CN114773056A - 一种npo mlcc用陶瓷材料的助烧剂、陶瓷材料及制备方法 - Google Patents

一种npo mlcc用陶瓷材料的助烧剂、陶瓷材料及制备方法 Download PDF

Info

Publication number
CN114773056A
CN114773056A CN202210506570.2A CN202210506570A CN114773056A CN 114773056 A CN114773056 A CN 114773056A CN 202210506570 A CN202210506570 A CN 202210506570A CN 114773056 A CN114773056 A CN 114773056A
Authority
CN
China
Prior art keywords
ceramic material
sintering aid
sintering
npo
mlcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210506570.2A
Other languages
English (en)
Other versions
CN114773056B (zh
Inventor
黄正信
李英杰
林文忠
詹振豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lizhi Electronics Nantong Co ltd
Original Assignee
Lizhi Electronics Nantong Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lizhi Electronics Nantong Co ltd filed Critical Lizhi Electronics Nantong Co ltd
Priority to CN202210506570.2A priority Critical patent/CN114773056B/zh
Publication of CN114773056A publication Critical patent/CN114773056A/zh
Application granted granted Critical
Publication of CN114773056B publication Critical patent/CN114773056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种NPO MLCC用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂、NPO MLCC用陶瓷材料及制备方法。助烧剂包括以下重量百分比的成分:SiO23~4%、MnCO310~15%、LiCO35~10%、Nb2O515~20%、CaCO325~30%、SrCO325~30%、TiO21~5%和ZnO 1~5%。将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3粉体与助烧剂粉体按照不同比例混合、球磨、烘干得到混合粉末;在所述混合粉末中加入黏结剂,造粒、过筛、成型、涂覆铜电极、排胶后,于氮气气氛910~1040℃的温度下烧结得到NPO MLCC用陶瓷材料。本发明的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的烧结温度降低至1000℃,可与铜内电极进行共烧;制备出的陶瓷材料的宽温稳定性能好,介电损失低,体系不含鉛,具有良好的应用前景。

Description

一种NPO MLCC用陶瓷材料的助烧剂、陶瓷材料及制备方法
技术领域
本发明涉及一种NPO MLCC(片式多层陶瓷电容器,Multi-layer CeramicCapacitors)用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂、包含该助烧剂的NPO MLCC用陶瓷材料及其制备方法,属于陶瓷电容器领域。
背景技术
随着终端设备轻薄化和功能完善化的市场需求,目前以陶瓷为基础的电子零组件发展趋势主要有:(1)往更小尺寸、更多层数及更大单位体积电容值发展,以满足电子产品追求轻薄短小及增加功能密度的发展趋势;然而高容积层陶瓷电容器的发展趋势,不是如何增加电容值,而是从降低介电厚度着手;(2)往模块化发展,将主动组件、小型被动组件整合于单一模块中,以减少被动组件的数目及面积,降低成本,并提高性能表现与可靠度;(3)往高频化化发展,由于电子产品所使用的带宽愈来愈高,相同的,被动组件亦须符合高频电子产品的需求。
其中NPO为不受温度影响的电容器,在温度-55℃~+125℃范围内的电容温度系数介于+30ppm~-30ppm之间。NPO电容值较小,最大为1μF左右,最小可低于1pF,NPO通常在高频范围使用。在制造高频积层结构组件时,内导体金属必须能与陶瓷介电材料共烧,而这限制了所能选用的内导体金属材料。为了符合在高频下具有高质量因素(Quality Factor,Q)的需求,选择高导电性电极材料并搭配积层陶瓷组件结构,制作成表面平整的高致密金属膜,是维持其高频特性的基本方法。银与金的导电性最好,但价格昂贵,一般常用铜与镍。此外,虽然采用纯银作为内电极为最佳选择,其有着最低的电阻值,但在高湿以及高偏压(Bias)下,易造成电子迁移(Electromigration)以及与焊锡接合时易造成SolderLeaching效应。
(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3具有高介电常数(εr)、低损耗(tanδ)和低谐振频率温度系数(τf),可以用作微波频率下的介电谐振器,介电谐振器可用于微波滤波器和微波集成电路中的振荡稳定。用于微波的介电材料应具有合适的介电常数(εr)25~100、低介电损失(tanδ)<6E-04、高质量因子>10000和低的谐振频率温度系数(τf)0±20ppm/℃;但(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷烧结温度较高(>1350℃),在实际应用上必须使用镍(熔点1455℃)或银钯电极(熔点1400℃),而使用镍或银钯电极却会造成Q值下降。以铜作为内电极具有低价格优势、高传导性、无电迁移以及较不会造成Solder Leaching效应。因此如何降低烧结温度(<1050℃)使其与铜电极共烧是亟待解决的问题。
发明内容
本发明的目的在于提供一种NPO MLCC用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂、NPO MLCC用陶瓷材料及其制备方法,以解决现有技术中(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料烧结温度过高无法与铜电极共烧的问题。
为实现上述目的,本发明采用如下技术方案:
一种NPO MLCC用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂,所述陶瓷材料为(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3,所述助烧剂包括以下重量百分比的成分:SiO2 3~4%、MnCO310~15%、LiCO3 5~10%、Nb2O515~20%、CaCO3 25~30%、SrCO3 25~30%、TiO2 1~5%和ZnO1~5%。
在一优选实施例中,所述助烧剂包括以下重量百分比的成分:SiO2 3.3%、MnCO311.2%、LiCO3 7.4%、Nb2O5 16.5%、CaCO3 27.4%、SrCO3 28.2%、TiO2 1.7%和ZnO4.3%。
在一优选实施例中,所述助烧剂包括以下重量百分比的成分:SiO2 3%、MnCO315%、LiCO3 5%、Nb2O5 15%、CaCO3 30%、SrCO330%、TiO2 1%和ZnO 1%。
在一优选实施例中,所述助烧剂包括以下重量百分比的成分:SiO2 4%、MnCO310%、LiCO3 10%、Nb2O5 20%、CaCO3 25%、SrCO325%、TiO2 1%和ZnO 5%。
本发明还提供了一种NPO MLCC用陶瓷材料,包含(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基体材料和前述的助烧剂,所述助烧剂占陶瓷材料的重量百分比为1-5%。
优选地,所述助烧剂占陶瓷材料的重量百分比为3%。
其中,所述陶瓷材料在温度-55℃~125℃范围内的容温变化率≤0.003%,介电常数为26.4~33.4,介电损失为0.0005~0.01,绝缘阻抗为5E+07~4E+13。
本发明还提供了一种NPO MLCC用陶瓷材料的制备方法,包括:
将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3粉体与助烧剂粉体按照前述比例混合、球磨、烘干得到混合粉末;
在所述混合粉末中加入黏结剂,造粒、过筛、成型、涂覆铜电极、排胶后,于氮气气氛950~1000℃的温度下烧结得到NPO MLCC用陶瓷材料。
本发明所达到的有益技术效果:通过将本发明的助烧剂添加至(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料,能够成功地将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的烧结温度降低至低于1000℃,可在氮气气氛下实现与纯铜进行共烧;制备出的陶瓷材料的温度稳定性在-55℃~125℃范围内满足容温变化率≤0.003%,介电常数最大可以达到>32,介电损失最小可以达到<0.0006,绝缘阻抗可以达到>1E+13,体系不含鉛,具有良好的应用前景。
附图说明
图1是实施例1中助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3陶瓷样品在烧结温度950℃下烧成的XRD图谱;
图2是实施例2中助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3陶瓷样品在烧结温度1000℃下烧成的XRD图谱;
图3是分别在烧结温度950℃(实施例1)、1000℃(实施例2)下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的烧结密度随助烧剂含量变化图;
图4是分别在烧结温度950℃(实施例1)、1000℃(实施例2)下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的烧结收缩率随助烧剂含量变化图;
图5是分别在烧结温度950℃(实施例1)、1000℃(实施例2)下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的绝缘阻抗随助烧剂含量变化图;
图6是分别在烧结温度950℃(实施例1)、1000℃(实施例2)下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的介电常数随助烧剂含量变化图;
图7是分别在烧结温度950℃(实施例1)、1000℃(实施例2)下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的介电损失随助烧剂含量变化图;
图8是实施例1中助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度1000℃下烧成的容温变化率图;
图9是实施例1中不同助烧剂含量的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度950℃下烧成的SEM图,其中(a)不含助烧剂,(b)助烧剂含量1wt%,(c)助烧剂含量3wt%,(d)助烧剂含量5wt%;
图10是实施例2中不同助烧剂含量的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度1000℃下烧成的SEM图,其中(a)不含助烧剂,(b)助烧剂含量1wt%,(c)助烧剂含量3wt%,(d)助烧剂含量5wt%;
图11是实施例3中助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度1000℃下烧成的容温变化率图;
图12是实施例4中助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度1000℃下烧成的容温变化率图。
具体实施方式
下面结合具体实施例对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
在本实施例中,使用的助烧剂成分及重量百分比如下:SiO23.3%、MnCO3 11.2%、LiCO3 7.4%、Nb2O5 16.5%、CaCO3 27.4%、SrCO3 28.2%、TiO2 1.7%和ZnO 4.3%。
将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3粉体与上述助烧剂粉体按照分别不同比例:助烧剂含量为0wt%、1wt%、3wt%、5wt%,进行混合、球磨、烘干得到混合粉末;
在得到的混合粉末中加入黏结剂造粒,造粒完成后使粉料过200目筛,成型、涂覆铜电极、排胶后,于氮气气氛中950℃的温度下烧结并保温2h,得到助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的陶瓷材料。
实施例2
在本实施例中,助烧剂成分及重量百分比同实施例1。
将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3粉体与上述助烧剂粉体按照分别不同比例:助烧剂含量为0wt%、1wt%、3wt%、5wt%,进行混合、球磨、烘干得到混合粉末;
在得到的混合粉末中加入黏结剂造粒,造粒完成后使粉料过200目筛,成型、涂覆铜电极、排胶后,于氮气气氛中1000℃的温度下烧结并保温2h,得到助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的陶瓷材料。
对实施例1和实施例2制备的各陶瓷材料试样进行微波介电性能、X射线衍射分析(XRD)和扫描电镜分析(SEM)测试。
图1为不同助烧剂含量的陶瓷样品在烧结温度950℃下烧成的XRD图谱,图2为实施例2制备的不同助烧剂含量的陶瓷样品在烧结温度1000℃下烧成的XRD图谱。从图1和图2中可以看出,即使助烧剂含量增加到5%,在950℃至1000℃的温度下烧成的陶瓷也不会产生二次相,因此,助烧剂的加入不会影响(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3陶瓷相结构或导致杂相生成。
图4是不同烧结温度下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的烧结收缩率随助烧剂含量变化图。由图中可以看出,与不含助烧剂相比,在950℃和1000℃的温度下,添加助烧剂均可以有效的提高陶瓷体烧结收缩率,且陶瓷收缩率随着助烧剂含量的增加呈上升趋势,当助烧剂含量增加到3%-5%时,陶瓷收缩率几乎达到最大。
图3为不同烧结温度下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的烧结密度随助烧剂含量变化曲线图。从图3可以看出,其变化趋势与烧结收缩率曲线基本一致,与不含助烧剂相比,助烧剂的添加可以明显提高陶瓷体烧结密度,且烧结密度随着助烧剂含量的增加呈上升趋势,当助烧剂含量增加到3%或更多,烧结密度趋向平缓甚至有变小的趋势。
图9和图10分别是不同助烧剂含量的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度950℃、1000℃下烧成的SEM图。其中,图9(a)和图10(a)是不含助烧剂的陶瓷体的SEM图,图9(b-d)和图10(b-d)是含有助烧剂的陶瓷体的SEM图。从图9和图10均可以看出,不含助烧剂的陶瓷体不致密,而添加助烧剂后的陶瓷体密度显著提升。
图5是不同烧结温度制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的绝缘阻抗随助烧剂含量变化图。由图5可以看出,与不含助烧剂的陶瓷体相比,助烧剂的添加可以提高陶瓷体的绝缘阻抗,在1000℃的烧结温度下,绝缘阻抗可以达到>1E+13。
图6是不同烧结温度下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的介电常数随助烧剂含量变化图。由图6可以看出,与不含助烧剂的陶瓷体相比,助烧剂的添加可以显著提高陶瓷体的介电常数,当助烧剂含量在3%-5%时,介电常数达到最大(>32)。
图7是不同烧结温度下制备的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的介电损失随助烧剂含量变化图。从图7可以看出,与不含助烧剂的陶瓷体相比,助烧剂的添加可以显著降低陶瓷体的介电损失,当烧结温度为950℃、助烧剂含量为3%时,介电损失最小(<0.0006)。
图8是助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度1000℃下烧成的容温变化率图。从图中可以看出,添加助烧剂的陶瓷体TCC符合NPO规范,在温度-55℃~125℃范围内的容温变化率≤0.003%。
实施例3
在本实施例中,助烧剂由以下重量百分比的成分构成:SiO2 3%、MnCO3 15%、LiCO3 5%、Nb2O5 15%、CaCO3 30%、SrCO3 30%、TiO21%和ZnO 1%。
将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3粉体与上述助烧剂粉体按照分别不同比例:助烧剂含量为0wt%、1wt%、3wt%、5wt%,进行混合、球磨、烘干得到混合粉末;
在得到的混合粉末中加入黏结剂造粒,造粒完成后使粉料过200目筛,成型、涂覆铜电极、排胶后,于氮气气氛中1000℃的温度下烧结并保温2h,得到助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的陶瓷材料。
实施例4
在本实施例中,助烧剂由以下重量百分比的成分构成:SiO2 4%、MnCO3 10%、LiCO3 10%、Nb2O5 20%、CaCO3 25%、SrCO3 25%、TiO2 1%和ZnO 5%。
将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3粉体与上述助烧剂粉体按照分别不同比例:助烧剂含量为0wt%、1wt%、3wt%、5wt%,进行混合、球磨、烘干得到混合粉末;
在得到的混合粉末中加入黏结剂造粒,造粒完成后使粉料过200目筛,成型、涂覆铜电极、排胶后,于氮气气氛中1000℃的温度下烧结并保温2h,得到助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的陶瓷材料。
对实施例3和实施例4烧成的各陶瓷材料试样进行微波介电性能测试,测试结果见表1。
表1实施例3与实施例4对应陶瓷样品电性能
Figure BDA0003637546910000101
从表1可以看出,在实施例3和实施例4组成范围中,与不含助烧剂的陶瓷相比,添加助烧剂可以提高陶瓷体烧结密度与烧结收缩率,且皆可以有效的提高介电常数,降低介电损失并提高绝缘阻抗。
图11和图12是实施例3和实施例4助烧剂含量分别为0wt%、1wt%、3wt%、5wt%的(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料在烧结温度1000℃下烧成的容温变化率图。从图中可以看出,TCC在实施例3符合NPO规范,而实施例4则需添加助烧剂至5wt%才符合NPO规范。
以上已以较佳实施例公布了本发明,然其并非用以限制本发明,凡采取等同替换或等效变换的方案所获得的技术方案,均落在本发明的保护范围内。

Claims (8)

1.一种NPO MLCC用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂,其特征在于,所述助烧剂包括以下重量百分比的成分:SiO2 3~4% 、MnCO3 10~15 %、LiCO3 5~10 %、Nb2O5 15~20 %、 CaCO3 25~30 %、SrCO3 25~30 %、TiO2 1~5 %和ZnO 1~5 %。
2.根据权利要求1所述的一种NPO MLCC用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂,其特征在于,所述助烧剂包括以下重量百分比的成分:SiO2 3.3%、MnCO3 11.2%、LiCO37.4%、Nb2O5 16.5%、 CaCO3 27.4%、SrCO328.2%、TiO2 1.7%和ZnO 4.3%。
3.根据权利要求1所述的一种NPO MLCC用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂,其特征在于,所述助烧剂包括以下重量百分比的成分:SiO2 3%、MnCO3 15%、LiCO3 5%、Nb2O5 15%、 CaCO3 30%、SrCO3 30%、TiO2 1%和ZnO 1%。
4.根据权利要求1所述的一种NPO MLCC用(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基陶瓷材料的助烧剂,其特征在于,所述助烧剂包括以下重量百分比的成分:SiO2 4% 、MnCO3 10%、LiCO310%、Nb2O5 20%、 CaCO3 25%、SrCO325%、TiO2 1%和ZnO 5%。
5.一种NPO MLCC用陶瓷材料,其特征在于,包含 (Ca0.6Sr0.4)(Zr0.96Ti0.04)O3基体材料和权利要求1-4任一项所述的助烧剂,所述助烧剂占陶瓷材料的重量百分比为1-5%。
6.根据权利要求5所述的一种NPO MLCC用陶瓷材料,其特征在于,所述助烧剂占陶瓷材料的重量百分比为3%。
7.根据权利要求5所述的一种NPO MLCC用陶瓷材料,其特征在于,所述陶瓷材料在温度-55oC~125oC范围内的容温变化率≤0.003%,介电常数为26.4~33.4,介电损失为0.0005~0.01,绝缘阻抗为5E+07~4E+13。
8.权利要求5所述的NPO MLCC用陶瓷材料的制备方法,其特征在于,包括:
将(Ca0.6Sr0.4)(Zr0.96Ti0.04)O3粉体与助烧剂粉体按照权利要求5所述比例混合、球磨、烘干得到混合粉末;
在所述混合粉末中加入黏结剂,造粒、过筛、成型、涂覆铜电极,排胶后,于氮气气氛950~1000℃的温度下烧结得到NPO MLCC用陶瓷材料。
CN202210506570.2A 2022-05-11 2022-05-11 一种npo mlcc用陶瓷材料的助烧剂、陶瓷材料及制备方法 Active CN114773056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210506570.2A CN114773056B (zh) 2022-05-11 2022-05-11 一种npo mlcc用陶瓷材料的助烧剂、陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210506570.2A CN114773056B (zh) 2022-05-11 2022-05-11 一种npo mlcc用陶瓷材料的助烧剂、陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN114773056A true CN114773056A (zh) 2022-07-22
CN114773056B CN114773056B (zh) 2023-03-24

Family

ID=82436821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210506570.2A Active CN114773056B (zh) 2022-05-11 2022-05-11 一种npo mlcc用陶瓷材料的助烧剂、陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN114773056B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713051A (en) * 1969-12-11 1973-01-23 Gen Electric Co Ltd Microwave devices
JPS61256775A (ja) * 1985-05-10 1986-11-14 Murata Mfg Co Ltd 高周波用誘電体磁器組成物
US5164882A (en) * 1990-12-17 1992-11-17 Kabushiki Kaisha Toshiba Ceramic capacitor
US5561090A (en) * 1994-07-19 1996-10-01 Korea Institute Of Science And Technology Dielectric ceramic composition for high frequencies and method for preparation of the same
JP2002080279A (ja) * 2000-03-30 2002-03-19 Tdk Corp 誘電体磁器組成物の製造方法および電子部品の製造方法
CN1341575A (zh) * 2000-08-31 2002-03-27 Mra实验室股份有限公司 含有硼硅酸钡锂助熔剂的钛酸镁锌粉末和由其制成的多层陶瓷cog电容器
US20020058580A1 (en) * 2000-08-31 2002-05-16 Maher Galeb H. High dielectric constant very low fired X7R ceramic capacitor, and powder for making
US20120057265A1 (en) * 2010-09-03 2012-03-08 Sfi Electronics Technology Inc. Zinc-oxide surge arrester for high-temperature operation
TW201321333A (zh) * 2011-11-21 2013-06-01 Univ Nat Cheng Kung 燒結助劑、被動元件、以及介電材料之燒結方法
CN104844204A (zh) * 2015-04-15 2015-08-19 厦门万明电子有限公司 一种高介微波陶瓷介质材料、制备方法及用途
CN113185285A (zh) * 2021-04-25 2021-07-30 山东国瓷功能材料股份有限公司 一种陶瓷介质材料及其独石电容器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713051A (en) * 1969-12-11 1973-01-23 Gen Electric Co Ltd Microwave devices
JPS61256775A (ja) * 1985-05-10 1986-11-14 Murata Mfg Co Ltd 高周波用誘電体磁器組成物
US5164882A (en) * 1990-12-17 1992-11-17 Kabushiki Kaisha Toshiba Ceramic capacitor
US5561090A (en) * 1994-07-19 1996-10-01 Korea Institute Of Science And Technology Dielectric ceramic composition for high frequencies and method for preparation of the same
JP2002080279A (ja) * 2000-03-30 2002-03-19 Tdk Corp 誘電体磁器組成物の製造方法および電子部品の製造方法
CN1341575A (zh) * 2000-08-31 2002-03-27 Mra实验室股份有限公司 含有硼硅酸钡锂助熔剂的钛酸镁锌粉末和由其制成的多层陶瓷cog电容器
US20020058580A1 (en) * 2000-08-31 2002-05-16 Maher Galeb H. High dielectric constant very low fired X7R ceramic capacitor, and powder for making
US20120057265A1 (en) * 2010-09-03 2012-03-08 Sfi Electronics Technology Inc. Zinc-oxide surge arrester for high-temperature operation
TW201321333A (zh) * 2011-11-21 2013-06-01 Univ Nat Cheng Kung 燒結助劑、被動元件、以及介電材料之燒結方法
CN104844204A (zh) * 2015-04-15 2015-08-19 厦门万明电子有限公司 一种高介微波陶瓷介质材料、制备方法及用途
CN113185285A (zh) * 2021-04-25 2021-07-30 山东国瓷功能材料股份有限公司 一种陶瓷介质材料及其独石电容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林道谭: "高频铜内电极片式陶瓷电容器用(Sr,Ca)(Zr,Ti)O3材料的研究", 《中国优秀硕士学位论文全文数据库》 *

Also Published As

Publication number Publication date
CN114773056B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US6762925B2 (en) Ceramic electronic component and method for making the same
US7567426B2 (en) Polymer-ceramic dielectric composition, embedded capacitor using the dielectric composition and printed circuit board having the capacitor embedded therein
EP0851444A2 (en) Ceramic composition and multilayer ceramic capacitor made therefrom
JP4859593B2 (ja) 積層セラミックコンデンサおよびその製法
JP3223199B2 (ja) 多層セラミック部品の製造方法および多層セラミック部品
WO2009061627A1 (en) Lead and cadmium free, low temperature fired x7r dielectric ceramic composition and method of making
CN114773060A (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
JP6596547B2 (ja) 積層セラミックコンデンサ
CN106631002A (zh) Mg‑Zn‑Ti基射频多层陶瓷电容器用介质材料及其制备方法
CN114773056B (zh) 一种npo mlcc用陶瓷材料的助烧剂、陶瓷材料及制备方法
US6335301B1 (en) Dielectric ceramic composition, electric device and production method thereof
JP7209072B2 (ja) 積層セラミックコンデンサ
US6387835B2 (en) Dielectric ceramic composition, ceramic capacitor using the composition and method of producing thereof
US8343883B2 (en) Dielectric ceramic composition and electronic component using the same
JP6766225B2 (ja) 積層セラミックコンデンサ
KR100444225B1 (ko) 유전체 자기 조성물, 이를 이용한 자기 커패시터 및 그 제조방법
JP2006104044A (ja) 誘電材料およびこれを調製する方法
JP6595670B2 (ja) 積層セラミックコンデンサ
KR100444221B1 (ko) 유전체 자기 조성물, 이를 이용한 자기 커패시터 및 그 제조방법
CN1634798A (zh) 抗还原热补偿陶瓷介质材料及其制成的陶瓷电容器
JP3978689B2 (ja) 低温焼成磁器組成物、及びこれを用いたマイクロ波部品
CN115010488B (zh) 一种低烧低介高q高稳定电容器用微波瓷料
JP6980873B2 (ja) 積層セラミックコンデンサ
KR100452817B1 (ko) 유전체 자기 조성물, 이를 이용한 자기 커패시터 및 그 제조방법
KR100444220B1 (ko) 유전체 자기 조성물, 이를 이용한 자기 커패시터 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant