CN114768808B - 碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途 - Google Patents

碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途 Download PDF

Info

Publication number
CN114768808B
CN114768808B CN202210588259.7A CN202210588259A CN114768808B CN 114768808 B CN114768808 B CN 114768808B CN 202210588259 A CN202210588259 A CN 202210588259A CN 114768808 B CN114768808 B CN 114768808B
Authority
CN
China
Prior art keywords
photo
fenton catalyst
catalyst
fenton
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210588259.7A
Other languages
English (en)
Other versions
CN114768808A (zh
Inventor
程治良
徐倩
晏超群
魏泽军
杜安珂
李纲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Technology
Original Assignee
Chongqing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Technology filed Critical Chongqing University of Technology
Priority to CN202210588259.7A priority Critical patent/CN114768808B/zh
Publication of CN114768808A publication Critical patent/CN114768808A/zh
Application granted granted Critical
Publication of CN114768808B publication Critical patent/CN114768808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于环境化学工程技术领域,具体涉及碳量子点掺杂铁基氧化物的光芬顿催化剂及其制备方法和用途。本发明的技术方案是碳量子点掺杂铁基氧化物的光芬顿催化剂的制备方法,包括如下步骤:将铁盐缓慢加入到有机溶剂中,在强磁搅拌下加入去离子水,形成透明混合溶液后加入有机酸盐和碳源,溶解后置于高压釜中,在100~350℃加热2~24小时;冷却至室温,离心,分别用乙醇和蒸馏水洗涤若干次;干燥,得到到黑红色的粉末,即为光芬顿催化剂。本发明通过简单的一锅水热法可制备出CQDs掺杂的铁基氧化物复合光芬顿催化剂。该方法具有制备工艺简单,原材料来源广泛、廉价,合成的复合光芬顿催化剂活性高,还可通过磁性与液相废水快速分离等优点,具有较好的应用前景。

Description

碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途
技术领域
本发明属于环境化学工程技术领域,具体涉及碳量子点掺杂铁基氧化物的光芬顿催化剂及其制备方法和用途。
背景技术
由于工农业生产等人类活动,废水排放量日益增加,其中印染废水、垃圾渗滤液、化工废水等有机难降解废水受到普遍关注,因其中含有大量有毒、致癌、致突变物质,对其进行有效处理迫在眉睫1。目前,有机废水的处理方法主要有化学、生物、物理法,其中隶属于化学法的高级氧化技术,通过产生强氧化性的·OH等自由基,可将难降解有机物降解甚至彻底矿化为无毒的CO2和H2O,是难降解废水预处理和深度处理的有效技术,也是废水处理领域的研究热点。高级氧化技术中的光芬顿技术,由于可以利用光照加快H2O2催化氧化分解产生·OH,反应速率比传统的芬顿/类芬顿技术大大提高,更可以克服传统芬顿技术的Fe2+流失,不易重复利用、易于造成二次污染等缺点,还可以利用太阳能而降低处理成本,成为近年来水处理领域重点研究的技术2。此外,光芬顿技术还具有方法简单、适用废水pH范围宽、反应速率快,操作简便、污染物降解无选择性等优点。
此过程主要涉及以下反应:
H2O2+hν→·OH (1)
Fe3++hν+H2O→Fe2++·OH+H+ (2)
Fe2++H2O2→Fe3++·OH+OH- (3)
HO+HO1O2+H2O2 (6)
1O2+hν+污染物→中间产物→CO2+H2O (7)
·OH+污染物→中间产物→CO2+H2O (8)
该技术发展的重要关键在于研发催化性能好、易于与液相分离的高效光芬顿催化剂。铁基光芬顿催化剂由于处理效果好、成本低、易获得等优点而广受关注3。然而铁基光芬顿催化剂仍然存在如下问题3
第一、纳米级铁基光芬顿催化剂具有较高的H2O2催化氧化活性,但存在与废水分离困难,无法重复使用;
第二、铁基光芬顿催化剂的可见光响应范围较窄,直接用于吸收利用太阳光活性较低;比如α-Fe2O3的带隙宽度约为2.0eV,理论上需要<620nm的光照才能激发它产生光芬顿活性;高于620nm的可见光和红外线光源则无法利用。
碳量子点(CQDs)是一类重要的纳米碳材料,由于其比表面积大、无毒、生物相容性好、水溶性好、化学稳定性可靠、导电性好、独特的转换光致发光特性,使其具有良好的应用前景4。其次,光激发CQDs具有良好的接受电子和供电子特性,这使其成为构建具有高效分离光生空穴和电子的纳米复合光催化剂的理想光敏剂4-6。此外,CQDs出色的转换光致发光特性,其在长波长(近红外光,800~1000nm)的激发下可产生350~750nm的短波发射光4,5。因此,CQDs常用于修饰纳米光催化剂,扩展其可见光活性响应范围4,6,7。因此将铁基催化剂与CQDs结合,以制备一种可见光范围响应宽的光芬顿催化剂,并将其应用于难降解有机废水处理,是非常好的材料设计思路。
目前在催化剂中复合CQDs的方法主要采取两步法,首先分别制备出CQDs和催化剂,然后利用水热法或者电化学刻蚀法等技术将CQDs与催化剂复合在一起4,5,8,存在复合不均匀、制备步骤繁琐、大量使用有机药剂、催化剂制备成本高等缺点。
发明内容
本发明要解决的技术问题是为提供一种制备工艺简单,原材料来源广泛、廉价的光芬顿催化剂。
本发明的技术方案是碳量子点掺杂铁基氧化物的光芬顿催化剂的制备方法,包括如下步骤:包括如下步骤:将铁盐加入到有机溶剂中,在10~500rpm搅拌速度下加入去离子水,形成透明混合溶液后加入有机酸盐和碳源,溶解后置于高压釜中,在100~350℃加热2~24小时;冷却至室温,离心,分别用乙醇和蒸馏水洗涤若干次;干燥,得到黑红色的粉末,即为光芬顿催化剂;所述有机酸盐为甲酸钠、乙酸钠、乙酸钾、丙酸钠或丙酸钾;所述铁盐为硫酸铁、氯化铁或硝酸铁;所述有机溶剂为甲醇、乙醇、丙醇、异丙醇、乙醚、丙酮或石油醚;所述碳源为葡萄糖、果糖或蔗糖。
具体的,所述原料用量为:铁盐1~50.5mmol、有机溶剂0.1~5.0mol、0.09~5mol去离子水、5~100mmol有机酸盐、0.1~100mmol的碳源。
优选的,所述原料用量为:铁盐1~25mmol、有机溶剂0.1~1mol、0.1~1.36mol去离子水、7~75mmol有机酸盐、2~60mmol的碳源。
优选的,在150℃~200℃加热。
其中,所述干燥温度为20~200℃。
优选的,干燥温度为50~100℃。
其中,所述高压釜内衬为聚四氟乙烯。
本发明还提供了所述制备方法制备得到光芬顿催化剂。
本发明还提供了所述光芬顿催化剂在治理水污染中的用途。
进一步的,所述光芬顿催化剂在治理罗丹明B和/或抗生素污染中的用途。
进一步的,所述抗生素为四环素。
本发明的有益效果:
本发明可克服以上缺点,通过简单的一锅水热法可制备出CQDs掺杂的铁基氧化物复合光芬顿催化剂。该方法具有制备工艺简单,原材料来源广泛、廉价,合成的复合光芬顿催化剂活性高,还可通过磁性与液相废水快速分离等优点,具有较好的应用前景。本发明提出通过一锅水热法制备碳量子-铁基氧化物复合光芬顿催化剂,并将其用于降解难降解有机废水处理,具有如下优点:(1)本方法制备的碳量子-铁基氧化物复合光芬顿催化剂相较于未复合量子点的铁基氧化物催化剂,催化H2O2氧化性能能有明显提升,制备方法具有工艺简单,成本低、易于大规模工业化生产的优点。(2)通过加入碳源制备的碳量子点具有还原性,能够将部分三价铁还原,使催化剂具有磁性,在完成污水处理过程后,能够进行磁回收,可以有效解决纳米催化剂难以回收的缺点。(3)可利用可见光进行光芬顿氧化反应,降低废水处理成本。
附图说明
图1、α-Fe2O3/CQDs的x射线粉末衍射(XRD)光谱。
图2、α-Fe2O3/CQDs的x光射线电子(XPS)能谱。
图3、α-Fe2O3 TEM图(a,b)以及α-Fe2O3/CQDs的TEM图(c,d)。
图4、不同催化剂对罗丹明b的去除率(a)以及不同反应的速率常数(b)。
图5、磁回收催化剂,铁基-碳量子点催化剂回收前(a)回收后(b)和α-Fe2O3催化剂回收前(c)回收后(d)。
图6、铁基-碳量子点催化剂与α-Fe2O3对TC的处理效果图以及速率常数图。
具体实施方式
下面结合实施例对本发明的技术方案进行说明。
实施例1α-Fe2O3/CQDs光芬顿处理模拟染料废水
将1mmol FeCl3缓慢加入到0.118mol甲醇中,在强磁搅拌下加入少量去离子水(0.09mol)。一旦形成透明的混合溶液,将7mmol乙酸钠,与此同时加入2mmol的葡萄糖溶解并搅拌30分钟(至溶解)。然后,将得到的溶液转移到100毫升聚四氟乙烯内衬的不锈钢高压釜中,在100℃加热24小时。自然冷却至室温后,离心,分别用乙醇和蒸馏水洗涤若干次(主要是洗涤干净一些杂质,例如无机离子、有机物等)。最后,在200℃进行干燥,得到黑红色的粉末状的碳量子-铁基氧化物复合光芬顿催化剂。
前述方法制备的α-Fe2O3/CQDs光芬顿催化剂,首先通过X射线衍射技术(XRD)分析了合成催化剂的晶相结构(如图1所示,其中横坐标为扫描角度,纵坐标为峰强度)。该催化剂的XRD图谱可以非常清晰的检测出在35°和56.9°的衍射峰分别对应Fe3O4的(311)面以及(511)面。同时在33°、62.4°和63.8°检测出的衍射峰分别对应Fe2O3的(104)、(214)以及(300)面。在41.3°以及43.4°检测出的衍射峰分别对应CQDs的(100)和(103)面,以上结果说明了CQDs与铁氧化物成功复合。
X射线光电子能谱(XPS)分析进一步证实了α-Fe2O3/CQDs的表面组成和化学状态。XPS测量谱图显示复合材料中存在C、O和Fe元素(如图2所示,其中横坐标表示键能,纵坐标表示键伸缩强度)。C1s XPS谱图在284.8eV、286.67eV和288.81eV处出现多个峰,分别对应C-C(sp2)、C-O和O-C=O键,如图2b所示。在O1s XPS谱图中,530.58eV和531.23eV处的峰分别归属于Fe-O(来自α-Fe2O3),而532.5eV处的Fe-O-C峰与CQDs表面的峰相关。与含氧基团有关。Fe 2p的XPS光谱研究发现,Fe 2p的两个宽峰集中在710.9eV和722.9eV,分别对应Fe2+和Fe3+。以上结果表明,材料成功地复合了CQDs,复合材料中含有Fe2+和Fe3+
对复合材料进一步通过透射电镜(TEM)表征,结果如图3所示。其中观察到晶格间距为0.25nm以及0.33nm的大面积晶格条纹,对应于铁氧化物的(110)晶面和(211)晶面。晶格条纹间距为0.22nm的粒子,对应于碳量子点的(100)平面,是CQDs。以上结果充分证明了复合材料的成功制备。
用于处理染料废水时,将50mg上述合成的光芬顿催化剂,投加至100mL的初始浓度为10mg.L-1的罗丹明B(RhB)溶液模拟的染料废水中。将悬浮液在黑暗中搅拌以达到吸附-解吸平衡。然后使用300W的Xe灯片在可见光照射下将0.05mol.L-1H2O2(30%)添加到反应器中的悬浮液中。一定时间间隔取样3-4mL反应溶液,离心、过滤除去催化剂后,采用分光光度法测不同处理时间下RhB浓度,处理效果如图4所示,其中横坐标代表时间,纵坐标Kineticconstant代表反应速率常数。处理后的α-Fe2O3/CQDs光芬顿催化剂可进行磁回收重复利用。铁基-碳量子点催化剂(α-Fe2O3/CQDs)处理10分钟RhB的去除率可以达到95%,反应速率常数k为0.3157min-1,而未掺杂的α-Fe2O3催化剂的一小时去除率仅86%,只加H2O2和只加碳量子点(CQDs)的降解率分别为40%和35%。α-Fe2O3的反应速率常数k为0.03017min-1。α-Fe2O3/CQDs反应速率与α-Fe2O3催化剂相比增加10倍左右,复合催化剂明显提高光芬顿催化效果。
此外,通过一锅水热处理葡萄糖和催化剂制备的铁基碳量子点催化剂有效还原了部分三价铁,使制备的催化剂具有磁性(如图5所示),更好地解决了纳米催化剂难以回收的缺点。
实施例2α-Fe2O3/CQDs光芬顿处理抗生素模拟废水
将25mmol FeNO3缓慢加入到2.95mol异丙醇中,在强磁搅拌下加入少量去离子水(0.69mol)。一旦形成透明的混合溶液,将75mmol乙酸钾,与此同时加入50mmol的果糖溶解并搅拌50分钟(至溶解)。然后,将得到的溶液转移到100毫升PPL内衬的不锈钢高压釜中,在350℃加热2小时。自然冷却至室温后,离心,分别用乙醇和蒸馏水洗涤若干次。最后,在50℃进行干燥,得到黑红色的粉末。
光芬顿催化剂的主要成分是铁基-碳量子点,实验时(实验结果如图6所示),首先,将50mg的α-Fe2O3/CQDs催化剂分散在100mL的10mg L-1的盐酸四环素(TC)溶液模拟的抗生素废水中。在可见光照射之前,将悬浮液在黑暗中搅拌以达到吸附-解吸平衡。然后使用300W Xe灯片在可见光照射下将0.05mol-L H2O2(30%)添加到反应器中的悬浮液中。按照一定时间间隔采取3~4mL反应溶液,离心、过滤除去催化剂后,采用分光光度法测不同处理时间下的TC浓度。处理后的α-Fe2O3/CQDs光芬顿催化剂可进行磁回收重复利用。α-Fe2O3/CQDs光芬顿对四环素的在10min内降解率可以达到80%,处理完成后的催化剂可以进行磁分离回收,α-Fe2O3/CQDs与α-Fe2O3的一级动力学反应常数分别为0.6175min-1和0.2512min-1,与不掺杂相比,掺杂碳量子点的铁基氧化物光芬顿催化剂反应速率是前者的2.46倍左右。
实施例3α-Fe2O3/CQDs光芬顿处理模拟染料废水
将50.5mmol Fe2(SO4)3缓慢加入到5mol丙醇中,在强磁搅拌下加入少量去离子水(1.36mol)。一旦形成透明的混合溶液,将100mmol丙酸钠,与此同时加入90mmol的蔗糖溶解并搅拌40分钟(至溶解)。然后,将得到的溶液转移到100毫升聚四氟乙烯内衬的不锈钢高压釜中,在200℃加热10小时。自然冷却至室温后,离心,分别用乙醇和蒸馏水洗涤若干次。最后,在80℃进行干燥,得到黑红色的粉末。光芬顿催化剂的主要成分是铁基-碳量子点,实验时,首先,将50mg的α-Fe2O3/CQDs催化剂分散在100mL的10mg L-1的亚甲基蓝(MB)溶液模拟的抗生素废水中。在可见光照射之前,将悬浮液在黑暗中搅拌以达到吸附-解吸平衡。然后使用300W Xe灯片在可见光照射下将0.05mol/L H2O2(30%)添加到反应器中的悬浮液中。按照一定时间间隔采取3~4mL反应溶液,离心、过滤除去催化剂后,采用分光光度法测不同处理时间下的MB浓度。处理后的α-Fe2O3/CQDs光芬顿催化剂可进行磁回收重复利用。α-Fe2O3/CQDs光芬顿对苯酚的在60min内降解率可以达到80%,处理完成后的催化剂可以进行磁分离回收。
参考文献
1.Jiao L,Yu X,Liu Q,et al.Appl.Catal.B-Environ.2014.
2.Carliell CM,Barclay SJ,Shaw C,et al.The Effect of Salts Used inTextile Dyeing on Microbial Decolourisation of a Reactive AzoDye.Environmental Technology Letters 1998;19:1133-1137.
3.Cai C,Zhang Z,Jin L,et al.Visible light-assisted heterogeneousFenton with ZnFe 2 O 4 for the degradation of Orange II in water.AppliedCatalysis B Environmental 2016;182:456-468.
4.Du X,Liu L,Dong Z,et al.Accelerated Redox Cycles of Fe(III)/Fe(II)and Cu(III)/Cu(II)by Photo-Induced Electron from N-CQDs for Enhanced Photo-Fenton Capability of CuFe-LDH.Catalysts 2020;10:960.
5.Du X,Liu L,Dong Z,et al.Accelerated Redox Cycles of Fe(III)/Fe(II)and Cu(III)/Cu(II)by Photo-Induced Electron from N-CQDs for Enhanced Photo-Fenton Capability of CuFe-LDH.Catalysts 2020;10.
6.Gao H,Wang F,Wang S,et al.Photocatalytic activity tuning in a novelAg 2 S/CQDs/CuBi 2 O 4 composite:Synthesis and photocatalyticmechanism.Materials Research Bulletin 2020;115:140-149.
7.Gao H,Zheng C,Yang H,et al.Construction of a CQDs/Ag3PO4/BiPO4Heterostructure Photocatalyst with Enhanced Photocatalytic Degradation ofRhodamine B under Simulated Solar Irradiation.Micromachines 2019;10.
8.Han W,Li D,Zhang M,et al.Photocatalytic activation ofperoxymonosulfate by surface-tailored carbon quantum dots.Journal ofHazardous Materials 2020;395.

Claims (10)

1.碳量子点掺杂铁基氧化物的光芬顿催化剂的制备方法,其特征在于,包括如下步骤:将铁盐加入到有机溶剂中,在10~500 rpm搅拌速度下加入去离子水,形成透明混合溶液后加入有机酸盐和碳源,溶解后置于高压釜中,在100~ 350℃加热2~24小时;冷却至室温,离心,分别用乙醇和蒸馏水洗涤若干次;20~200℃干燥,得到到黑红色的粉末,即为光芬顿催化剂;所述铁盐为硫酸铁、氯化铁或硝酸铁;所述有机酸盐为甲酸钠、乙酸钠、乙酸钾、丙酸钠或丙酸钾;所述有机溶剂为甲醇、乙醇、丙醇、异丙醇、乙醚、丙酮或石油醚;所述碳源为葡萄糖、果糖或蔗糖;
所述光芬顿催化剂中含有Fe2+和Fe3+;所述光芬顿催化剂具有磁性。
2.如权利要求1所述制备方法,其特征在于,所述原料用量为:铁盐1~ 50.5 mmol、有机溶剂0.1 ~5.0 mol、0.09 ~5 mol去离子水、5 ~100 mmol有机酸盐、0.1 ~100 mmol的碳源。
3.如权利要求2所述制备方法,其特征在于,所述原料用量为:铁盐1 ~ 25 mmol、有机溶剂0.1~ 1 mol、0.1 ~ 1.36 mol去离子水、7 ~75 mmol有机酸盐、2~ 60 mmol的碳源。
4.如权利要求1所述制备方法,其特征在于,所述原料用量为:铁盐25 mmol、有机溶剂2.95mol、0.69 mol去离子水、75 mmol有机酸盐、50 mmol的碳源。
5.如权利要求1所述制备方法,其特征在于,在150℃~200℃加热。
6.如权利要求5所述制备方法,其特征在于,干燥温度为50~100℃。
7.权利要求1~6任一项所述制备方法制备得到的光芬顿催化剂。
8.权利要求7所述光芬顿催化剂在治理水污染中的用途。
9.如权利要求8所述的用途,其特征在于,所述光芬顿催化剂在治理罗丹明B和/或抗生素污染中的用途。
10.如权利要求9所述的用途,其特征在于,所述抗生素为四环素。
CN202210588259.7A 2022-05-27 2022-05-27 碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途 Active CN114768808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210588259.7A CN114768808B (zh) 2022-05-27 2022-05-27 碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210588259.7A CN114768808B (zh) 2022-05-27 2022-05-27 碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途

Publications (2)

Publication Number Publication Date
CN114768808A CN114768808A (zh) 2022-07-22
CN114768808B true CN114768808B (zh) 2023-12-08

Family

ID=82408094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210588259.7A Active CN114768808B (zh) 2022-05-27 2022-05-27 碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN114768808B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318292A (zh) * 2022-08-31 2022-11-11 中国矿业大学 一种铁掺杂碳点的制备方法及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447058A (zh) * 2013-09-18 2013-12-18 中北大学 一种氯元素修饰碳量子点的制备方法
CN105597764A (zh) * 2016-03-09 2016-05-25 中国科学院地球环境研究所 一种碳量子点/铁酸锌复合光催化材料的制备方法
CN107841307A (zh) * 2016-08-04 2018-03-27 南京工业大学 一种荧光碳量子点大规模的制备方法
CN108311149A (zh) * 2018-03-06 2018-07-24 苏州宝澜环保科技有限公司 一种Fe2O3基光催化复合材料及其制备方法
CN108380234A (zh) * 2018-03-07 2018-08-10 苏州宝澜环保科技有限公司 一种碳基半导体复合材料及其制备方法
CN108686658A (zh) * 2018-05-22 2018-10-23 三明学院 一种C-QDs-Fe2O3/TiO2复合光催化剂及其制备方法
WO2019176511A1 (ja) * 2018-03-12 2019-09-19 国立大学法人群馬大学 酸素還元触媒用炭素系複合体ならびにその製造方法および用途
CN111672511A (zh) * 2020-05-25 2020-09-18 哈尔滨工业大学 一种在钛合金表面制备γ-三氧化二铁/二氧化硅光芬顿催化剂复合膜层的方法和应用
CN112520724A (zh) * 2020-10-30 2021-03-19 蚌埠学院 一种磁性碳量子点的制备方法
CN113526607A (zh) * 2020-04-16 2021-10-22 中国环境科学研究院 基于碳点的有机物降解同步重金属还原光催化电极及应用
CN114146720A (zh) * 2021-11-23 2022-03-08 滨州学院 一种降解废水中有机物的光芬顿催化剂及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180312752A1 (en) * 2017-04-28 2018-11-01 Chung Yuan Christian University Methods of making carbon quantum dots
US20200378018A1 (en) * 2020-04-16 2020-12-03 Chinese Research Academy Of Environmental Sciences Carbon dots-based photocatalytic electrode for simultaneous organic matter degradation and heavy metal reduction and use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447058A (zh) * 2013-09-18 2013-12-18 中北大学 一种氯元素修饰碳量子点的制备方法
CN105597764A (zh) * 2016-03-09 2016-05-25 中国科学院地球环境研究所 一种碳量子点/铁酸锌复合光催化材料的制备方法
CN107841307A (zh) * 2016-08-04 2018-03-27 南京工业大学 一种荧光碳量子点大规模的制备方法
CN108311149A (zh) * 2018-03-06 2018-07-24 苏州宝澜环保科技有限公司 一种Fe2O3基光催化复合材料及其制备方法
CN108380234A (zh) * 2018-03-07 2018-08-10 苏州宝澜环保科技有限公司 一种碳基半导体复合材料及其制备方法
WO2019176511A1 (ja) * 2018-03-12 2019-09-19 国立大学法人群馬大学 酸素還元触媒用炭素系複合体ならびにその製造方法および用途
CN108686658A (zh) * 2018-05-22 2018-10-23 三明学院 一种C-QDs-Fe2O3/TiO2复合光催化剂及其制备方法
CN113526607A (zh) * 2020-04-16 2021-10-22 中国环境科学研究院 基于碳点的有机物降解同步重金属还原光催化电极及应用
CN111672511A (zh) * 2020-05-25 2020-09-18 哈尔滨工业大学 一种在钛合金表面制备γ-三氧化二铁/二氧化硅光芬顿催化剂复合膜层的方法和应用
CN112520724A (zh) * 2020-10-30 2021-03-19 蚌埠学院 一种磁性碳量子点的制备方法
CN114146720A (zh) * 2021-11-23 2022-03-08 滨州学院 一种降解废水中有机物的光芬顿催化剂及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Visible light induced efficient activation of persulfate by a carbon quantum dots (CQDs) modified γ-Fe2O3 catalyst;Yongjie Li et al.;Chinese Chemical Letters;第31卷;第2757-2761页 *

Also Published As

Publication number Publication date
CN114768808A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Guo et al. Z-scheme heterojunction g-C3N4@ PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole
Wang et al. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation
Xu et al. Persulfate activation towards organic decomposition and Cr (VI) reduction achieved by a novel CQDs-TiO2− x/rGO nanocomposite
Xiang et al. Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of pn/nn dual heterojunction under simulated sunlight by persulfate
Li et al. Ultrafast recovery of aqueous uranium: Photocatalytic U (VI) reduction over CdS/g-C3N4
Narzary et al. Visible light active, magnetically retrievable Fe3O4@ SiO2@ g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants
Liu et al. A novel Z-scheme NH2-MIL-125 (Ti)/Ti3C2 QDs/ZnIn2S4 photocatalyst with fast interfacial electron transfer properties for visible light-driven antibiotic degradation and hydrogen evolution
An et al. Enriched photocatalysis-Fenton synergistic degradation of organic pollutants and coking wastewater via surface oxygen vacancies over Fe-BiOBr composites
Liu et al. Lead bismuth oxybromide/graphene oxide: synthesis, characterization, and photocatalytic activity for removal of carbon dioxide, crystal violet dye, and 2-hydroxybenzoic acid
Zhang et al. Carbon nitride nanotubes anchored with high-density CuNx sites for efficient degradation of antibiotic contaminants under photo-Fenton process: Performance and mechanism
Mei et al. Effect of electronic migration of MIL-53 (Fe) on the activation of peroxymonosulfate under visible light
Mei et al. The enhanced photodegradation of bisphenol A by TiO2/C3N4 composites
Lin et al. Synthesis of bismuth oxybromochloroiodide/graphitic carbon nitride quaternary composites (BiOxCly/BiOmBrn/BiOpIq/g-C3N4) enhances visible-light-driven photocatalytic activity
Zhang et al. Simultaneous nitrogen doping and Cu2O oxidization by one-step plasma treatment toward nitrogen-doped Cu2O@ CuO heterostructure: an efficient photocatalyst for H2O2 evolution under visible light
Wu et al. Facile in-situ construction of highly dispersed nano zero-valent iron modified black TiO2 Z-scheme recyclable heterojunction with highly efficient visible-light-driven photocatalytic activity
Vinoth et al. Bismuth oxyiodide incorporated reduced graphene oxide nanocomposite material as an efficient photocatalyst for visible light assisted degradation of organic pollutants
Zhao et al. Faster electron injection and higher interface reactivity in g-C3N4/Fe2O3 nanohybrid for efficient photo-Fenton-like activity toward antibiotics degradation
Gu et al. Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride
Yang et al. Improved photocatalytic properties of Fe (III) ion doped Bi2MoO6 for the oxidation of organic pollutants
Lin et al. Facile preparation of a novel modified biochar-based supramolecular self-assembled g-C3N4 for enhanced visible light photocatalytic degradation of phenanthrene
Gao et al. Enhanced photocatalytic activation of peroxymonosulfate by CeO2 incorporated ZnCo–layered double hydroxide toward organic pollutants removal
Long et al. Enhanced degradation performance of p-chlorophenol in photo-Fenton reaction activated by nano-Fe0 encapsulated in hydrothermal carbon: Improved Fe (III)/Fe (II) cycle
Fei et al. Recent advances in graphitic carbon nitride as a catalyst for heterogeneous Fenton-like reactions
Lin et al. Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation
CN114768808B (zh) 碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant