2022-04-19 2022-04-19 一种单链抗体扩展库的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210409536.3A CN114774405A (zh) 2022-04-19 2022-04-19 一种单链抗体扩展库的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN114774405A true CN114774405A (zh) 2022-07-22

Family

ID=82431070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210409536.3A Pending CN114774405A (zh) 2022-04-19 2022-04-19 一种单链抗体扩展库的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114774405A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199593A (zh) * 2003-09-18 2011-09-28 西福根有限公司 连接目标序列的方法
WO2015133882A1 (ko) * 2014-03-07 2015-09-11 사회복지법인 삼성생명공익재단 ScFv 항체 라이브러리, 이의 제조방법 및 이를 이용한 ScFv 항체 스크리닝 방법
CN111850023A (zh) * 2020-07-15 2020-10-30 郑州师范学院 一种全人源噬菌体ScFv天然抗体文库的构建方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199593A (zh) * 2003-09-18 2011-09-28 西福根有限公司 连接目标序列的方法
WO2015133882A1 (ko) * 2014-03-07 2015-09-11 사회복지법인 삼성생명공익재단 ScFv 항체 라이브러리, 이의 제조방법 및 이를 이용한 ScFv 항체 스크리닝 방법
CN111850023A (zh) * 2020-07-15 2020-10-30 郑州师范学院 一种全人源噬菌体ScFv天然抗体文库的构建方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
顾庆: "单克隆抗体药物中CHO细胞宿主蛋白残留检测方法的建立与应用", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》, no. 02, pages 2 - 3 *

Similar Documents

Publication Publication Date Title
US11408095B2 (en) Generation of binding molecules
CN113150136B (zh) 新型冠状病毒n蛋白单克隆抗体的制备
CN109970858B (zh) Cd22单域抗体、核苷酸序列及试剂盒
CN110003335B (zh) Cd47单域抗体、核酸及试剂盒
CN107058235B (zh) 一种b细胞筛选方法及其在单克隆抗体制备中的应用
CN111018985A (zh) 针对牛血清白蛋白bsa的单域抗体的应用
CN112608386A (zh) 阻断异嗜性人IgM反应性的单克隆抗体及其制备方法
CN112608385B (zh) 一种犬脑钠肽(bnp)单克隆抗体的制备
CN114774405A (zh) 一种单链抗体扩展库的制备方法及其应用
CN108250293B (zh) 抗埃博拉病毒vp40蛋白单克隆抗体g7a6及其应用
US20230091895A1 (en) Nanobody for pcsk9 and application thereof
CN111057154B (zh) 基于驼源Fc片段的免疫原的制备及应用
CN113999306B (zh) 一种获得识别空间构象表位抗体的方法
CN115925947B (zh) 一种亲和力成熟方法及抗人pd-l1单域抗体的亲和力成熟
CN113173992B (zh) 一种白细胞抗原结合多肽
CN114085289B (zh) 一种半合成单域抗体库的构建方法及其应用
CN111647083B (zh) 一种重组小鼠抗人血幼素单克隆抗体、制备方法和应用
CN110003334B (zh) 多肽、cd19单域抗体及其制备方法、核苷酸序列及试剂盒
CN117143832B (zh) 一种抗虫蛋白Cry 1Ah杂交瘤细胞株及其产生的抗体和应用
CN116903732A (zh) 一种人源SARS-CoV-2单克隆抗体的制备及其应用
JP3858945B2 (ja) ハイブリドーマの選抜方法
CN116041501A (zh) 一种高灵敏度甘胆酸单链抗体及其筛选方法与应用
Zanders et al. Biotherapeutics
CN116836298A (zh) 重组单域抗体及其构建方法
WO2023104172A1 (zh) 一种纳米抗体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination